
IBM Informix

IBM Informix GLS User’s Guide

Version 4.50

G229-6373-02

���

IBM Informix

IBM Informix GLS User’s Guide

Version 4.50

G229-6373-02

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page C-1.

This edition replaces G229-6373-01.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . vii

In This Introduction . vii

About This publication . vii

Types of Users . vii

Software Dependencies . viii

Assumptions About Your Locale . viii

Demonstration Databases . viii

Character-Representation Conventions . ix

Single-Byte Characters . ix

Multibyte Characters . ix

Single-Byte and Multibyte Characters in the Same String x

White Space Characters in Strings . x

Trailing White Space Characters . x

Documentation Conventions . xi

Typographical Conventions . xi

Feature, Product, and Platform Markup . xi

Example Code Conventions . xii

Additional Documentation . xii

Compliance with Industry Standards . xiii

Syntax Diagrams . xiii

How to Read a Command-Line Syntax Diagram . xiv

Keywords and Punctuation . xv

Identifiers and Names . xv

How to Provide Documentation Feedback . xvi

Chapter 1. GLS Fundamentals . 1-1

In This Chapter . 1-1

Using the GLS Feature . 1-2

GLS Support by IBM Informix Products . 1-3

Understanding a GLS Locale . 1-7

Code Sets for Character Data . 1-7

Character Classes of the Code Set . 1-9

Collation Order for Character Data . 1-9

End-User Formats . 1-11

Setting a GLS Locale . 1-14

Locales in the Client/Server Environment . 1-14

The Default Locale . 1-19

Setting a Nondefault Locale . 1-21

Using GLS Locales with IBM Informix Products . 1-21

Supporting Non-ASCII Characters . 1-22

Establishing a Database Connection . 1-22

Performing Code-Set Conversion . 1-27

Locating Message Files . 1-30

Customizing End-User Formats . 1-30

Customizing Date and Time End-User Formats . 1-30

Customizing Monetary Values . 1-31

Chapter 2. GLS Environment Variables . 2-1

In This Chapter . 2-1

Setting and Retrieving Environment Variables . 2-1

GLS-Related Environment Variables . 2-2

CC8BITLEVEL . 2-2

CLIENT_LOCALE . 2-3

DBDATE . 2-4

DBLANG . 2-4

© Copyright IBM Corp. 1996, 2008 iii

DB_LOCALE . 2-5

DBMONEY . 2-6

DBNLS (IDS) . 2-7

DBTIME (ESQL/C) . 2-8

ESQLMF . 2-8

GLS8BITFSYS . 2-9

GL_DATE . 2-11

GL_DATETIME . 2-16

GL_USEGLU (IDS) . 2-20

SERVER_LOCALE . 2-21

Chapter 3. SQL Features . 3-1

In This Chapter . 3-2

Naming Database Objects . 3-2

Rules for Identifiers . 3-2

Non-ASCII Characters in Identifiers . 3-3

Valid Characters in Identifiers . 3-7

Using Character Data Types . 3-8

Localized Collation of Character Data . 3-8

Other Character Data Types . 3-11

Handling Character Data . 3-13

Specifying Quoted Strings . 3-14

Specifying Comments . 3-14

Specifying Column Substrings . 3-15

Specifying Arguments to the TRIM Function . 3-19

Using Case-Insensitive Search Functions (IDS) . 3-19

Collating Character Data . 3-19

Using SQL Length Functions . 3-28

Using Locale-Sensitive Data Types . 3-33

Handling the MONEY Data Type . 3-33

Handling Extended Data Types (IDS) . 3-34

Handling Smart Large Objects (IDS) . 3-35

Using Data Manipulation Statements . 3-35

Specifying Conditions in the WHERE Clause . 3-36

Specifying Era-Based Dates . 3-36

Loading and Unloading Data . 3-36

Chapter 4. Database Server Features . 4-1

In This Chapter . 4-1

GLS Support by Informix Database Servers . 4-1

Database Server Code-Set Conversion . 4-2

Data That the Database Server Converts . 4-3

Locale-Specific Support for Utilities . 4-4

Non-ASCII Characters in Database Server Utilities . 4-4

Non-ASCII Characters in SQL Utilities . 4-5

Locale Support For C User-Defined Routines (IDS and DB API) 4-6

Current Processing Locale for UDRs . 4-6

Non-ASCII Characters in Source Code . 4-6

Copying Character Data . 4-8

The IBM Informix GLS Library . 4-8

Code-Set Conversion and the DataBlade API . 4-9

Locale-Specific Data Formatting . 4-10

Internationalized Exception Messages . 4-11

Internationalized Tracing Messages . 4-14

Locale-Sensitive Data in an Opaque Data Type . 4-17

Chapter 5. General SQL API Features (ESQL/C) 5-1

In This Chapter . 5-1

Supporting GLS in IBM Informix Client Applications . 5-1

Client Application Code-Set Conversion . 5-1

iv IBM Informix GLS User’s Guide

Internationalizing Client Applications . 5-4

Internationalization . 5-4

Localization . 5-4

Handling Locale-Specific Data . 5-6

Processing Characters . 5-6

Formatting Data . 5-7

Avoiding Partial Characters . 5-7

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-1

In This Chapter . 6-1

Handling Non-ASCII Characters . 6-2

Using Non-ASCII Characters in Host Variables . 6-2

Generating Non-ASCII Filenames . 6-3

Using Non-ASCII Characters in ESQL/C Source Files . 6-4

Defining Variables for Locale-Sensitive Data . 6-6

Using Enhanced ESQL/C Library Functions . 6-7

DATE-Format Functions . 6-7

DATETIME-Format Functions . 6-9

Numeric-Format Functions . 6-11

String Functions . 6-14

GLS-Specific Error Messages . 6-14

Handling Code-Set Conversion . 6-15

Writing TEXT Values . 6-15

Using the DESCRIBE Statement . 6-16

Using the TRIM Function . 6-17

Appendix A. Managing GLS Files . A-1

Accessing GLS Files . A-1

GLS Locale Files . A-2

Locale Categories . A-2

Location of Locale Files . A-5

Other GLS Files . A-7

Code-Set-Conversion Files . A-7

Code-Set Files . A-9

The Informix registry File (Windows) . A-10

Removing Unused Files . A-10

Removing Locale and Code-Set-Conversion Files . A-11

Removing Code-Set Files . A-11

The glfiles Utility (UNIX) . A-11

Listing Code-Set-Conversion Files . A-12

Listing GLS Locale Files . A-12

Listing Character-Mapping Files . A-14

Appendix B. Accessibility . B-1

Accessibility features for IBM Informix Dynamic Server . B-1

Accessibility Features . B-1

Keyboard Navigation . B-1

Related Accessibility Information . B-1

IBM and Accessibility . B-1

Dotted Decimal Syntax Diagrams . B-1

Notices . C-1

Trademarks . C-3

Index . X-1

Contents v

vi IBM Informix GLS User’s Guide

Introduction

In This Introduction . vii

About This publication . vii

Types of Users . vii

Software Dependencies . viii

Assumptions About Your Locale . viii

Demonstration Databases . viii

Character-Representation Conventions . ix

Single-Byte Characters . ix

Multibyte Characters . ix

Single-Byte and Multibyte Characters in the Same String x

White Space Characters in Strings . x

Trailing White Space Characters . x

Documentation Conventions . xi

Typographical Conventions . xi

Feature, Product, and Platform Markup . xi

Example Code Conventions . xii

Additional Documentation . xii

Compliance with Industry Standards . xiii

Syntax Diagrams . xiii

How to Read a Command-Line Syntax Diagram . xiv

Keywords and Punctuation . xv

Identifiers and Names . xv

How to Provide Documentation Feedback . xvi

In This Introduction

This introduction provides an overview of the information in this publication and

describes the conventions it uses.

About This publication

This publication describes the Global Language Support (GLS) feature available in

IBM Informix products. The GLS feature allows IBM Informix

application-programming interfaces (APIs) and IBM Informix database servers to

handle different languages, cultural conventions, and code sets. This publication

describes only the language-related topics that are unique to GLS.

This publication provides GLS information on Informix® database servers for both

Microsoft® Windows and UNIX®.

Types of Users

This publication is written for system administrators and application developers

who want to use the GLS environment to create internationalized database

management applications with IBM Informix products.

This publication is primarily intended for those users who need to use IBM

Informix products with a nondefault locale. It assumes that you are familiar with

Informix database servers and associated products. If that is not the case, refer to

your IBM Informix Dynamic Server Getting Started Guide.

© Copyright IBM Corp. 1996, 2008 vii

If you need more information about features of your operating system to support

non-ASCII characters in filenames, pathnames, and other contexts, see your

operating system documentation.

Software Dependencies

This publication is written with the assumption that you are using one of the

following database servers:

v IBM Informix Dynamic Server (IDS), Version 11.50

v IBM Informix Extended Parallel Server, Version 8.51

with Version 4.50 of the GLS library.

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All

culture-specific information is brought together in a single environment, called a

GLS locale.

This publication assumes that you use the U.S. 8859-1 English locale as the default

locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms or en_us.1252

(Microsoft 1252) for Windows environments. This locale supports U.S. English

format conventions for dates, times, and currency, and also supports the ISO

8859-1 or Microsoft 1252 code set, which includes the ASCII code set plus many

8-bit characters such as é, è, and ñ. If you plan to use nondefault characters in

your data or your SQL identifiers, or if you want to conform to the nondefault

collation rules of character data, you need to specify the appropriate nondefault

locale.

Demonstration Databases

The DB–Access utility, which is provided with your IBM Informix database server

products, includes one or more of these demonstration databases:

v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM

Informix manuals are based on this database.

Extended Parallel Server

v The sales_demo database illustrates a dimensional schema for data warehousing

applications. For conceptual information about dimensional data modeling, see

the IBM Informix Database Design and Implementation Guide.

End of Extended Parallel Server

Dynamic Server

v The superstores_demo database illustrates an object-relational schema. This

database contains examples of extended data types, type and table inheritance,

and user-defined routines.

End of Dynamic Server

For information about how to create and populate the demonstration databases,

see the IBM Informix DB–Access User’s Guide. For descriptions of the databases and

their contents, see the IBM Informix Guide to SQL: Reference.

viii IBM Informix GLS User’s Guide

The scripts that you use to install the demonstration databases reside in the

$INFORMIXDIR/bin directory on UNIX platforms and in the

%INFORMIXDIR%\bin directory in Windows environments.

Character-Representation Conventions

Throughout this publication, examples show how single-byte and multibyte

characters are displayed. Multibyte characters are usually ideographic (such as

Japanese or Chinese characters), but this publication does not depict the actual

multibyte characters. Instead, it uses ASCII characters to represent both single-byte

and multibyte characters. This section describes how this publication represents

multibyte and single-byte characters abstractly

Single-Byte Characters

This publication represents single-byte characters as a series of lowercase letters.

The format for representing one single-byte character abstractly is:

a

Here a stands for any single-byte character, not for the letter “a” itself.

The format for representing a string of single-byte characters is as follows:

a...z

Here a stands for the first character and z stands for the last character in the string.

For example, if the string Ludwig consists of six single-byte characters, the

following format represents this 6-character string abstractly:

abcdef

Tip: The letter “s” does not appear in examples that represent strings of

single-byte characters. The publication reserves the letter “s” as a symbol to

represent a single-byte white space character. See also “White Space

Characters in Strings” on page x.

Multibyte Characters

This publication does not attempt to show the actual appearance of multibyte

characters in text, examples, or diagrams. Instead, the following convention shows

abstractly how multibyte characters are stored:

A1...An

One to four identical uppercase letters, each followed by a different superscript

number, represent one multibyte character. The superscripts show the first to the

nth byte of the multibyte character, where n has values between two and four. For

example, the following symbols represent a multibyte character that consists of two

bytes:

A1A2

The following notation represents a multibyte character that consists of four bytes

(the maximum length of a multibyte character):

A1A2A3A4

The next example shows a string of multibyte characters in an SQL statement:

CREATE DATABASE A1A2B1B2C1C2D1D2E1E2;

Introduction ix

This statement creates a database whose name consists of five multibyte characters,

each of which is two bytes long. For more about using multibyte characters in SQL

identifiers, see “Naming Database Objects” on page 3-2.

Single-Byte and Multibyte Characters in the Same String

For a multibyte code set, a given string might be composed of both single-byte and

multibyte characters. To represent mixed strings, this publication simply combines

the formats for multibyte and single-byte characters. The next example represents a

string with four characters, where the first and fourth characters are single-byte

characters, and the second and third characters are multibyte characters that

consist of two bytes each:

aA1A2B1B2b

White Space Characters in Strings

White space is a series of one or more characters that display as blank space, Each

GLS locale defines what characters are white space characters.

For example, both the TAB (ASCII 9) and blank space (ASCII 32) might be defined

as white space characters in one locale, but certain combinations of the CTRL key

and another character might be defined as white space characters in a different

locale.

The convention for representing a single-byte white space in this publication is the

letter “s”. The following notation represents one single-byte white space:

s

In the ASCII code set, an example of a single-byte white space is the blank

character (ASCII 32). To represent a string that consists of two ASCII blank

characters, the publication uses the following notation:

ss

The following notation represents a multibyte white space character:

s1...sn

Here s1 represents the first byte of the white space character, and sn represents the

last byte of the white space character, where n can range between two and four.

The following notation represents one 4-byte white space character:

s1s2s3s4

Trailing White Space Characters

Combinations of characters with white space can occur in quoted strings, in CHAR

columns that contain fewer characters than the declared column length, and in

other contexts. For example, if a CHAR(5) column in a single-byte code set

contains three characters, the string is padded with two white spaces so that its

length is equal to the column length:

abcss

The next example represents a string of five characters (three characters of data

and two trailing white space characters) in a multibyte code set where each of the

data characters and white space characters consists of two bytes:

A1A2B1B2C1C2s1s2s1s2

x IBM Informix GLS User’s Guide

In some locales, a string can contain both single-byte and multibyte white space

characters. For example, consider the following string:

abcss1s2sss1s2

The string has three single-byte characters (abc), a single-byte white space

character (s), a multibyte white space character (s1s2), two single-byte white-space

characters (ss), and one multibyte white space character (s1s2).

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM® Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Syntax diagrams

v Command-line conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

Introduction xi

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using DB–Access, you must delimit multiple

statements with semicolons. If you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/

xii IBM Informix GLS User’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/

pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

Syntax Diagrams

This guide uses syntax diagrams built with the following components to describe

the syntax for statements and all commands other than system-level commands.

 Table 1. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next

line.

>----------------------- Statement continues from

previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---

 ’------LOCAL------’

Optional item.

---+-----ALL-------+---

 +--DISTINCT-----+

 ’---UNIQUE------’

Required item with choice.

One and only one item must

be present.

---+------------------+---

 +--FOR UPDATE-----+

 ’--FOR READ ONLY--’

Optional items with choice

are shown below the main

line, one of which you might

specify.

 .---NEXT---------.

----+----------------+---

 +---PRIOR--------+

 ’---PREVIOUS-----’

The values below the main

line are optional, one of

which you might specify. If

you do not specify an item,

the value above the line will

be used as the default.

Introduction xiii

http://www.ibm.com/software/data/informix/pubs/library/

Table 1. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

 .-------,-----------.

 V |

---+-----------------+---

 +---index_name---+

 ’---table_name---’

Optional items. Several items

are allowed; a comma must

precede each repetition.

>>-| Table Reference |->< Reference to a syntax

segment.

Table Reference

|--+-----view--------+--|

 +------table------+

 ’----synonym------’

Syntax segment.

How to Read a Command-Line Syntax Diagram

The following command-line syntax diagram uses some of the elements listed in

the table in Syntax Diagrams.

Creating a No-Conversion Job

�� onpladm create job job

-p

project
 -n -d device -D database �

� -t table �

�

�

(1)

Setting

the

Run

Mode

-S

server

-T

target

��

Notes:

1 See page Z-1

The second line in this diagram has a segment named “Setting the Run Mode,”

which according to the diagram footnote, is on page Z-1. If this was an actual

cross-reference, you would find this segment in on the first page of Appendix Z.

Instead, this segment is shown in the following segment diagram. Notice that the

diagram uses segment start and end components.

Setting the Run Mode:

xiv IBM Informix GLS User’s Guide

-f

d

p

a

 l

c

u

n

N

To see how to construct a command correctly, start at the top left of the main

diagram. Follow the diagram to the right, including the elements that you want.

The elements in this diagram are case sensitive because they illustrate utility

syntax. Other types of syntax, such as SQL, are not case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Type onpladm create job and then the name of the job.

2. Optionally, type -p and then the name of the project.

3. Type the following required elements:

v -n

v -d and the name of the device

v -D and the name of the database

v -t and the name of the table
4. Optionally, you can choose one or more of the following elements and repeat

them an arbitrary number of times:

v -S and the server name

v -T and the target server name

v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally

type l or u.
5. Follow the diagram to the terminator.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except

system-level commands. When a keyword appears in a syntax diagram, it is

shown in uppercase letters. When you use a keyword in a command, you can

write it in uppercase or lowercase letters, but you must spell the keyword exactly

as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as

shown in the syntax diagrams.

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax diagrams

and examples. You can replace a variable with an arbitrary name, identifier, or

literal, depending on the context. Variables are also used to represent complex

syntax elements that are expanded in additional syntax diagrams. When a variable

appears in a syntax diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a

simple SELECT statement.

�� SELECT column_name FROM table_name ��

Introduction xv

When you write a SELECT statement of this form, you replace the variables

column_name and table_name with the name of a specific column and table.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

Feedback at the bottom of the page, fill out the form, and submit your feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xvi IBM Informix GLS User’s Guide

mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

Chapter 1. GLS Fundamentals

In This Chapter . 1-1

Using the GLS Feature . 1-2

GLS Support by IBM Informix Products . 1-3

Informix Database Servers . 1-4

IBM Informix Client Applications and Utilities . 1-4

The IBM Informix GLS Application Programming Interface 1-5

Supported Data Types . 1-5

International Language Supplement . 1-6

Understanding a GLS Locale . 1-7

Code Sets for Character Data . 1-7

Character Classes of the Code Set . 1-9

Collation Order for Character Data . 1-9

Code-Set Order . 1-9

Localized Order . 1-10

Unicode Collation . 1-11

Collation Support . 1-11

End-User Formats . 1-11

Numeric and Monetary Formats . 1-13

Date and Time Formats . 1-13

Setting a GLS Locale . 1-14

Locales in the Client/Server Environment . 1-14

The Client Locale . 1-16

The Database Locale . 1-17

The Server Locale . 1-19

The Default Locale . 1-19

The Default Code Set . 1-20

Default End-User Formats for Date and Time . 1-20

Default End-User Formats for Numeric and Monetary Values 1-20

Setting a Nondefault Locale . 1-21

Using GLS Locales with IBM Informix Products . 1-21

Supporting Non-ASCII Characters . 1-22

Establishing a Database Connection . 1-22

Sending the Client Locale . 1-22

Verifying the Database Locale . 1-23

Checking for Connection Warnings . 1-23

Determining the Server-Processing Locale . 1-24

Performing Code-Set Conversion . 1-27

When Code-Set Conversion Is Performed . 1-28

Locating Message Files . 1-30

Customizing End-User Formats . 1-30

Customizing Date and Time End-User Formats . 1-30

Era-Based Date and Time Formats . 1-31

Date and Time Precedence . 1-31

Customizing Monetary Values . 1-31

In This Chapter

The Global Language Support (GLS) feature lets IBM Informix products handle

different languages, cultural conventions, and code sets for Asian, African,

European, Latin American, and Middle Eastern countries.

© Copyright IBM Corp. 1996, 2008 1-1

The GLS feature lets you create databases using the diacritics, collating sequence,

and monetary and time conventions of the language that you select. No

ONCONFIG configuration parameters exist for GLS, but you must set the

appropriate environment variables.

This chapter introduces basic concepts and describes the GLS feature. It includes

the following sections:

v Using the GLS Feature

v Understanding a GLS Locale

v Setting a GLS Locale

v Using GLS Locales with IBM Informix Products

v Customizing End-User Formats

Using the GLS Feature

In a database application, some of the tasks that the database server and the client

application perform depend on the language and culture conventions of the data

that they handle. For example, the database server must sort U.S. English data

differently from Korean character data. The client application must display

Canadian currency differently from Thai currency.

If the Informix database server or client product included the code to perform

these data-dependent tasks, each would need to be written specially to handle a

different set of culture-specific data.

With support for GLS, IBM Informix products no longer need to specify how to

process culture-specific information directly. Culture-specific information resides in

a GLS locale. When an IBM Informix product needs culture-specific information, it

calls the GLS library, which accesses the GLS locale and returns the information to

the IBM Informix product.

The GLS feature is a portable way to support culture-specific information.

Although many operating systems provide support for non-English data, this

support is usually in a form that is specific to the operating system. Not many

standards yet exist for the format of culture-specific information. This lack of

conformity means that if you move an application from one operating-system

environment to another, you might need to change the way in which the

application requests language support from the operating system. You might even

find that the new operating-system environment does not provide the same aspect

of language support that the initial environment provided.

The GLS feature can access culture-specific information on a UNIX or Windows

operating system. IBM Informix products can locate the locale information on any

platform to which they are ported.

Windows Only

In order for GLS to support a nondefault locale, the version of Windows that you

are using must also support that locale. That is, you cannot support a Japanese

client application on Windows unless that application is running on the Japanese

version of Windows.

End of Windows Only

1-2 IBM Informix GLS User’s Guide

To use the GLS feature, the tasks that you need to perform depend on whether you

are a system administrator, database administrator, end user of a client application,

end user of a database server utility, or client application developer. The following

table lists these optional and mandatory tasks.

 Audience Optional Tasks Mandatory Tasks

System

administrator,

database

administrator, or end

user of client

application

v For non-default locales, set the

DB_LOCALE, CLIENT_LOCALE, and

SERVER_LOCALE environment

variables.

v To customize end-user formats, set the

GL_DATE, GL_DATETIME, and

DBMONEY environment variables. For

Informix ESQL/C, you can set

DBTIME instead of GL_DATETIME.

None

v To configure a GLS environment for

Informix ESQL/C, set the

CC8BITLEVEL and ESQLMF

environment variables.

v To perform additional configuration for

the GLS environment, set the DBLANG

and GLS8BITFSYS environment

variables.

v To issue an SQL statement, follow the

guidelines in Chapter 3, “SQL

Features,” on page 3-1, and Chapter 4,

“Database Server Features,” on page

4-1.

v To remove GLS files, follow the

guidelines in “Removing Unused Files”

on page A-10.

v To get information about GLS files on

UNIX, follow the guidelines in “The

glfiles Utility (UNIX)” on page A-11.

End user of database

server utility

Same as above Follow the guidelines in

“Locale-Specific Support

for Utilities” on page 4-4.

Client application

developer

v Same as above

v To develop an internationalized client

application, follow the guidelines in

“Internationalizing Client Applications”

on page 5-4 and the IBM Informix GLS

User’s Guide.

v Follow the guidelines

in Chapter 5, “General

SQL API Features

(ESQL/C),” on page

5-1.

v For an Informix

ESQL/C application,

also follow the

guidelines in

Chapter 6, “IBM

Informix ESQL/C

Features (ESQL/C),”

on page 6-1.

GLS Support by IBM Informix Products

GLS support is provided for these IBM Informix products and utilities:

v Informix database servers

Chapter 1. GLS Fundamentals 1-3

v IBM Informix client applications and database server utilities

v The IBM Informix GLS application programming interface

Sections that follow outline the features that GLS support provides for the first two

types of IBM Informix products.

For information about how to migrate a database server whose databases contain

non-English data, see the IBM Informix Migration Guide.

Informix Database Servers

GLS was introduced in IBM Informix OnLine Dynamic Server. Previously, ALS

language support was provided for non-English databases with Asian (multibyte)

characters and NLS language support for non-English databases with single-byte

characters. GLS is a single feature that provides support for single-byte and

multibyte data in non-English languages. For compatibility with earlier versions,

GLS products also support all of the NLS environment variables and a subset of

the ALS environment variables. For a list of these variables, see the IBM Informix

Migration Guide.

Culture-Specific Features: With the GLS feature, Informix database servers

provide support for the following culture-specific features:

v Processing non-ASCII characters and strings

You can use non-ASCII characters to name user-specifiable database objects, such

as tables, columns, views, statements, cursors, and SPL routines, and you can

use a collation order that suits local customs.

You can also use non-ASCII characters in many other contexts. For example, you

can use them to specify the WHERE and ORDER BY clauses of your SELECT

statements or to sort data in NCHAR and NVARCHAR columns. You can use

GLS collation features without the modification of existing code.

v Evaluation of expressions

You can use non-ASCII characters in expression comparisons that involve any

character-based datatype.

v Translation of locale-specific values for dates, times, numeric data, and monetary

data

You can use end-user formats that are specific to a country or culture outside the

U.S. to specify date, time, numeric, and monetary values when they appear in

literal strings. The database server can translate these formats to the appropriate

internal database format.

v Accessibility of formerly incompatible character code sets

The client application can perform code-set conversion between convertible code

sets to allow you to access and share data between databases and clients that

have different code sets. For more information on code-set conversion, see

“Performing Code-Set Conversion” on page 1-27.

IBM Informix Client Applications and Utilities

In general, a client application is a program that runs on a workstation or a PC on

a network. To the GLS feature, a client application can be either an IBM Informix

SQL API product (such as IBM Informix ESQL/C) or an Informix database server

utility (such as DB–Access, dbexport, or onmode). These IBM Informix client

applications support GLS:

v The DB–Access utility, which is provided with Informix database servers, allows

user-specifiable database objects such as tables, columns, views, statements,

cursors, and SPL routines to include non-ASCII characters and to be sorted

1-4 IBM Informix GLS User’s Guide

according to localized collation rules. For more information on identifiers, see

“Non-ASCII Characters in Identifiers” on page 3-3. For general information

about DB–Access, refer to the IBM Informix DB–Access User’s Guide.

v The SQL APIs allow host and indicator variable names as well as names of

user-specifiable database objects such as tables, columns, views, statements,

cursors, and SPL routines to include non-ASCII characters. For more

information, see Chapter 5, “General SQL API Features (ESQL/C),” on page 5-1.

v Database server utilities such as dbexport or onmode allow many command-line

arguments to include non-ASCII characters. For more information, see Chapter 4,

“Database Server Features,” on page 4-1.

v GLS is also a feature of IBM Informix Dynamic 4GL (Version 3.0 and higher),

IBM Informix 4GL (Version 7.2 and higher), and IBM Informix SQL (Version 7.2

and higher). For details of GLS implementation, refer to the documentation of

these IBM Informix products.

The IBM Informix GLS Application Programming Interface

IBM Informix GLS is an application programming interface (API) that lets

DataBlade module developers and Informix ESQL/C programmers develop

internationalized applications with a C-language interface.

The macros and functions of IBM Informix GLS provide access within an

application to GLS locales, which contain culture-specific information. You can use

IBM Informix GLS to write programs (or change existing programs) to handle

different languages, cultural conventions, and code sets.

All IBM Informix GLS functions access the current processing locale, which is the

locale that is currently in effect for an application. It is based on either the client

locale (for Informix ESQL/C client applications and client LIBMI applications) or

the server-processing locale (for DataBlade user-defined routines).

IBM Informix GLS provides macros and functions to help you perform the

following internationalization tasks:

v Process single-byte, multibyte, and wide characters

v Process single-byte, multibyte, and wide-character strings

v Memory management for multibyte and wide-character strings

v Convert date, time, money, and number strings to and from binary values

v Process input and output multibyte-character streams

IBM Informix client applications as well as database servers can access IBM

Informix GLS. For applications, you link the IBM Informix GLS library to your

application to perform locale-related tasks. Informix database servers automatically

include the IBM Informix GLS library.

Supported Data Types

The GLS feature supports the following data types:

v SQL character data types

– CHAR, VARCHAR, NCHAR, and NVARCHAR

Dynamic Server

– LVARCHAR

End of Dynamic Server

Chapter 1. GLS Fundamentals 1-5

– TEXT and BYTE
For information about GLS considerations for the character data types, see

“Using Character Data Types” on page 3-8.

v SQL number and MONEY data types

For information about GLS considerations for number and MONEY data types,

see “Numeric and Monetary Formats” on page 1-13.

v SQL DATE, and DATETIME data types

For information about GLS considerations for DATE, and DATETIME data types,

see “Date and Time Formats” on page 1-13.

Dynamic Server

v User-defined data types

– Opaque data types

– Complex data types

– Distinct data types
v Smart large objects

– BLOB

– CLOB
For GLS considerations regarding user-defined data types and smart large

objects, see “Handling Extended Data Types (IDS)” on page 3-34.

End of Dynamic Server

v Informix ESQL/C character data types

– char

– fixchar

– string

– varchar

– lvarchar

For information about Informix ESQL/C data types, see the IBM Informix

ESQL/C Programmer’s Manual.

International Language Supplement

IBM Informix products include a core set of GLS locale files, including the default

locale and most locales to support English, Western European, Eastern European,

Asian, and African territories. If you do not find a locale to support your language

and territory, you can get additional locales in the International Language

Supplement (ILS) product, which provides all available GLS locales and code-set

conversion files. It also includes error messages to support several languages.

International Language Supplement lets you localize time, date, number and

currency formats, character sets, and sorting orders. All of the provided locales

work with Informix GLS-enabled products. After following the installation

instructions, set the DBLANG environment variable. Each user who wants to use a

localized user interface file must set the environment variable DBLANG to point to

the appropriate language msg directory. Set DBLANG replacing <codeset-hex>

with the appropriate codeset that your system uses:

v C-shell: setenv DBLANG msg/<lang>_<territory>/<codeset-hex>

v Bourne-shell: DBLANG=msg/<lang>_<territory>/<codeset-hex> export DBLANG

To unset the DBLANG variable, enter the following command:

1-6 IBM Informix GLS User’s Guide

v C-shell: unsetenv DBLANG

v Bourne-shell: unset DBLANG

For more information about how to create customized message files, see “Locating

Message Files” on page 1-30.

Understanding a GLS Locale

In a client/server environment, both the database server and the client application

must know which language the data is in to be able to process the application data

correctly. A GLS locale is a set of Informix files that bring together the information

about data that is specific to a given culture, language, or territory. In particular, a

GLS locale can specify the following:

v The name of the code set that the application data uses

v The classification of the characters in the code set

v The collation (sorting) sequence to use for character data

v The end user format for monetary, numeric, date and time data

IBM Informix products use the following GLS files to obtain locale-related

information. For more information, see Appendix A, “Managing GLS Files,” on

page A-1.

 Type of GLS File Description

GLS locale files Specify language, territory, writing direction, and other cultural

conventions.

Code-set files Specify how to map each logical character in a character set to a unique

bit pattern.

Code-set-
conversion files

Specify how to map each character in a “source” code set to a

corresponding characters in a “target” code set.

The registry file Associates code-set names and aliases with code-set numbers that

specify filenames of locale files and code-set conversion files.

Each database is limited to a single locale, but different databases of the same

database server can support different locales.

A single database can store character data from two or more languages that require

different character sets by using the open-source International Components for

Unicode (ICU) implementation of the Unicode code set (UTF-8). This code set is

available in GLS database server locales for many languages and territories.

(Locales for some client-side systems also support the ICU code set UTF-8, as well

as the ICU code sets UTF-16 and UTF-32.)

Dynamic Server

The SET COLLATION statement of Dynamic Server supports more than one

localized collating order to sort NCHAR and NVARCHAR character strings.

End of Dynamic Server

Code Sets for Character Data

A character set is one or more natural-language alphabets together with additional

symbols for digits, punctuation, and diacritical marks. Each character set has at

Chapter 1. GLS Fundamentals 1-7

least one code set, which maps its characters to unique bit patterns. These bit

patterns are called code points. ASCII, ISO8859-1, Windows Code Page 1252, and

EBCDIC are examples of code sets that support the English language.

The number of unique characters in the language determines the amount of

storage that each character requires in a code set. Because a single byte can store

values in the range 0 to 255, it can uniquely identify 256 characters. Most Western

languages have fewer than 256 characters and therefore have code sets made up of

single-byte characters. When an application handles data in such code sets, it can

assume that 1 byte stores 1 character.

The ASCII code set contains 128 characters. Therefore, the code point for each

character requires 7 bits of a byte. These single-byte characters with code points in

the range 0 to 128 are sometimes called ASCII or 7-bit characters. The ASCII code

set is a single-byte code set and is a subset of all code sets that IBM Informix

products support.

If a code set contains more than 128 characters, some of its characters have code

points that must set the eighth bit of the byte. These non-ASCII characters might

be either of the following types of characters:

v 8-bit characters

The 8-bit characters are single-byte characters whose code points are between

128 and 255. Examples from the ISO8859-1 code set or Windows Code Page 1252

include the non-English é, ñ, and ö characters. Only if the software is 8-bit clean

can it interpret these characters correctly. For more information, see

“GLS8BITFSYS” on page 2-9.

v Multibyte characters

If a character set contains more than 256 characters, the code set must contain

multibyte characters. A multibyte character might require from 2 to 4 bytes of

storage. Some East-Asian locales support character sets that can contain

thousands of ideographic characters; GLS provides full support, for example, for

the unified Chinese GB18030-2000 code set, which contains nearly 1.4 million

code points. Such languages have code sets that include both single-byte and

multibyte characters. These code sets are called multibyte code sets.

Some characters in the Japanese SJIS code set, for another example, are of 2 or 3

bytes. Applications that handle data in multibyte code sets cannot assume that 1

character takes only 1 byte of storage.

Tip: In this publication, the term “non-ASCII characters” applies to all characters

with a code point greater than 127. Non-ASCII characters include both 8-bit

and multibyte characters.

IBM Informix products can support single-byte or multibyte code sets. For some

examples of GLS locales that support non-ASCII characters, see “Supporting

Non-ASCII Characters” on page 1-22.

Tip: Throughout this publication, examples show how single-byte and multibyte

characters appear. Because multibyte characters are usually ideographic (such

as Japanese or Chinese characters), this publication does not use the actual

multibyte characters. Instead, it uses ASCII characters to represent both

single-byte and multibyte characters. For more information, see

“Typographical Conventions” on page xi of the Introduction.

1-8 IBM Informix GLS User’s Guide

Character Classes of the Code Set

A GLS locale groups the characters of a code set into character classes. Each class

contains characters that have a related purpose. GLS supports 12 classes. The

contents of a character class can be language specific. For example, the lower class

contains all alphabetic lowercase characters in a code set. The code set of the

default locale groups the letters a through z into the lower class, which also

includes other lowercase characters such as á, è, î, õ, and ü.

To be internationalized, your application must not assume which characters belong

in a given character class. Instead, use IBM Informix GLS library functions to

identify the class of a particular character.

Collation Order for Character Data

Collation is the process of sorting character strings according to some order. The

database server or the client application can perform collation.

The collating order affects the following tasks in SQL SELECT statements:

v Logical predicates in the WHERE clause

SELECT * FROM tab1 WHERE col1 > ’bob’

SELECT * FROM tab1 WHERE site BETWEEN ’abc’ AND ’xyz’

v Sorted data that the ORDER BY clause creates

SELECT * FROM tab1 ORDER BY col1

v Comparisons in MATCHES and LIKE clauses

SELECT * FROM tab1 WHERE col1 MATCHES ’a1*’

SELECT * FROM tab1 WHERE col1 LIKE ’dog’

SELECT * FROM tab1 WHERE col1 MATCHES ’abc[a-z]’

For more information on how the database locale can affect the SELECT statement,

see “Collation Order in SELECT Statements” on page 3-21.

Informix database servers support two collation methods:

v Code-set order (the first-to-last order of characters in the code set)

v Localized order (if the locale defines a localized order)

Code-Set Order

Code-set order refers to the order of characters within a code set. The order of the

code points in the code set determines the collating order. For example, in the

ASCII code set, A=65 and B=66. The character A always sorts before B because a

code point of 65 is less than one of 66. But because a=97 and M=77, the string abc

sorts after Me, which is not always the preferred result.

The database server uses code-set order to sort columns of these data types:

v CHAR

Dynamic Server

v LVARCHAR

End of Dynamic Server

v VARCHAR

v TEXT

Chapter 1. GLS Fundamentals 1-9

All code sets that IBM Informix products support include the ASCII characters as

the first 127 characters. Therefore, other characters in the code set have the code

points 128 and greater. When the database server sorts values of these data types,

it puts character strings that begin with ASCII characters before characters strings

that begin with non-ASCII characters in the sorted results.

For an example of data sorted in code-set order, see Table 3-2 on page 3-22.

Localized Order

Localized order refers to an order of the characters that relates to a natural language.

The locale defines the order of the characters in the localized order. For example,

even though the character À might have a code point of 133, the localized order

could list this character after A and before B (A=65, À=133, B=66). In this case, the

string ÀB sorts after AC but before BD.

The database server uses localized order to sort columns of these data types:

v NCHAR

v NVARCHAR

The localized order can include equivalent characters, those characters that the

database server is to consider as equivalent when it collates them. For example, if

the locale defines uppercase and lowercase versions of a character as equivalent in

the localized order, then the strings Arizona, ARIZONA, and arizona are collated

together, as if all three strings were the same string.

Tip: The COLLATION category of the locale file specifies the localized order, if

one exists. For more information, see “The COLLATION Category” on page

A-3.

A localized order can also specify a specific type of collation. For example, a

telephone book might require the following sort order:

Mabin

McDonald

MacDonald

Madden

A dictionary, however, might use this collating order for the same names:

Mabin

Madden

MacDonald

McDonald

If the GLS locale defines a localized order, the database server sorts data from

NCHAR and NVARCHAR columns in this localized order. For an example of data

sorted in a localized order, see Table 3-3 on page 3-23.

Dynamic Server

Dynamic Server supports the SET COLLATION statement, which can specify a

localized collation different from the DB_LOCALE setting. The scope of the

non-default collating order is the current session, but database objects that perform

collation, such as indexes or triggers, use the collating order from the time of their

creation when they sort NCHAR or NVARCHAR values.

End of Dynamic Server

1-10 IBM Informix GLS User’s Guide

Unicode Collation

The open-source International Components for Unicode (ICU) implementation of

the Unicode code set (UTF-8) is available in GLS locales for many languages and

territories. For example, the en_us.utf8 locale supports the Unicode code set. The

GLS 4.50 library incorporates the International Components for Unicode (ICU) 3.4.1

library. For more information about ICU, see the ICU website at

http://www.ibm.com/software/globalization/icu/index.jsp.

GLS locales that use the Unicode code set (UIF-8) support Unicode collation of

NCHAR and NVARCHAR data by the ICU Unicode Collation Algorithm. For more

information about this algorithm, see the Unicode website at http://
www.unicode.org/unicode/reports/tr10.

Warning: If Unicode produces index keys that are too long to fit in the default

dbspace page size, use a larger, nondefault page size.

Collation Support

Collation by Informix database servers depends on the data type of the database

column. The following table summarizes the collation rules.

 Column Data Types Collating Order

CHAR, VARCHAR, TEXT Code-set order

LVARCHAR (IDS only) Code-set order

NCHAR, NVARCHAR Localized order

The difference in collation is the only distinction between the CHAR and NCHAR

data types and between the VARCHAR and NVARCHAR data types. For more

information about collation, see “Using Character Data Types” on page 3-8. If a

locale does not define a localized order, the database server collates NCHAR and

NVARCHAR data values in code-set order.

Important: There is an exception to the general rule that CHAR, LVARCHAR and

VCHAR values are always sorted in the code-set order. The MATCHES

operator always uses the localized order, if one is defined, to evaluate

range expressions for character values, regardless of the data type. See

“MATCHES Condition” on page 3-26.

End-User Formats

The end-user format is the format in which a data value is displayed or entered in a

client application as a literal string or a character variable.

An end-user format is useful for a data type whose format in the database is

different from the format to which users are accustomed. The database server

stores data for DATE, DATETIME, MONEY, and numeric data types in compact

internal formats within the database.

For example, the database server stores a DATE value as an integer number of

days since December 31, 1899, so the date 03/19/96 is 35142. This internal format is

not intuitive.

IBM Informix products support end-user formats so that a client application can

use this more intuitive form instead of the internal format. Literal strings or

character variables can appear in SQL statements as column values or as

arguments of SQL API library functions.

Chapter 1. GLS Fundamentals 1-11

http://www.ibm.com/software/globalization/icu/index.jsp
http://www.unicode.org/unicode/reports/tr10
http://www.unicode.org/unicode/reports/tr10

An IBM Informix product uses an end-user format when it encounters a string (a

literal string or the value in a character variable) in these contexts:

v When an IBM Informix product reads a string, it uses an end-user format to

determine how to interpret the string so that it can convert it to a numeric value.

For example, suppose that DB–Access has the default (U.S. English) as its client

locale. The literal date in the following INSERT statement uses the end-user

format for dates that the default locale defines:

INSERT INTO mytab (date1) VALUES (’03/19/96’)

When it receives the data from the client application, the database server uses

the end-user format to interpret this literal date so that it can convert it to the

corresponding internal format (35142).

v When an IBM Informix product prints a string, it uses an end-user format to

determine how to format the numeric value as a string.

For example, suppose that an Informix ESQL/C client application has a French

locale as its client locale, and this locale defines a date end-user format that

formats dates as dd/mm/yy. The following rdatestr() function uses the end-user

format for dates to obtain the value in the datestr character variable:

err = rdatestr(jdate, datestr);

The rdatestr() function uses the end-user format to determine how to format the

internal format (35142) as a date string before it puts the value in the datestr

variable. For more information about the effect of the GLS feature on SQL API

library functions, see “Using Enhanced ESQL/C Library Functions” on page 6-7.

A GLS locale defines end-user formats for the following types of data:

v Representation of currency notation and numeric format

v Representation of dates and of time-of-day values

You can specify number, currency, date, and time values in an end-user format that

is specific to a given country or culture.

Important: End-user formats of date, time, number, and monetary values do not

affect the internal format of the corresponding data types in the

database. They affect only how the client application displays the data

and interprets data entry.

The following table lists the values that define the end-user format for each data

type that uses end-user formats. For information about the environment variables,

see Chapter 2, “GLS Environment Variables,” on page 2-1. For information about

the locale categories, see Appendix A, “Managing GLS Files,” on page A-1.

 Data Types Environment Variables Locale Category

DATE GL_DATE TIME

DATETIME

INTERVAL

GL_DATE

GL_DATETIME

TIME

MONEY DBMONEY MONETARY

Number (DEC, DECIMAL, DOUBLE

PRECISION, FLOAT, INT, INT8,

INTEGER, NUMERIC, REAL,

SMALLFLOAT, SMALLINT)

None NUMERIC

1-12 IBM Informix GLS User’s Guide

Numeric and Monetary Formats

When an IBM Informix product reads a string that contains numeric or monetary

data, it uses the end-user format to determine how to convert this string to the

internal value for the database column. When an IBM Informix product prints a

string that contains numeric or monetary data, it uses the end-user format to

determine how to format the internal value for the database column as a string.

End-user formats for numbers and currency specify these elements:

v The decimal-separator symbol separates the integral part of the numeric value from

the fractional part. In the default locale, the period is the decimal separator

(3.01). In a locale such as French, the comma is the decimal separator (3,01).

v The thousands-separator symbol can appear between groups of digits in the

integral part of the numeric value. In the default locale, the comma is the

thousands separator (3,255); in a French locale, the space is the thousands

separator (3 255).

v The characters that indicate positive and negative numbers

v The number of digits to group between each appearance of a non-monetary

thousands separator.

For example, this might specify that numbers always omit the separator after the

millions position, which produces the following output: 1234,345.

In addition to this notation, monetary data also uses a currency symbol to identify

the currency unit. This can appear at the front ($100) or back (100FF) of the

monetary value. In this publication, the combination of currency symbol, decimal

separator, and thousands separator is called currency notation.

Date and Time Formats

When an IBM Informix product reads a string that contains time data, it uses the

end-user format to determine how to convert this string to the internal integer

value for a DATETIME column. When an IBM Informix product prints a string that

contains time data, it uses the time end-user format to determine how to format

the internal integer value for a DATETIME column as a string. In the same way,

IBM Informix products use the date end-user format to read and print strings for

the internal values of the date data types.

Important: End-user formats specify how client applications view data, but do not

affect the internal format of DATETIME or DATE values stored in the

database.

The end-user formats for date and time can include the names and abbreviations

for days of the week and months of the year, and the commonly used

representations for dates, time (12-hour and 24-hour), and DATETIME values.

End-user formats can include names of eras (as in the Japanese Imperial date

system) and non-Gregorian calendars (such as the Arabic lunar calendar).

For example, the Taiwan culture uses the Ming Guo year format in addition to the

Gregorian calendar year. For dates before 1912, Ming Guo years are negative. The

Ming Guo year 0000 is undefined; any attempt to use it generates an error. The

following table shows some era-based dates.

Chapter 1. GLS Fundamentals 1-13

Gregorian Year Ming Guo Year Remarks

1993 82 1993 – 1911 = 82

1912 01 1912 – 1911 = 01

1911 –01 1911 – 1912 = –01

1910 –02 1910 – 1912 = –02

1900 –12 1900 – 1912 = –12

Japanese Imperial-era dates are tied to the reign of the Japanese emperors. The

following table shows Julian and Japanese era dates. It shows the Japanese era

format in full, with abstract multibyte characters for the Japanese characters, and in

an abbreviated form that uses romanized characters (gengo). The abbreviated form

of the era uses the first letter of the English name for the Japanese era. For

example, H represents the Heisei era.

 Gregorian Date Abstract Japanese Era (in full) Japanese Era (gengo)

1868/09/08 A1A2B1B201/09/08 M01/09/08

1912/07/30 A1A2B1B245/07/30 M45/07/30

1912/07/31 A1A2B1B201/07/31 T01/07/31

1926/12/25 A1A2B1B215/12/25 T15/12/25

1926/12/26 A1A2B1B201/12/26 S01/12/26

1989/01/07 A1A2B1B264/01/07 S64/01/07

1989/01/08 A1A2B1B201/01/08 H01/01/08

1995/01/01 A1A2B1B207/01/01 H07/01/01

Here A1A2 and B1B2 represent multibyte Japanese characters. For more information,

see “Customizing Date and Time End-User Formats” on page 1-30.

Setting a GLS Locale

For the database server and the client application to communicate successfully, you

must establish the appropriate GLS locales for your environment. A GLS locale

name identifies the language, territory, and code set that you want your IBM

Informix product to use. For the syntax of the components of locale names, see

“CLIENT_LOCALE” on page 2-3.

IBM Informix product use the locale name to find the corresponding locale files. A

locale file is a runtime version of the locale information. The locale name must

correspond to a GLS locale file in a subdirectory of the Informix installation

directory (which INFORMIXDIR specifies) called gls. For more information on

GLS locale files, see Appendix A, “Managing GLS Files,” on page A-1.

Locales in the Client/Server Environment

In a client/server environment, the client application, database server, and one or

more databases might reside on different computers. Figure 1-1 shows an example

of database server connections between an Informix ESQL/C client application and

the acctng database through an Informix database server.

1-14 IBM Informix GLS User’s Guide

These computers might have different operating systems or different language

support. To ensure that these three parts of the database application communicate

locale information successfully, IBM Informix products support the following

locales:

v The client locale identifies the locale that the client application uses.

v The database locale identifies the locale of the data in a database.

v The server locale identifies the locale that the database server uses for its

server-specific files.

Figure 1-2 shows the client locale, database locale, and server locale that the

example Informix ESQL/C application (from Figure 1-1 on page 1-15) establishes.

When you set the same or compatible GLS locales for each of these locales, your

client application is not dependent on how the operating system of each computer

implements language-specific features.

Sections that follow describe each of these locales in more detail.

Server computer

Database server

Message-log file

Client computer

Log file

Informix

Client application

ESQL/C

Database

acctng

Figure 1-1. Example of a Client/Server Environment

Database locale

Client locale

Server computer

Database server

Message-log file

Client computer

Log file

Informix

Database

acctng

Server locale

Client application

ESQL/C

Figure 1-2. The Client Locale, Database Locale, and Server Locale

Chapter 1. GLS Fundamentals 1-15

The Client Locale

The client locale specifies the language, territory, and code set that the client

application uses to perform read and write (I/O) operations. In a client application,

I/O operations include reading a keyboard entry or a file for data to be sent to the

database and writing data that the database server retrieves from the database to

the screen, a file, or a printer. In addition, an SQL API client uses the client locale

for literal strings (end-user formats), embedded SQL (ESQL) statements, and host

variables.

IBM Informix products use the CLIENT_LOCALE environment variable for the

following purposes:

v When the preprocessor for Informix ESQL/C processes a source file, it accepts C

source code that is written in the code set of the CLIENT_LOCALE.

The C compiler and the operating system that you use might impose limitations

on the Informix ESQL/C program. For more information, see “Generating

Non-ASCII Filenames” on page 6-3.

v When an Informix ESQL/C client application executes, it checks

CLIENT_LOCALE for the name of the client locale, which affects

operating-system filenames, contents of text files, and formats of date, time, and

numeric data.

For more information, see “Handling Non-ASCII Characters” on page 6-2.

v When a client application and a database server exchange character data, the

client application performs code-set conversion when the code set of the

CLIENT_LOCALE environment variable is different from the code set of

DB_LOCALE (on the client computer).

Code-set conversion prevents data corruption when these two code sets are

different. For more information, see “Performing Code-Set Conversion” on page

1-27.

v When the client application requests a connection, it sends information,

including the CLIENT_LOCALE, to the database server.

The database server uses CLIENT_LOCALE when it determines how to set the

client-application information of the server-processing locale. For more

information, see “Establishing a Database Connection” on page 1-22.

v When database utilities create files, the filenames and file contents are in the

code set that CLIENT_LOCALE specifies.

v When a client application looks for product-specific message files, it checks the

message directory associated with the client locale.

For more information, see “Locating Message Files” on page 1-30.

In the example connection that Figure 1-2 on page 1-15 shows, if the client locale is

German with the Windows Code Page 1252 (de_de.1252@euro), the German

locale-specific information that the Informix ESQL/C client application uses

includes the following:

v Valid date end-user formats support the following format for the U.S. English

date of Tuesday, 02/11/1997:

Di., 11. Feb 1997

v Valid monetary end-user formats support the following format for the U.S.

English amount of $354,446.02:

EUR354.446,02

1-16 IBM Informix GLS User’s Guide

Tip: To provide this information for the client locale, the locale file contains the

following locale categories: COLLATION, CTYPE, TIME, MONETARY, and

NUMERIC. For more information, see “Locale Categories” on page A-2.

To determine the client locale, client applications use environment variables set on

the client computer. To obtain the localized order and end-user formats of the

client locale, a client application uses the following precedence:

1. DBDATE and DBTIME environment variables for the end-user formats of date

and time data and DBMONEY for the end-user format of monetary data (if

one of these is set)

2. GL_DATE and GL_DATETIME environment variables for the end-user formats

of date and time data (if one of these is set)

3. The information that the client locale defines (CLIENT_LOCALE, if it is set)

4. The default locale (U.S. English)

Dynamic Server

Client applications that are based on Informix Dynamic Server use the precedence

of steps 2, 3, and 4 in the preceding list. You do not need to set the other

environment variables for Dynamic Server client applications.

End of Dynamic Server

 Support for DBDATE and DBTIME provides compatibility with earlier versions

for client applications based on earlier versions of IBM Informix products. We

recommend that you use GL_DATE and GL_DATETIME for new applications.

The Database Locale

The database locale, which is set with the DB_LOCALE environment variable,

specifies the language, territory, and code set that the database server needs to

correctly interpret locale-sensitive data types (NCHAR and NVARCHAR) in a

particular database. The code set specified in DB_LOCALE determines which

characters are valid in any character column, as well as the names of database

objects such as databases, tables, columns, and views. For more information, see

“Naming Database Objects” on page 3-2.

The database locale also specifies the writing direction. Most languages are written

left-to-right, but some are written right-to-left or top-to-bottom.

IBM Informix products use the DB_LOCALE environment variable for the

following purposes:

v When a client application and a database server exchange character data, the

client application performs code-set conversion when the value of the

DB_LOCALE environment variable (on the client computer) is different from the

value of CLIENT_LOCALE.

Code-set conversion prevents data corruption when these two code sets are

different. For more information, see “Performing Code-Set Conversion” on page

1-27.

v When the client application requests a connection, it sends information,

including the DB_LOCALE (if it is set), to the database server.

The database server uses DB_LOCALE when it determines how to set the

database information of the server-processing locale. For more information, see

“Establishing a Database Connection” on page 1-22.

Chapter 1. GLS Fundamentals 1-17

v When a client application tries to open a database, the database server compares

the value of the DB_LOCALE environment variable that the client application

passes with the database locale that is stored in the database.

When the database server accesses columns of locale-sensitive data types, it uses

the locale that DB_LOCALE specifies. For more information, see “Verifying the

Database Locale” on page 1-23.

v When the database server creates a new database, it examines the database

locale (DB_LOCALE) to determine how to store character information in the

system catalog of the database. This information includes operations such as

how to handle regular expressions, compare character strings, and ensure proper

use of code sets.

The database server stores a condensed version of the database locale in the

systables system catalog table.

When the database server stores the database locale information directly in the

system catalog, it permanently attaches the locale to the database. This information

is used throughout the lifetime of the database. In this way, the database server

can always determine the locale that it needs to interpret the locale-sensitive data

correctly.

Dynamic Server

The SET COLLATION statement can specify the localized collation of a different

locale to sort NCHAR and NVARCHAR data in the current session.

End of Dynamic Server

 The condensed version of the database locale is stored in the following two rows

of systables, which store the condensed locale name in the site column:

v The row with tabid 90 stores the COLLATION category of the database locale.

The collation order determines the order in which the characters of the code set

collate. If the database locale defines only a code-set order for collation (as does

the default locale, U.S. English), the database server creates CHAR and

VARCHAR columns to store the character information. If the database locale

defines a localized order for collation, however, the database server creates

NCHAR and NVARCHAR columns to store this character information. The

tabname value for this row is GLS_COLLATE.

v The row with tabid 91 stores the CTYPE category of the database locale. The

CTYPE category of a locale determines how characters of the code set are

classified. The database server uses character classification for case conversion

and some regular-expression evaluation. The tabname value for this row is

GLS_CTYPE.

The database server uses the value of the DB_LOCALE environment variable that

the client application sends. If you do not set DB_LOCALE on the client computer,

however, the database server uses the value of DB_LOCALE on the server

computer as the database locale.

In the connection shown in Figure 1-2 on page 1-15, the database server references

the database locale when the client application requests sorted information for an

NCHAR column in the acctng database. If this locale is German with the Windows

Code Page 1252 (de_de.1252), the database server uses a localized order that sorts

1-18 IBM Informix GLS User’s Guide

accented characters, such as ö, after their unaccented counterparts. Thus, the string

öff sorts after ord but before pre. For the syntax to set the database locale, see

“DB_LOCALE” on page 2-5.

The Server Locale

The server locale, which is set with the SERVER_LOCALE environment variable,

specifies the language, territory, and code set that the database server uses to

perform read and write (I/O) operations on the server computer (the computer on

which the database server runs). These I/O operations include reading or writing

the following files:

v Diagnostic files that the database server generates to provide additional

diagnostic information

v Log files that the database server generates to record events

v File, sqexplain.out that the SQL statement SET EXPLAIN generates

The database server does not use the server locale, however, to write files that are

in an Informix proprietary format (database and table files). For a more detailed

description of the files that the database server writes using the server locale, see

Chapter 4, “Database Server Features,” on page 4-1.

The database server looks for product-specific message files in the message

directory that is associated with the locale specified in SERVER_LOCALE. For

more information, see “Locating Message Files” on page 1-30.

In the example connection that Figure 1-2 on page 1-15 shows, the Informix

database server uses the locale specified in SERVER_LOCALE to determine the

code set to use when it writes a message-log file. For the syntax to set the server

locale, see “SERVER_LOCALE” on page 2-21.

Tip: The database server is the only IBM Informix product that needs to know the

server locale. Any database server utilities that you run on the server

computer use the client locale to read from and write to files and the database

locale (on the server computer) to access databases that are set on the server

computer.

Note: The server locale and the server-processing locale are two different locales.

For more information about the server-processing locale, see “Determining

the Server-Processing Locale” on page 1-24.

The Default Locale

IBM Informix products use U.S. English as the default locale if you do not set the

environment variables that can specify a locale.

The default locale specifies the following information:

v The U.S. English language and an English-language code set

v Standard U.S. formats for monetary, numeric, date, and time data

To use the default locale for database applications requires no special steps. To use

a customized version of U.S. English, British English, or another language,

however, your environment must identify the appropriate locale.

For information on how to specify a GLS locale, see “Setting a Nondefault Locale”

on page 1-21.

Chapter 1. GLS Fundamentals 1-19

The Default Code Set

The default locale, U.S. English, has the following locale name, where en indicates

the English language, us indicates the United States territory, and the numbers

indicate the platform-specific name of the default code set.

The default code set is the code set that the default locale supports. When you use

the default locale, the default code set supports both the ASCII code set and some

set of 8-bit characters. For a chart of ASCII values, see the Relational Operator

segment in the IBM Informix Guide to SQL: Syntax. The following table describes

the default code set for UNIX and for Windows® platforms.

 Platform Default Code Set

UNIX ISO8859-1

Windows Microsoft 1252

In a locale name, you can specify the code set as either the code-set name or the

condensed form of the code-set name. For example, the following locale names

both identify the U.S. English locale with the ISO8859-1 code set:

UNIX Only

v The locale name en_us.8859-1 uses the code-set name to identify the ISO8859-1

code set.

End of UNIX Only

Windows Only

v The locale name en_us.0333 uses the condensed form of the code-set name to

identify the ISO8859-1 code set.

End of Windows Only

For more information on the condensed form of a code-set name, see

“Code-Set-Conversion Filenames” on page A-8.

Default End-User Formats for Date and Time

In the default locale, IBM Informix products use the following end-user formats for

date and time values:

v For DATE values: %m/%d/%iy

v For DATETIME values: %iY-%m-%d %H:%M:%S

For information about these formatting directives, see “GL_DATE” on page 2-11

and “GL_DATETIME” on page 2-16. For an introduction to date and time end-user

formats, see “Date and Time Formats” on page 1-13. For information about how to

customize these end-user formats, see “Customizing Date and Time End-User

Formats” on page 1-30.

Default End-User Formats for Numeric and Monetary Values

When you use the default locale, IBM Informix products use the following

end-user formats for numeric and monetary values:

v The thousands separator is the comma (,).

v The decimal separator is the period (.).

1-20 IBM Informix GLS User’s Guide

v Three digits appear between each thousands separator.

v The positive and negative signs are plus (+) and minus (-), respectively.

For monetary values, IBM Informix products also use a currency symbol, the dollar

($) sign, in front of a monetary value. For an introduction to numeric and

monetary end-user formats, see “Numeric and Monetary Formats” on page 1-13.

For information about how to customize these end-user formats, see “Customizing

Monetary Values” on page 1-31.

Setting a Nondefault Locale

By default, IBM Informix products use the U.S. English locale, but IBM Informix

products support many other locales.

To use a nondefault locale, you must set the following environment variables:

v Set the CLIENT_LOCALE environment variable to specify the appropriate client

locale.

If you do not set CLIENT_LOCALE, the client locale is the default locale, U.S.

English.

v Set DB_LOCALE on each client computer to specify the database locale for a

client application to use when it connects to a database.

If you do not set DB_LOCALE on the client system, the client application sets

DB_LOCALE to the client locale. This default value avoids the need for the

client application to perform code-set conversion.

You might also want to set DB_LOCALE on the server computer so that the

database server can perform operations such as the creation of databases (when

the client does not specify its own DB_LOCALE).

v Set the SERVER_LOCALE environment variable to specify the appropriate

server locale.

If you do not set SERVER_LOCALE, the server locale is the default locale, U.S.

English.

To access a database that has a nondefault locale, the CLIENT_LOCALE and

DB_LOCALE settings on the client system must support this nondefault locale.

Both locales must be the same, or their code sets must be convertible, as described

in “Performing Code-Set Conversion” on page 1-27.

For example, to access a database with a Japanese SJIS locale, set both

DB_LOCALE and CLIENT_LOCALE to ja_jp.sjis on the client system. (If you set

DB_LOCALE but not CLIENT_LOCALE, the client application returns an error,

because it cannot set up code-set conversion between the SJIS database code set

and the code set of the default locale on the client system.)

When a client application requests a connection, the database server uses

information in the client, database, and server locales to create the

server-processing locale. For more information, see “Establishing a Database

Connection” on page 1-22.

Using GLS Locales with IBM Informix Products

IBM Informix products use GLS locales for the following tasks:

v When a client application requests a connection, the database server uses the

client and database locales to determine if these locales are compatible.

Chapter 1. GLS Fundamentals 1-21

v When a client application first begins execution, it compares the client and

database locales to determine if it needs to perform code-set conversion.

v All IBM Informix products that display product-specific messages look in a

directory specific to the client locale to find these messages.

Supporting Non-ASCII Characters

An IBM Informix product obtains its code set from its GLS locale. Locales are

available for both single-byte and multibyte code sets. All supported code sets

define the ASCII characters. Most also support additional non-ASCII characters

(8-bit or multibyte characters). For more information on code sets and non-ASCII

characters, see “Code Sets for Character Data” on page 1-7.

The following types of GLS locales are examples of locales that contain non-ASCII

characters in their code sets:

v The default locale supports the default code set, which contains 8-bit characters

for non-English characters such as é, ñ, and ö.

The name of the default code set depends on the platform on which your IBM

Informix product is installed. For more information on the default code set, “The

Default Code Set” on page 1-20.

v Many nondefault locales support the default code set.

UNIX Only

 Nondefault locales that support the UNIX default code set, ISO8859-1, include

British English (en_gb.8859-1), French (fr_fr.8859-1), Spanish (es_es.8859-1), and

German (de_de.8859-1).

End of UNIX Only

v Other nondefault locales, such as Japanese SJIS (ja_jp.sjis), Korean (ko_kr.ksc),

and Chinese (zh_cn.gb), contain multibyte code sets. (The unified Chinese code

set is GB18030-2000.)

For the contexts in which you can use non-ASCII characters, including multibyte

characters, see Chapter 3, “SQL Features,” on page 3-1, Chapter 4, “Database Server

Features,” on page 4-1, and Chapter 5, “General SQL API Features (ESQL/C),” on

page 5-1.

For an IBM Informix product to support non-ASCII characters, however, it must

use a locale that supports a code set with the same non-ASCII characters.

Establishing a Database Connection

When a client application requests a connection to a database, the database server

uses GLS locales to perform the following steps:

1. Examine the client locale information that the client passes.

2. Verify that it can establish a connection between the client application and the

database that it requested.

3. Determine the server-processing locale, which the database server uses to

handle locale-specific information for the connection.

Sending the Client Locale

When the client application requests a connection, it sends the following

environment variables from the client locale to the database server:

v Locale information

1-22 IBM Informix GLS User’s Guide

– CLIENT_LOCALE

If CLIENT_LOCALE is not set, the client sets it to the default locale.

– DB_LOCALE

If DB_LOCALE is not set, the client does not send a DB_LOCALE value to

the database server.
v User-customized end-user formats

– Date and time end-user formats: GL_DATE and GL_DATETIME

– Monetary end-user formats: DBMONEY

If you do not set any of these environment variables, the client application does

not send them to the database server, and the database server uses the end-user

formats that the CLIENT_LOCALE defines.

The database server uses these settings to extract the following information:

v How are numeric and monetary values formatted?

v How are dates and times formatted?

v What database locale does the client expect?

The database server uses this information to verify the database locale and to

establish the server-processing locale.

Verifying the Database Locale

To open an existing database, the client application must correctly identify the

database locale for that database. To verify the database locale, the database server

compares the following two locales:

v The locale specified by DB_LOCALE that the client application sends

v The database locale that is stored in the system catalog of the database that the

client application requests

For more information, see “The Database Locale” on page 1-17.

Two database locales match if their language, territory, code set, and any locale

modifiers are the same. If these database locales do not match, the database server

performs the following actions:

v It sets the eighth character field of the SQLWARN array in the SQL

Communications Area (SQLCA structure) to W as a warning flag. Values for W are

ASCII 32 (blank) and ASCII 87 (W).

v It uses the database locale that is stored in the system catalog of the requested

database as the database locale.

Warning: Check for the SQLWARN warning flag after your client application

requests a connection. If the two database locales do not match, the

client application might incorrectly interpret data that it retrieves from

the database server, or the database server might incorrectly interpret

data that it receives from the client. If you proceed with such a

connection, it is your responsibility to understand the format of the data

that is being exchanged.

Checking for Connection Warnings

To check for the eighth character field of the SQLWARN array, an Informix

ESQL/C client application can check the sqlca.sqlwarn.sqlwarn7 field.

If the sqlwarn7 field has a value of W, the database server has ignored the database

locale that the client specified and has instead used the locale in the database as

the database locale.

Chapter 1. GLS Fundamentals 1-23

For more information on how to handle exceptions within an ESQL program, see

the IBM Informix ESQL/C Programmer’s Manual.

Important: Array elements in SQLWARN arrays are numbered starting with zero

in IBM Informix ESQL/C, but starting with one in other languages. For

IBM Informix GLS tools that use 1-based counts on arrays, such as IBM

Informix 4GL and IBM Informix Dynamic 4GL, the warning character

that IBM Informix ESQL/C calls sqlca.sqlwarn.sqlwarn7 is called

SQLCA.SQLAWARN[8].

Determining the Server-Processing Locale

The database server uses the server-processing locale to obtain locale information for

its own internal sessions and for any connections. When the database server begins

execution, it initializes the server-processing locale to the default locale. When a

client application requests a connection, the database server must redetermine the

server-processing locale to include the client and database locales. The database

server uses the server-processing locale to obtain locale information that it needs

when it transfers data between the client system and the database.

Once the Informix database server verifies the database locale, it uses a precedence

of environment variables from the client and database locales to set the

server-processing locale.

The database server obtains the following information from the server-processing

locale:

v Locale information for the database

This database information includes the localized order and code set for data in

columns with the locale-sensitive data types (NCHAR and NVARCHAR). The

database server obtains this information from the name of the database locale

that it has just verified.

v Locale information for client-application data

This client-application information provides the end-user formats for date, time,

numeric, and monetary data. The database server obtains this information from

the client application when the client requests a connection.

Figure 1-3 shows the relationship between the client locale, database locale, server

locale, and server-processing locale.

1-24 IBM Informix GLS User’s Guide

Tip: The database server uses the server locale, as specified by the

SERVER_LOCAL environment variable, for read and write operations on its

own operating-system files. For information about operating-system files, see

“GLS Support by Informix Database Servers” on page 4-1.

Locale Information for the Database: The database server must know how to

interpret the data in any columns with the locale-specific data types, NCHAR and

NVARCHAR. To handle this locale-specific data correctly, the database server must

know the localized order for the collation of the data and the code set of the data.

In addition, the database server uses the code set of the database locale as the code

set of the server-processing locale.

The database server might have to perform code-set conversion between the code

sets of the server-processing locale and the server locale. For more information, see

“Performing Code-Set Conversion” on page 1-27.

The database server uses the following precedence to determine this database

information:

1. The locale that the database server uses to determine the database information

for the server-processing locale depends on the state of the database to which

the client application requests a connection, as follows:

a. For a connection to an existing database, the database server uses the

database information from the database locale that it obtains when it

verifies the database locale. If the client application does not send

DB_LOCALE, the database server uses the DB_LOCALE that is set on the

server computer.

b. For a new database, the database server uses the DB_LOCALE, which the

client application has sent.
2. The locale that the DB_LOCALE environment variable on the server computer

indicates

3. The default locale (U.S. English)

Server computer

Database server

Server locale

Database

acctng
Database locale

Client computer

Log file

Client locale

Server-processing
locale

Message-log file

InformixESQL/C

Client application

Figure 1-3. The Server-Processing Locale

Chapter 1. GLS Fundamentals 1-25

Dynamic Server

 Dynamic Server uses the precedence of steps 1, 2, and 3 in the preceding list to

obtain the database information for the server-processing locale. You are not

required to set the other environment variables.

End of Dynamic Server

Tip: The precedence rules apply to how the database server determines both the

COLLATION category and the CTYPE category of the server-processing

locale. For more information on these locale categories, see “Locale

Categories” on page A-2.

For more information on how the database server obtains these environment

variables, see “Sending the Client Locale” on page 1-22.

If the client application makes another request to open a database, the database

server must reestablish the database information for the server-processing locale, as

follows:

1. Reverify the database locale by comparing the database locale in the database

to be opened with the value of the DB_LOCALE environment variable from

the client application.

2. Reestablish the server-processing locale with the newly verified database locale

(from the preceding step).

For example, suppose that your client application has DB_LOCALE set to

en_us.8859-1 (U.S. English with the ISO8859-1 code set). The client application then

opens a database with the U.S. English locale (en_us.8859-1), and the database

server establishes a server-processing locale with en_us.8859-1 as the locale that

defines the database information.

If the client application now closes the U.S. English database and opens another

database, one with the French locale (fr_fr.8859-1), the database server must

reestablish the server-processing locale. The database server sets the eighth

character field of the SQLWARN array to W indicate that the two locales are

different. The client application, however, might choose to use this connection

because both these locales support the ISO8859-1 code set. If the client application

opens a database with the Japanese SJIS locale (ja_jp.sjis) instead of one with a

French locale, your client application would probably not continue with this

connection because the locales are too different.

Locale Information For the Client Application: The database server must know

how to interpret the end-user formats when they appear in monetary, date, or time

data that the client application sends. It must also convert data from the database

to any appropriate end-user format before it sends this data to the client

application. For more information about end-user formats, see “End-User Formats”

on page 1-11.

The database server uses the following precedence to determine this

client-application information:

1. DBDATE and DBTIME environment variables for the date and time end-user

formats and DBMONEY for the monetary end-user formats (if one of these is

set on the client)

1-26 IBM Informix GLS User’s Guide

Support for DBDATE and DBTIME provides compatibility with earlier

versions for client applications that are based on earlier versions of IBM

Informix products. It is recommended that you use GL_DATE and

GL_DATETIME for new applications.

2. GL_DATE and GL_DATETIME environment variables (if one of these is set on

the client) for the date and time end-user formats

3. The locale that the CLIENT_LOCALE environment variable from the client

application indicates

Tip: The precedence rules apply to how the database server determines the

NUMERIC, MONETARY, TIME, and MESSAGES categories of the

server-processing locale. For more information on these locale categories, see

“Locale Categories” on page A-2.

The client application passes the DBDATE, DBMONEY, DBTIME, GL_DATE, and

GL_DATETIME environment variables (if they are set) to the database server. It

also passes the CLIENT_LOCALE and DB_LOCALE environment variables. For

more information, see “Sending the Client Locale” on page 1-22.

Performing Code-Set Conversion

In a client/server environment, character data might need to be converted from

one code set to another if the client or server computer uses different code sets to

represent the same characters. The conversion of character data from one code set

(the source code set) to another (the target code set) is called code-set conversion.

Without code-set conversion, one computer cannot correctly process or display

character data that originates on the other (when the two computers use different

code sets).

IBM Informix products use GLS locales to perform code-set conversion. Both an

IBM Informix client application and a database server might perform code-set

conversion. For details, see “Database Server Code-Set Conversion” on page 4-2

and “Client Application Code-Set Conversion” on page 5-1.

You specify a code set as part of the GLS locale. At runtime, IBM Informix

products adhere to the following rules to determine which code sets to use:

v The client application uses the client code set, which the CLIENT_LOCALE

environment variable specifies, to write all files on the client computer and to

interact with all client I/O devices.

v The database server uses the database code set, which the DB_LOCALE

environment variable specifies, to transfer data to and from the database.

v The database server uses the server code set, which the SERVER_LOCALE

environment variable specifies, to write files (such as debug and warning files).

Code-set conversion does not provide either of the following capabilities:

v Code-set conversion is not a semantic translation.

It does not convert between words in different languages. For example, it does

not convert from the English word yes to the French word oui. It only ensures

that each character retains its meaning when it is processed or written,

regardless of how it is encoded.

v Code-set conversion does not create a character in the target code set if it exists

only in the source code set.

Chapter 1. GLS Fundamentals 1-27

For example, if the character â is passed to a target computer whose code set

does not contain that character, the target computer cannot process or print the

character exactly.

For each character in the source code set, a corresponding character in the target

code set should exist. However, if the source code set contains characters that are

not in the target code set, the conversion must then define how to map these

mismatched characters to the target code set. (Absence of a mapping between a

character in the source and target code sets is often called a lossy error.) If all

characters in the source code set exist in the target code set, mismatch handling

does not apply.

A code-set conversion uses one of the following four methods to handle

mismatched characters:

v Round-trip conversion

This method maps each mismatched character to a unique character in the target

code set so that the return mapping maps the original character back to itself.

This method guarantees that a two-way conversion results in no loss of

information; however, data that is converted just one way might prevent correct

processing or printing on the target computer.

v Substitution conversion

This method maps all mismatched characters to one character in the target code

set that highlights mismatched characters. This method guarantees that a

one-way conversion clearly shows the mismatched characters; however, a

two-way conversion results in loss of information if mismatched characters are

present.

v Graphical-replacement conversion

This method maps each mismatched character to a character in the target code

set that looks similar to the source character.

This method includes the mapping of one-character ligatures to their

two-character equivalents and vice versa, to make printing of mismatched data

more accurate on the target computer, but it most likely confuses the processing

of this data on the target computer.

v A hybrid of two or three of the preceding conversion methods

Tip: Each code-set-conversion source file (.cv) indicates how the associated

conversion handles mismatched characters. For information on

code-set-conversion files, see Appendix A, “Managing GLS Files,” on page

A-1.

When Code-Set Conversion Is Performed

An application must use code-set conversion only if the two code sets (client and

server-processing locale, or server-processing locale and server) are different. The

following situations are possible causes of code sets that differ:

v Different operating systems might encode the same characters in different ways.

For example, the code for the character â (a-circumflex) in Windows Code Page

1252 is hexadecimal 0xE2. In IBM Coded Character Set Identifier (CCSID) 437 (a

common IBM UNIX code set), the code is hexadecimal 0x83. If the code for â on

the client is sent unchanged to the IBM UNIX computer, it prints as the Greek

character g (gamma). This action occurs because the code for g is hexadecimal

0xE2 on the IBM UNIX computer.

1-28 IBM Informix GLS User’s Guide

Tip: IBM Informix products support IBM CCSID code-set numbers, a system of

16-bit numbers that uniquely identify the coded graphic character

representations. For more information, see Appendix A, “Managing GLS

Files,” on page A-1.

v One language can have several code sets. Each might represent a subset of the

language.

For example, the code sets ccdc and big5 are both internal representations of a

subset of the Chinese language. These subsets, however, include different

numbers of Chinese characters.

Important: GLS fully supports the unified Chinese GB18030-2000 code set,

including all characters in the Unicode Basic Multilingual Plane (BMP)

and in the extended planes.

If a code-set conversion is required for data transfer from computer A to computer

B, then it is also required for data transfer from computer B to computer A. In the

client/server environment, the following situations might require code-set

conversion:

v If the client locale and database locale specify different code sets, the client

application performs code-set conversion so that the server computer is not

loaded with this type of processing. For more information, see “Client

Application Code-Set Conversion” on page 5-1.

v If the server locale and server-processing locale specify different code sets, the

database server performs code-set conversion when it writes to and reads from

operating-system files such as log files. For more information, see “Database

Server Code-Set Conversion” on page 4-2.

In Figure 1-4, the black dots indicate the two points in a client/server environment

at which code-set conversion might occur.

In the example connection that Figure 1-4 shows, the Informix ESQL/C client

application performs code-set conversion on the data that it sends to and receives

Server computer

Database server

Server locale

Database

acctng
Database locale

Client computer

Log file

Client locale

Server processing
locale

Message-log file

InformixESQL/C

Client application

Figure 1-4. Points of GLS Code-Set Conversion

Chapter 1. GLS Fundamentals 1-29

from the database server if the client and database code sets are convertible. The

Informix database server also performs code-set conversion when it writes to a

message-log file if the code sets of the server locale and server-processing locale

are convertible.

Locating Message Files

IBM Informix products use GLS locales to locate product-specific message files. By

default, IBM Informix products automatically search a subdirectory that is

associated with the client locale for the product-specific message files. The

following table lists the subdirectory for each platform.

 Platform Directory

UNIX $INFORMIXDIR/msg/lg_tr/code_set

Windows %INFORMIXDIR%\msg\lg_tr\code_set

In this path, lg and tr are the language and territory, respectively, from the name of

the client locale, and code_set is the condensed form of the code-set name. For

more information about condensed code-set names, see “Locale-File

Subdirectories” on page A-6.

IBM Informix products use a precedence of environment variables to locate

product-specific message files. The DBLANG environment variable lets you

override the client locale for the location of message files that IBM Informix

products use. You might use DBLANG to specify a directory where the message

files reside for each locale that your environment supports.

Customizing End-User Formats

You can set environment variables to override the following end-user formats in

the client locale:

v End-user format of date and time (DATE, DATETIME) values

v End-user format of monetary (MONEY) values

This section explains how to customize these end-user formats. For an introduction

to end-user formats, see “End-User Formats” on page 1-11.

Customizing Date and Time End-User Formats

The GLS locales define end-user formats for dates and times, which you do not

usually need to change. However, you can customize end-user formats for DATE

and DATETIME values (for example, 10-27-97 for the date 10/27/97) with the

following environment variables.

 Environment Variable Description

GL_DATE Supports extended format strings for international formats in

date end-user formats.

GL_DATETIME Supports extended format strings for international formats in

time end-user formats.

DBDATE Specifies a date end-user format. (Supported for compatibility with

earlier versions.)

DBTIME Specifies a time end-user format for certain embedded-language

(ESQL) library functions. (Supported for compatibility with earlier

versions.)

1-30 IBM Informix GLS User’s Guide

A date or time end-user format string specifies a format for the manipulation of

internal DATE or DATETIME values as a literal string.

Tip: When you set these environment variables, you do not affect the internal

format of the DATE and DATETIME values within a database.

The GL_DATE and GL_DATETIME environment variables support formatting

directives that allow you to specify an end-user format. A formatting directive has

the form %x (where x is one or more conversion characters).

Era-Based Date and Time Formats

The GL_DATE and GL_DATETIME environment variables provide support for

alternative dates and times such as era-based (Asian) formats. These alternative

formats support dates such as the Taiwanese Ming Guo year and the Japanese

Imperial-era dates.

Tip: DBDATE and DBTIME can also provide some support for era-based dates.

To specify era-based formats for DATE and DATETIME values, use the E

conversion modifier, as follows:

v For either GL_DATE or GL_DATETIME, E can appear in several formatting

directives.

For a list of valid formatting conversions for eras, see “Alternative Time

Formats” on page 2-18.

v For DBDATE, E can appear in the format specification.

Date and Time Precedence

IBM Informix products use the following precedence to determine the end-user

format for an internal DATE value:

1. DBDATE

2. GL_DATE

3. Information defined in the client locale (if CLIENT_LOCALE is set)

4. Default date format is %m/%d/%iy (if DBDATE and GL_DATE are not set, and

no locale is specified)

IBM Informix products use the following precedence to determine the end-user

format for an internal DATETIME value:

1. DBDATE and DBTIME

2. GL_DATETIME

3. Information that the client locale defines (CLIENT_LOCALE, if it is set)

4. Default DATETIME format is %iY-%m-%d %H:%M:%S (if CLIENT_LOCALE,

DBTIME and GL_DATETIME are not set)

For more information on these formatting directives, see “GL_DATE” on page 2-11

and “GL_DATETIME” on page 2-16.

Customizing Monetary Values

The GLS locales contain end-user formats, which you do not usually need to

change. You can set the DBMONEY environment variable, however, to customize

the appearance of the currency notation. For information on the DBMONEY

environment variable, see the IBM Informix Guide to SQL: Reference.

Chapter 1. GLS Fundamentals 1-31

A monetary end-user format string specifies a format for the manipulation of

internal DECIMAL, FLOAT, and MONEY values as monetary literal strings. IBM

Informix products use the following precedence to determine the end-user format

for a MONEY value:

1. DBMONEY

2. Information that the client locale defines

CLIENT_LOCALE identifies the client locale; if it is not set, the client locale is

the default locale.

3. Default currency notation = $,.

If DBMONEY is not set, and no locale is specified, the currency symbol is the

dollar sign, the thousands separator is the comma, and the decimal separator is

the period.

1-32 IBM Informix GLS User’s Guide

Chapter 2. GLS Environment Variables

In This Chapter . 2-1

Setting and Retrieving Environment Variables . 2-1

GLS-Related Environment Variables . 2-2

CC8BITLEVEL . 2-2

CLIENT_LOCALE . 2-3

DBDATE . 2-4

DBLANG . 2-4

DB_LOCALE . 2-5

DBMONEY . 2-6

DBNLS (IDS) . 2-7

DBTIME (ESQL/C) . 2-8

ESQLMF . 2-8

GLS8BITFSYS . 2-9

Restrictions on Non-ASCII Filenames . 2-10

GL_DATE . 2-11

The Year Formatting Directives . 2-13

Alternative Date Formats . 2-13

Optional Date Format Qualifiers . 2-14

GL_DATETIME . 2-16

Alternative Time Formats . 2-18

Optional Time Format Qualifiers . 2-18

Creation-Time Settings . 2-20

Using the USE_DTENV Environment Variable . 2-20

GL_USEGLU (IDS) . 2-20

SERVER_LOCALE . 2-21

In This Chapter

IBM Informix products establish the client, database, and server locales with

information from GLS-related environment variables and from data that is stored

in the database. This chapter provides descriptions of the GLS-related environment

variables. For more information about environment variables, see the IBM Informix

Guide to SQL: Reference.

Setting and Retrieving Environment Variables

The GLS feature lets you use the diacritics, collating sequence, and monetary, date,

and number conventions of the language that you select when you create

databases. No ONCONFIG configuration parameters exist for GLS, but you must

set the appropriate environment variables.

ESQL/C

With IBM Informix ESQL/C, you can use the C putenv() function to modify,

create, and delete environment variables, and the C getenv() function to retrieve

the values of environment variables from the operating-system environment. For

details, see the IBM Informix ESQL/C Programmer’s Manual.

© Copyright IBM Corp. 1996, 2008 2-1

UNIX Only

On UNIX platforms, set environment variables with the appropriate shell

command (such as setenv for the C shell). For more information, see your UNIX

documentation.

End of UNIX Only

Windows Only

On Windows, set environment variables in the InetLogin structure or use the

Setnet32 utility to set environment variables in the registry. For more information

about InetLogin, see the Microsoft Windows documentation for your SQL API. For

more information about Setnet32, see your IBM Informix Installation Guide.

End of Windows Only

Important: If you use ifx_putenv(), the application must set all environment

variables before it calls any other Informix library routine to avoid

initializing the GLS routines and freezing the values of certain locale

and formatting environment variables.

GLS-Related Environment Variables

This section lists the GLS-related environment variables that you can set for

Informix database servers and SQL API products.

Warning: Some previous releases of Dynamic Server supported the GL_PATH

environment variable. For all current versions of Dynamic Server,

however, if you set GL_PATH before you initialize the database server

(or any SUID/SGID programs provided by IBM Informix) you will get

an error and its value will be ignored.

CC8BITLEVEL

The CC8BITLEVEL environment variable determines the type of processing that

the Informix ESQL/C filter, esqlmf, performs on non-ASCII (8-bit and multibyte)

characters. See also “Generating Non-ASCII Filenames” on page 6-3.

�� CC8BITLEVEL 0

1

2

3

 ��

Element Description

0 The esqlmf filter converts all non-ASCII characters in literal strings

and comments to octal constants (for C compilers that do not

support these uses of non-ASCII characters).

1 The esqlmf filter converts non-ASCII characters in literal strings to

octal constants but allows them in comments (some C compilers do

support non-ASCII characters in comments).

2 The esqlmf filter allows non-ASCII characters in literal strings and

2-2 IBM Informix GLS User’s Guide

ensures that all the bytes in the non-ASCII characters have the

eighth bit set (for C compilers with this requirement).

3 The esqlmf filter does not filter non-ASCII characters (for C

compilers that support multibyte characters in literal strings and

comments).

 To invoke esqlmf each time that you process an Informix ESQL/C file with the

esql command, set the ESQLMF environment variable to 1. If you do not set

CC8BITLEVEL, the esql command assumes a value for CC8BITLEVEL of 0.

Important: For ESQLMF to take effect, do not set CC8BITLEVEL to 3.

CLIENT_LOCALE

The CLIENT_LOCALE environment variable specifies the client locale, which the

client application uses in read and write operations, end-user formats, and

processing ESQL statements. See also “The Client Locale” on page 1-16.

�� CLIENT_LOCALE Language _ territory . code_set

@modifier
 ��

Element Description

code_set Name of the code set that the locale supports

language Two-character name that represents the language for a specific

locale

modifier Optional locale modifier that has a maximum of four alphanumeric

characters.

territory Two-character name that represents the cultural conventions. For

example, territory might specify the Swiss version of the French,

German, or Italian language.

 The modifier specification modifies the cultural-convention settings that the language

and territory settings imply. The modifier usually indicates a special localized

collating order that the locale supports.

An example nondefault client locale for a French-Canadian locale follows:

CLIENT_LOCALE fr_ca.8859-1

UNIX Only

You can use the glfiles utility to generate a list of the GLS locales that are available

on your UNIX system. For more information, see “The glfiles Utility (UNIX)” on

page A-11.

End of UNIX Only

Chapter 2. GLS Environment Variables 2-3

If you do not set CLIENT_LOCALE, the client application uses the default locale,

U.S. English, as the client locale.

Windows Only

Changes to CLIENT_LOCALE also enter in the Windows registry database under

HKEY_LOCAL_MACHINE.

End of Windows Only

DBDATE

IBM Informix products support the DBDATE environment variable for

compatibility with earlier products. We recommend that you use the GL_DATE

environment variable for new applications.

The DBDATE environment variable specifies the end-user formats of values in

DATE columns. For information about end-user formats, see “End-User Formats”

on page 1-11.

Important: DBDATE is evaluated at system initialization time. If it is invalid, the

system initialization fails.

��
 (1)

DBDATE

Standard

DBDATE

Formats

(2)

Era-Based

DBDATE

Formats

��

Notes:

1 see IBM Informix Guide to SQL: Reference

2 see “DBDATE Extensions” on page 6-8

Important: DBDATE variable takes precedence over the GL_DATE environment

variable, as well as over the default DATE formats that

CLIENT_LOCALE specifies.

DBLANG

The DBLANG environment variable specifies the subdirectory of INFORMIXDIR

that contains the customized, language-specific message files that an IBM Informix

product uses.

�� DBLANG relative_path

full_path

locale_name

 ��

Element Description

relative_path Subdirectory of the Informix installation directory (which

INFORMIXDIR specifies)

full_path Full pathname of the directory that contains the compiled message

files

locale_name Name of a GLS locale that has the format lg_tr.code_set, where lg is

a two-character name that represents the language for a specific

2-4 IBM Informix GLS User’s Guide

locale, tr is a two-character name that represents the cultural

conventions, and code_set is the name of the code set that the locale

supports

 IBM Informix products locate product-specific message files in the following order:

1. If DBLANG is set to a full_path: the directory that full_name indicates

2. If DBLANG is set to a relative_path:

a. In $INFORMIXDIR/msg/$DBLANG on UNIX or %INFORMIXDIR%\
msg\%DBLANG% on Windows

b. In $INFORMIXDIR/$DBLANG on UNIX or %INFORMIXDIR%\
%DBLANG% on Windows

3. If DBLANG is set to a locale_name: the msg subdirectory for the locale in

$INFORMIXDIR/msg/lg_tr/code_set on UNIX systems or %INFORMIXDIR%\
msg\lg_tr\code_set on Windows, where lg, tr, and code_set are the language,

territory, and code set, respectively, in locale_name.

The value of DBLANG does not affect the messages that the database server

writes to its message log. The database server obtains the locale for these

messages from the SERVER_LOCALE environment variable.

4. If DBLANG is not set: the msg subdirectory for the locale in

$INFORMIXDIR/msg/lg_tr/code_set on UNIX systems or %INFORMIXDIR%\
msg\lg_tr\code_set on Windows, where lg and tr are the language and

territory, respectively, from the locale that is associated with the IBM Informix

product, and code_set is the condensed name of the code set that the locale

supports:

v For IBM Informix client products: lg and tr are from the client locale (from

CLIENT_LOCALE, if it is set)

v For Informix database server products: lg and tr are from the server locale

(from SERVER_LOCALE, if it is set)
5. If DBLANG, CLIENT_LOCALE, and LANG are not set:

a. In $INFORMIXDIR/msg/en_us/0333 on UNIX systems or

%INFORMIXDIR%\msg\en_us\0333 on Windows, an internal message

directory for the default locale

b. In $INFORMIXDIR/msg on UNIX systems or %INFORMIXDIR%\msg on

Windows, the default Informix message directories

The compiled message files have the .iem file extension.

DB_LOCALE

The DB_LOCALE environment variable specifies the database locale, which the

database server uses to process locale-sensitive data. See “The Database Locale” on

page 1-17 and Appendix A, “Managing GLS Files,” on page A-1.

�� DB_LOCALE language _ territory . code_set

@modifier
 ��

Element Description

code_set Name of the code set that the locale supports

language Two-character name that represents the language for a specific

locale

Chapter 2. GLS Environment Variables 2-5

modifier Optional locale modifier that has a maximum of four alphanumeric

characters.

territory Two-character name that represents the cultural conventions. For

example, territory might specify the Swiss version of the French,

German, or Italian language.

 The modifier specification modifies the cultural-convention settings that the language

and territory settings imply. The modifier can indicate a localized collating order that

the locale supports. For example, you can set @modifier to specify dictionary or

telephone-book collation order.

An example nondefault database locale for a French-Canadian locale follows:

DB_LOCALE fr_ca.8859-1

UNIX Only

The glfiles utility can generate a list of the GLS locales available on your UNIX

system. For more information, see “The glfiles Utility (UNIX)” on page A-11.

End of UNIX Only

Dynamic Server

The SET COLLATION statement can specify for the current session a localized

collation different from the COLLATION setting of the DB_LOCALE locale. This

can affect sorting operations on NCHAR and NVARCHAR data values.

End of Dynamic Server

 If you do not set DB_LOCALE on the client computer, client applications assume

that the database locale has the value of the CLIENT_LOCALE environment

variable. The client application, however, does not send this default value to the

database server when it requests a connection.

Windows Only

Changes to DB_LOCALE also enter in the Windows registry database under

HKEY_LOCAL_MACHINE.

End of Windows Only

DBMONEY

The DBMONEY environment variable specifies the end-user formats for values in

MONEY columns. See also “End-User Formats” on page 1-11.

�� DBMONEY ’$’ .

front

,

back
 ��

Element Description

front Specifies a currency symbol that is displayed before the monetary

value.

back Specifies a currency symbol that is displayed after the value.

2-6 IBM Informix GLS User’s Guide

, (comma),
. (period) Monetary decimal separator. When you specify the comma or the

period, you implicitly assign the other symbol to the thousands

separator.

 With this environment variable, you can specify the currency notation:

v The currency symbol that appears before or after the monetary value

v The monetary decimal separator, which separates the integral part of the

monetary value from the fractional part.

For example, suppose that you use ’ DM,’ as the DBMONEY setting. This

DBMONEY setting specifies the following currency notation:

v The currency symbol, DM, appears before a monetary value.

v The decimal separator is a comma.

v The thousands separator is (implicitly) a period.

The front or back symbol can be non-ASCII character if your client locale supports a

code set that defines the non-ASCII character. Any symbol that is not a letter must

be enclosed within quotation marks. Period or comma are not valid front or back

symbols. In the default locale, the dollar ($) sign is the default front currency

symbol, period (.) is the default decimal separator, and comma (,) is the default

thousands separator. The DBMONEY setting takes precedence over any notation

defined by the MONETARY category of the locale. See also “Customizing

Monetary Values” on page 1-31.

Most GLS locales for European languages can support code sets that include the

euro symbol for monetary values.

DBNLS (IDS)

The DBNLS environment variable specifies whether automatic data type

conversion is supported between NCHAR and NVARCHAR database columns and

CHAR and VARCHAR variables (respectively) of the client systems.

Global Language Support (GLS) does not require the DBNLS environment

variable. But Dynamic Server databases continue to support the legacy behavior of

DBNLS, which supports applications that manipulate tables with NCHAR or

NVARCHAR columns.

�� DBNLS

’1’

’2’

 ��

For UNIX systems that use the C shell, you can enable client applications such as

DB-Access, IBM Informix SQL, IBM Informix 4GL, IBM Informix Dynamic 4GL,

and embedded-SQL applications such as Informix ESQL/C to convert

automatically between CHAR and VARCHAR variables of the client application

and NCHAR and NVARCHAR columns of the database by this command:

setenv DBNLS 1

This setting also supports the automatic conversion of values retrieved from

NCHAR columns into CHAR variables, and the conversion of NVARCHAR

column values into VARCHAR variables.

Chapter 2. GLS Environment Variables 2-7

Similarly, when DBNLS = 1, character strings stored as CHAR variables can be

inserted into NCHAR columns, and character strings stored as VARCHAR

variables can be inserted into NVARCHAR database columns.

To support these features, DBNLS must also be set to 1 on the client system. This

setting also enables the client system to display dates, numbers, and currency

values in formats specified on the client locale.

Conversely, setting no value for DBNLS disables automatic conversion between

CHAR and VARCHAR variables of the client application and NCHAR and

NVARCHAR columns of the database, and also prevents Dynamic Server from

using the locale files of the client system:

setenv DBNLS

unsetenv DBNLS

Another possible setting for DBNLS is 2, by using this command:

setenv DBNLS 2

This supports automatic data type conversion between NCHAR and CHAR and

between NVARCHAR and VARCHAR (if the client system has DBNLS set to 1 or

2). The client and the database server can have different locales.

DBTIME (ESQL/C)

IBM Informix products support DBTIME for compatibility with earlier products.

We recommend that you use the GL_DATETIME environment variable for new

applications. The DBTIME environment variable specifies the end-user formats of

values in DATETIME columns for SQL API routines. See also “End-User Formats”

on page 1-11.

��
 (1)

DBTIME

Standard

DBTIME

Formats

(2)

Era-Based

DBTIME

Formats

��

Notes:

1 see IBM Informix Guide to SQL: Reference

2 see “DBTIME Support” on page 6-10

Tip: DBTIME affects only certain formatting routines in the ESQL/C function

libraries. See “DATETIME-Format Functions” on page 6-9.

ESQLMF

The ESQLMF environment variable can have the values 1 or 0.

�� ESQLMF 0

1
 ��

Element Description

0 esql compiles source code whose non-ASCII characters have

already been converted.

1 esql invokes esqlmf to filter multibyte characters when

preprocessing an ESQL/C source file.

2-8 IBM Informix GLS User’s Guide

The ESQLMF environment variable indicates whether the esql command

automatically invokes the Informix ESQL/C multibyte filter, esqlmf.

The value of the CC8BITLEVEL environment variable determines the type of

filtering that esqlmf performs. For information about esqlmf, see “Generating

Non-ASCII Filenames” on page 6-3.

Important: For ESQLMF to take effect, CC8BITLEVEL must not be set to 3.

If you want to compile existing source code whose non-ASCII characters have

already been converted, either set ESQLMF to 0 or do not set it. In either case,

esql does not invoke esqlmf.

GLS8BITFSYS

Use the GLS8BITFSYS environment variable to tell IBM Informix products (such

as the Informix ESQL/C processor) whether the operating system is 8-bit clean.

This setting determines whether an IBM Informix product can use non-ASCII

characters in the filename of an operating-system file that it generates.

�� GLS8BITFSYS 0

1
 ��

Element Description

0 IBM Informix products assume that the operating system is not

8-bit clean and generate filenames with 7-bit ASCII characters only.

1 IBM Informix products assume that the operating system is 8-bit

clean and can use non-ASCII characters (8-bit or multibyte

characters) in the filename of an operating-system file that it

generates.

 If you include non-ASCII characters in a filename that you specify within a client

application, you must ensure that the code set of the server-processing locale

supports these non-ASCII characters. If you do not set GLS8BITFSYS, Informix

database servers behave as if GLS8BITFSYS is set to 1.

For example, create a database that is called A1A2B1B2, where A1A2 and B1B2 are

multibyte characters, with the following SQL statement:

CREATE DATABASE A1A2B1B2

If GLS8BITFSYS is 1 (or is not set) on the server computer, the database server

assumes that the operating system is 8-bit clean, and it generates a database

directory, A1A2B1B2.dbs.

If GLS8BITFSYS is set to 0 on the server computer and you include non-ASCII

characters in the filename, the IBM Informix product uses an internal algorithm to

convert these non-ASCII characters to ASCII characters. The filenames that result

are 7-bit clean.

Filenames with invalid byte sequences generate errors when they are used with

GLS-based products.

Only some database utilities, such as dbexport, and the compilers for IBM

Informix ESQL/C products use GLS8BITFSYS on the client computer to create

and use files. For example, suppose you compile an Informix ESQL/C source file

Chapter 2. GLS Environment Variables 2-9

that is called A1A2B1B2.ec, where A1A2 and B1B2 are multibyte characters. If

GLS8BITFSYS is set to 1 (or is not set) on the client computer, the Informix

ESQL/C processor generates an intermediate C file that is called A1A2B1B2.c. For

a list of Informix ESQL/C files that check GLS8BITFSYS, see “Handling

Non-ASCII Characters” on page 6-2.

Restrictions on Non-ASCII Filenames

If your locale supports a code set with non-ASCII characters, restrictions apply to

filenames for operating-system files that IBM Informix products generate. Before

you or an IBM Informix product creates a file and assigns a filename, consider the

following questions:

v Does your operating system support non-ASCII filenames?

v Does the IBM Informix product accept non-ASCII filenames?

Making Sure That Your Operating System Is 8-Bit Clean: To support non-ASCII

characters in filenames, your operating system must be 8-bit clean. An operating

system is 8-bit clean if it reads the eighth bit as part of the code value. In other

words, the operating system must not ignore or make its own interpretation of the

value of the eighth bit.

Consult your operating-system manual or system administrator to determine

whether your operating system is 8-bit clean before you decide to use a nondefault

locale that contains non-ASCII characters in filenames that IBM Informix products

use and generate.

Making Sure That Your Product Supports the Same Code Set: Once an IBM

Informix product has generated an operating-system file whose filename has

non-ASCII characters, it has written that filename and the file contents in a

particular code set. Whenever an IBM Informix product or client application needs

to access that file, you must ensure that the product uses a server-processing locale

that supports that same code set.

The Server Code Set: When the database server creates a file whose filename

contains non-ASCII characters, the server locale must support these characters.

Before you start a database server, you must set the SERVER_LOCALE

environment variable to the name of a locale whose code set contains these

non-ASCII characters.

For example, suppose you want a message log with the UNIX path

/A1A2B1B2/C1C2D1D2, where A1A2, B1B2, C1C2, and D1D2 are multibyte

characters in the Japanese SJIS code set. To enable the database server to create this

message-log file on its computer:

1. Modify the MSGPATH parameter in the ONCONFIG file.

For UNIX:

MSGPATH /A1A2B1B2/C1C2D1D2

multibyte message-log filename

For Windows:

MSGPATH \A1A2B1B2\C1C2D1D2

multibyte message-log filename

2. Set the SERVER_LOCALE environment variable on the server computer to the

Japanese SJIS locale, ja_jp.sjis.

3. Start the database server with the oninit utility.

2-10 IBM Informix GLS User’s Guide

When the database server initializes, it assumes that the operating system is 8-bit

clean and creates the /A1A2B1B2/C1C2D1D2 message log on UNIX, or the

\A1A2B1B2\C1C2D1D2 file on Windows.

The Client Code Set: When an Informix ESQL/C processor creates a file whose

filename has non-ASCII characters, the client locale must support these non-ASCII

characters. Before you start an Informix database server, you must ensure that the

code set of the client locale (the client code set) contains these characters.

When you use a nondefault locale, you must set the CLIENT_LOCALE

environment variable to the name of a locale whose code set contains these

non-ASCII characters.

For example, suppose you want to process an Informix ESQL/C source file with

the path /A1A2B1B2/C1C2D1D2, where A1A2, B1B2, C1C2, and D1D2 are

multibyte characters in the Japanese SJIS code set. You must perform the following

steps to enable the esql command to create the intermediate C source file on the

client computer:

1. Set the CLIENT_LOCALE environment variable on the client computer to the

Japanese SJIS locale, ja_jp.sjis.

2. Process the Informix ESQL/C source file with the esql command.

If the code sets that are associated with the filename and with the client locale do

not match, a valid filename might contain illegal characters with respect to the

client locale. The Informix ESQL/C processor rejects any filename that contains

illegal characters and displays the following error message:

Illegal characters in filename.

GL_DATE

The GL_DATE environment variable specifies end-user formats of values for

DATE columns. For information about end-user formats, see “End-User Formats”

on page 1-11.

Important: GL_DATE is evaluated when it is used, rather than when it is set. If it

is invalid, the operation that called it fails.

�� GL_DATE ’string’

(1)

(2)

Format

Qualifiers

for

Reads

Format

Qualifiers

for

Prints

 ��

Notes:

1 See “Optional Date Format Qualifiers” on page 2-14

2 See “Optional Date Format Qualifiers” on page 2-14

Element Description

string Formatting directives that specify the end-user format for

GL_DATE values. You can use any formatting directive that

formats dates.

 An end-user format in GL_DATE can contain the following characters:

v One or more white space characters, which the CTYPE category of the locale

specifies

v An ordinary character (other than the % symbol or a white-space character)

Chapter 2. GLS Environment Variables 2-11

v A formatting directive, which is composed of the % symbol followed by a

conversion character that specifies the required replacement.

The next list describes the formatting directives that are not based on era.

 Formatting

Directives Description

%a Is replaced by the abbreviated weekday name as defined in the locale.

%A Is replaced by the full weekday name as defined in the locale.

%b Is replaced by the abbreviated month name as defined in the locale.

%B Is replaced by the full month name as defined in the locale.

%C Is replaced by the century number (the year divided by 100 and truncated

to an integer) as an integer (00 through 99).

%d Is replaced by the day of the month as an integer (01 through 31). A single

digit is preceded by a zero (0).

%D Is the same as the %m/%d/%y format.

%e Is replaced by the day of the month as a number (1 through 31). A single

digit is preceded by a space.

%h Is the same as the %b formatting directive.

%iy Is replaced by the year as a 2-digit number (00 through 99) for both

reading and printing. It is the Informix-specific formatting directive for %y.

%iY Is replaced by the year as a 4-digit number (0000 through 9999) for both

reading and printing. It is the Informix-specific formatting directive for %Y.

%m Is replaced by the month as a number (01 through 12).

%n Is replaced by a newline character.

%t Is replaced by the TAB character.

%w Is replaced by the weekday as a number (0 through 6); 0 represents the

locale equivalent of Sunday.

%x Is replaced by a special date representation that the locale defines.

%y Requires that the year be a 2-digit number (00 through 99) for both reading

and printing.

%Y Requires that the year be a 4-digit number (0000 through 9999) for both

reading and printing.

%% Is replaced by % (to allow % in the format string).

White-space or other nonalphanumeric characters must appear between any two

formatting directives. For example, if you use a U.S. English locale, you might

want to format an internal DATE value for 03/05/1997 in the ASCII string format

that the following example shows:

Mar 05, 1997 (Wednesday)

To do so, set the GL_DATE environment variable as follows:

%b %d, %Y (%A)

If a GL_DATE format does not correspond to any of the valid formatting

directives, the behavior of the IBM Informix product when it tries to format is

undefined.

2-12 IBM Informix GLS User’s Guide

Important: The setting of the DBDATE variable takes precedence over that of the

GL_DATE environment variable, as well as over the default DATE

formats that CLIENT_LOCALE specifies.

The Year Formatting Directives

You can use the following formatting directives in the end-user format of the

GL_DATE environment variable to format the year of a date string: %y, %iy, %Y,

and %iY. The %iy and %iY formatting directives provide compatibility with the

Y2 and Y4 year specifiers of the DBDATE environment variable.

For information about end-user formats, see “End-User Formats” on page 1-11.

When an IBM Informix product uses an end-user format to print an internal date

value as a string, the %iy and %iY directives perform the same task as %y and

%Y, respectively. To print a year with one of these formatting directives, an IBM

Informix product performs the following actions:

v The %iy and %y formatting directives both print the year of an internal date

value as a 2-digit decade.

For example, when you set GL_DATE to ’%y %m %d’ or ’%iy %m %d’, an internal

date for March 5, 1997 formats to ’97 03 05’.

v The %iY and %Y formatting directives both print the year of an internal date

value as a 4-digit year.

For example, when you set GL_DATE to ’%Y %m %d’ or ’%iY %m %d’, the internal

date for March 5, 1997 formats to ’1997 03 05’.

When an IBM Informix product uses an end-user format to read a date, the %iy

and %iY formatting directives perform differently from %y and %Y, respectively.

The following table summarizes how the year formatting directives behave when

an IBM Informix product uses them to read date strings.

GL_DATE Format

Date String to Read

’1994 03 06’ ’94 03 06’

%y %m %d Error Internal date for 1994 03 06

%iy %m %d Internal date for 1994 03 06 Internal date for 1994 03 06

%Y %m %d Internal date for 1994 03 06 Internal date for 0094 03 06

%iY %m %d Internal date for 1994 03 06 Internal date for 1994 03 06

In a read of a date string, the %iy and %y formatting directives both prefix the

first two digits of the current year to expand any 1-digit or 2-digit year. You can

set the DBCENTURY environment variable to change this default.

Alternative Date Formats

To support alternative date formats in an end-user format, GL_DATE accepts the

following conversion modifiers:

v E indicates use of an alternative era format, which the locale defines.

v O (the letter O) indicates use of locale-defined alternative digits.

Chapter 2. GLS Environment Variables 2-13

These date-formatting directives can support conversion modifiers.

 Date

Format Description

%EC Accepts either the full or the abbreviated era name for reading; for printing,

%EC is replaced by the full name of the base year (period) of the era that the

locale defines (same as %C if locale does not define an era).

%Eg Accepts the full or the abbreviated era name for reading. For printing, %Eg is

replaced by the abbreviated name of the base year (period) of the era that the

locale defines (same as %C if locale does not define an era).

%Ex Is replaced by a special date representation for an era that the locale defines

(same as %x if locale does not define an era).

%Ey Is replaced by the offset from %EC of the era that the locale defines. This date

is the era year only (same as %y if locale does not define an era).

%EY Is replaced by the full era year, which the locale defines (same as %Y if locale

does not define an era).

%Od Is replaced by the day of the month in the alternative digits that the locale

defines (same as %d if locale does not define alternative digits).

%Oe Is the same as %Od (or %e if locale does not define alternative digits).

%Om Is replaced by the month in the alternative digits that the locale defines (same

as %m if locale does not define alternative digits).

%Ow Is replaced by the weekday as a single-digit number (0 through 6) in the

alternative digits that the locale defines (same as %w if locale does not define

alternative digits). The equivalent of zero (0) represents the locale equivalent of

Sunday.

%Oy Is replaced by the year as a 2-digit number (00 through 99) in the alternative

digits that the locale defines (same as %y if locale does not define alternative

digits). For information about how to format a year value, see the description of

%y.

%OY Is the same as %EY (or %Y if locale does not define alternative digits).

The TIME category of the locale defines the following era information:

v The full and abbreviated names for an era

v A representation for the era (which the %Ex directive uses)

The NUMERIC category of the locale defines the alternative digits for a locale

(which the %Ox formatting directives use).

Optional Date Format Qualifiers

You can specify optional format qualifiers immediately after the % symbol of the

formatting directive. A date format qualifier defines a field specification for the

date in read or print operations. The following sections describe what a field

specification means for the read and print operations. For information about

end-user formats, see “End-User Formats” on page 1-11.

Tip: The GL_DATETIME environment variable accepts these date format qualifiers

in addition to those that “Optional Time Format Qualifiers” on page 2-18 lists.

Field Specification for Reading a DATE Value: When an IBM Informix product

uses an end-user format to read a date string, the field specification defines the

number of characters to expect as input. This field specification has the following

syntax.

2-14 IBM Informix GLS User’s Guide

Format Qualifiers for Reads

��

-

0

max_width

.

min_width

 ��

Element Description

- (minus sign) Field value is left justified and begins with a digit; this value can

include trailing spaces

0 (zero) Field value is right justified; any zeros on the left are pad characters

that are not significant.

max_width Integer that indicates the maximum number of characters to read

min_width Integer that indicates the minimum number of characters to read

 The first character of the field specification indicates whether to assume that the

field value is justified or padded. If the first character is neither a minus sign nor a

zero, the IBM Informix product assumes that the field value is right justified and

any spaces on the left are pad characters.

If the field value begins with a zero, however, it cannot include pad characters.

An IBM Informix product ignores the field specification if the field value is not a

numeric value.

Field Specification for Displaying a DATE Value: When an IBM Informix

product uses an end-user format to print a date string, the field specification

defines the number of characters to print as output. The syntax for the field

specification is as follows.

Format Qualifiers for Output

��

-

0

width

.

precision

 ��

Element Description

- (minus sign) Field value is left justified and begins with a digit; value can

include trailing blank spaces

0 (zero) Field value is right justified; any zeros on the left are pad

characters; they are not significant.

width Integer that indicates a minimum field width for the printed value

precision Integer that indicates the precision to use for the field value

 The meaning of the precision value depends on the formatting directive with which

it is used, as the following table shows.

Chapter 2. GLS Environment Variables 2-15

Formatting

Directives Description

%C, %d, %e, %Ey,

%iy, %iY,%m, %w,

%y, %Y

Value of precision specifies the minimum number of digits to print. If a

value supplies fewer digits than precision specifies, an IBM Informix

product pads the value with leading zeros. The %d, %Ey, %iy, %m,

%w, and %y formatting directives have a default precision of 2. The

%Y directive has no precision default; year 0001 would be formatted as

1 rather than as 0001.

%a, %A, %b, %B,

%EC, %Eg, %h

Value of precision specifies the maximum number of characters to print.

If a value supplies more characters than precision specifies, an IBM

Informix product truncates the value.

%D Values of width and precision affect each element of these formatting

directives. For example, the field specification %6.4D causes a DATE

value to be displayed as if the format were: %6.4m/%6.4d/%6.4y where

no fewer than four (but no more than six) characters represented the

month, day, and year values, in that order, with “/” as the separator.

%Ox For formatting directives that include the O modifier (alternative

digits), the value of precision is still the minimum number of digits to

print. The width value defines the format width rather than the actual

number of digits.

%Ex, %EY, %n, %t,

%x, %%

Values of width and precision have no effect on these formatting

directives.

For example, the following formatting directive displays the month as an integer

with a maximum field width of 4:

%4m

The following formatting directive displays the day of the month as an integer

with a minimum field width of 3 and a maximum field width of 4:

%4.3d

GL_DATETIME

The GL_DATETIME environment variable specifies the end-user formats of values

in DATETIME columns. For information about end-user formats, see “End-User

Formats” on page 1-11.

A GL_DATETIME format can contain the following characters:

v One or more white-space characters, which the CTYPE category of the locale

specifies

v An ordinary character (other than the % symbol or a white-space character)

v A formatting directive, which is composed of the % symbol followed by a

conversion character that specifies the required replacement

�� GL_DATETIME ’string’

(1)

Optional

Time

Format

Qualifiers

 ��

Notes:

1 Pg. “Optional Time Format Qualifiers” on page 2-18

Element Description

string Contains the formatting directives that specify the end-user format

2-16 IBM Informix GLS User’s Guide

for GL_DATETIME values. You can use any formatting directive

that formats dates or times. For a list of formatting directives for

dates, see “GL_DATE” on page 2-11.

 This list describes the time formatting directives that are not based on era.

 Formatting

Directives Description

%c Is replaced by a special datetime representation that the locale defines.

%Fn Is replaced by the value of the fraction of a second with precision that is

specified by the integer n. The default value of n is 2; the range of n is 0 ≤ n

≤ 5. This value overrides any width or precision between the % and F

character. For more information, see “Optional Time Format Qualifiers” on

page 2-18.

%H Is replaced by the hour as an integer (00 through 23) (24-hour clock).

%I Is replaced by the hour as an integer (00 through 12) (12-hour clock).

%M Is replaced by the minute as an integer (00 through 59).

%p Is replaced by the A.M. or P.M. equivalent as defined in the locale.

%r Is replaced by the commonly used time representation for a 12-hour clock

format (including the A.M. or P.M. equivalent) as defined in the locale.

%R Is replaced by the time in 24-hour notation (%H:%M).

%S Is replaced by the second as an integer (00 through 61). The second can be

up to 61 instead of 59 to allow for the occasional leap second and double

leap second.

%T Is replaced by the time in the %H:%M:%S format.

%X Is replaced by the commonly used time representation as defined in the

locale.

%% Is replaced by % (to allow % in the format string).

White-space or other nonalphanumeric characters must appear between any two

formatting directives. Any other characters in the GL_DATETIME setting that

were not listed above as formatting directives are interpreted as literal characters.

If a GL_DATETIME format does not correspond to any of the valid formatting

directives, the behavior of the IBM Informix product when it tries to format is

undefined.

In addition to the formatting directives that the preceding table lists, you can

include the following date-formatting directives in the end-user format of

GL_DATETIME:

%a, %A, %b, %B, %C, %d, %D, %e, %h, %iy, %iY, %m, %n, %t,

%w, %x, %y, %Y, %%

For example, if you use an U.S. English locale, you might want to format an

internal DATETIME YEAR TO SECOND value to the ASCII string format that the

following example shows:

Mar 21, 1997 at 16 h 30 m 28 s

To do so, set the GL_DATETIME environment variable as the following line

shows:

%b %d, %Y at %H h %M m %S s

Chapter 2. GLS Environment Variables 2-17

Important: The value of GL_DATETIME affects the behavior of certain Informix

ESQL/C library functions if the DBTIME environment variable is not

set. For information about how these library functions are affected, see

“DATETIME-Format Functions” on page 6-9. The value of DBTIME

takes precedence over the value of GL_DATETIME.

Alternative Time Formats

To support alternative time formats in an end-user format, GL_DATETIME accepts

the following conversion modifiers:

v E indicates use of an alternative era format, which the locale defines.

v O (the letter O) indicates use of alternative digits, which the locale also defines.

The following table shows time-formatting directives that support conversion

modifiers.

 Alternative

Time Format Description

%Ec Is replaced by a special date/time representation for the era that the locale

defines. It is the same as %c if the locale does not define an era.

%EX Is replaced by a special time representation for the era that the locale

defines. It is the same as %X if the locale does not define an era.

%OH Is replaced by the hour in the alternative digits that the locale defines

(24-hour clock). It is the same as %H if the locale does not define alternative

digits).

%OI Is replaced by the hour in the alternative digits that the locale defines

(12-hour clock). It is the same as %I if the locale does not define alternative

digits).

%OM Is replaced by the minute with the alternative digits that the locale defines.

It is the same as %M if the locale does not define alternative digits.

%OS Is replaced by the second with the alternative digits that the locale defines.

It is the same as %S if the locale does not define alternative digits.

The TIME category of the locale defines the following era information:

v The full and abbreviated names for an era

v A special date representation for the era (which the %Ex formatting directive

uses)

v A special time representation for the era (which the %EX formatting directive

uses)

v A special date/time representation for the era (which the %Ec formatting

directive uses)

The NUMERIC category of the locale defines the alternative digits for a locale

(which the %Ox formatting directives use).

Optional Time Format Qualifiers

You can specify the following optional format qualifiers immediately after the %

symbol of the formatting directive. A time format qualifier defines a field

specification for the time (or date and time) that the IBM Informix product reads or

prints. This section describes what a field specification means for the print

operation. For a description of what a field specification means for the read

operation, see “Field Specification for Reading a DATE Value” on page 2-14. For

information about end-user formats, see “End-User Formats” on page 1-11.

2-18 IBM Informix GLS User’s Guide

When an IBM Informix product uses an end-user format to print a string from an

internal format, the field specification defines the number of characters to print as

output. This field specification has the following syntax.

Optional Time Format Qualifiers

��

-

0

width

.

precision

 ��

Element Description

- (minus sign) IBM Informix product prints the field value as left justified and

pads this value with spaces on the right.

0 (zero) IBM Informix product prints the field value as right justified and

pads this value with zeros on the left.

width Integer that indicates a minimum field width for the printed value

precision Integer that indicates the precision to use for the field value

 The first character of the field specification indicates whether to justify or pad the

field value. If the first character is neither a minus sign nor a zero (0), an IBM

Informix product prints the field value as right justified and pads this value with

spaces on the left.

The meaning of the precision value depends on the particular formatting directive

with which it is used, as the following table shows.

 Formatting

Directives Description

%F, %H,

%I, %M,

%S

Value of precision specifies the minimum number of digits to print. If a

value supplies fewer digits than the precision specifies, an IBM Informix

product pads the value with leading zeros. The %H, %M, and %S

formatting directives have a default precision of 2.

%p Value of precision specifies the maximum number of characters to print. If a

value supplies more characters than the precision specifies, an IBM Informix

product truncates the value.

%R, %T Values of width andprecision affect each element of these formatting

directives. For example, the field specification %6.4R causes a DATETIME

value to be displayed a if the format were this: %6.4H:%6.4M. Here no

fewer than four (but no more than six) characters represented the hour and

the minute.

%F Value of precision can follow this directive as an optional precision

specification. This value must be between 1 and 5. Otherwise, an IBM

Informix product generates an error. This precision value overrides any

precision value that you specify between the % symbol and the formatting

directive.

%Ox For formatting directives that include the O modifier, value of precision is

still the minimum number of digits to print. The width value defines the

format width, rather than the actual number of digits.

%c, %Ec,

%EX, %X

Values of width and precision have no effect on these formatting directives.

For example, the following formatting directive displays the minute as an integer

with a maximum field width of 4:

Chapter 2. GLS Environment Variables 2-19

%4M

The following formatting directive displays the hour as an integer with a

minimum field width of 3 and a maximum field width of 6:

%6.3H

The specified format is applied to all displayed DATETIME values, regardless of

their declared precision. For example, suppose that the setting of GL_DATETIME

is ’%Y/%m/%d %H:%M:%S’ This setting would cause a value from a DATETIME YEAR

TO SECOND column to be displayed as follows:

[2000/08/28 14:43:17]

If a program executed on August 28 of the year 2000, the same GL_DATETIME

setting would also display a value from a DATETIME HOUR TO SECOND column

as follows:

[2000/08/28 14:43:17]

When GL_DATETIME is set, every DATETIME value is displayed in the specified

format, even if that format includes time units that were not included in the

DATETIME qualifier when the data type was declared. Time units outside the

declared precision are obtained from the system clock-calendar. To avoid

unexpected results, you might prefer to set GL_DATETIME only for applications

where the DATETIME data types that you display have the same precision as the

GL_DATETIME setting.

Creation-Time Settings

Like DBCENTURY, DBDATE, and GL_DATE, the GL_DATETIME variable can

affect how expressions that include literal time values are evaluated. For some

earlier releases, resetting environment variables can produce inconsistent behavior

in check constraints, triggers, fragmentation expressions, UDRs, and other database

objects whose definitions include time expressions. Objects created in this release

use the environment variable settings that were in effect at the time when the

object was created, rather than the settings at the time of execution (if these are

different) to avoid inconsistency.

Using the USE_DTENV Environment Variable

In a database for which the GL_DATETIME environment variable has a

non-default setting, you must set USE_DTENV environment variable to 1 before

you can process localized DATETIME values correctly with the following:

v dbexport utility

v dbimport utility

v LOAD SQL statement

v UNLOAD SQL statement

For information on the USE_DTENV environment variable, see theIBM Informix

ESQL/C Programmer’s Manual

GL_USEGLU (IDS)

Set the client-side GL_USEGLU environment variable to 1 to enable support for

Unicode collation on client systems that use the GB18030-2000 code set for the

Chinese language.

To run ESQL/C programs with this environment variable set, you must either set

this environment variable or use the -glu esql option when linking the ESQL/C

program.

2-20 IBM Informix GLS User’s Guide

�� GL_USEGLU 1 ��

SERVER_LOCALE

The SERVER_LOCALE environment variable specifies the server locale, which the

database server uses to perform read and write operations that involve

operating-system files on the server computer. For more information about the

server locale, see “The Server Locale” on page 1-19 and “GLS Support by Informix

Database Servers” on page 4-1.

�� SERVER_LOCALE language _ territory . code_set

@modifier
 ��

Element Description

code_set Name of the code set that the locale supports

language Two-character name that represents the language for a specific

locale

modifier Optional locale modifier that has a maximum of four alphanumeric

characters.

territory Two-character name that represents the cultural conventions. For

example, territory might specify the Swiss version of the French,

German, or Italian language.

 The modifier specification modifies the cultural-convention settings that the language

and territory settings imply. The modifier usually indicates a special type of

localized collation that the locale supports. For example, you can set @modifier to

specify dictionary or telephone-book collating order.

An example nondefault server locale for a French-Canadian locale follows:

SERVER_LOCALE fr_ca.8859-1

UNIX Only

You can use the glfiles utility to generate a list of the GLS locales that are available

on your UNIX system. For more information, see “The glfiles Utility (UNIX)” on

page A-11.

End of UNIX Only

 If you do not set SERVER_LOCALE, Informix database servers use the default

locale, U.S. English, as the server locale.

Windows Only

Changes to SERVER_LOCALE also enter in the Windows registry database under

HKEY_LOCAL_MACHINE.

End of Windows Only

Chapter 2. GLS Environment Variables 2-21

2-22 IBM Informix GLS User’s Guide

Chapter 3. SQL Features

In This Chapter . 3-2

Naming Database Objects . 3-2

Rules for Identifiers . 3-2

Non-ASCII Characters in Identifiers . 3-3

Qualifiers of SQL Identifiers . 3-5

Owner Names . 3-5

Pathnames and Filenames . 3-6

Delimited Identifiers . 3-6

Valid Characters in Identifiers . 3-7

Using Character Data Types . 3-8

Localized Collation of Character Data . 3-8

The NCHAR Data Type . 3-8

The NVARCHAR Data Type . 3-9

Performance Considerations . 3-11

Other Character Data Types . 3-11

The CHAR Data Type . 3-12

The VARCHAR Data Type . 3-12

The LVARCHAR Data Type (IDS) . 3-13

The TEXT Data Type . 3-13

Handling Character Data . 3-13

Specifying Quoted Strings . 3-14

Specifying Comments . 3-14

Specifying Column Substrings . 3-15

Column Substrings in Single-Byte Code Sets . 3-15

Column Substrings in Multibyte Code Sets . 3-15

Partial Characters in Column Substrings . 3-16

Errors Involving Partial Characters . 3-17

Partial Characters in an ORDER BY Clause . 3-17

Specifying Arguments to the TRIM Function . 3-19

Using Case-Insensitive Search Functions (IDS) . 3-19

Collating Character Data . 3-19

Collation Order in CREATE INDEX . 3-20

Collation Order in SELECT Statements . 3-21

Comparisons with MATCHES and LIKE Conditions 3-26

Using SQL Length Functions . 3-28

The LENGTH Function . 3-29

The OCTET_LENGTH Function . 3-30

The CHAR_LENGTH Function . 3-32

Using Locale-Sensitive Data Types . 3-33

Handling the MONEY Data Type . 3-33

Specifying Values for the Scale Parameter . 3-33

Format of Currency Notation . 3-34

Handling Extended Data Types (IDS) . 3-34

Opaque Data Types . 3-34

Complex Data Types . 3-35

Distinct Data Types . 3-35

Handling Smart Large Objects (IDS) . 3-35

Using Data Manipulation Statements . 3-35

Specifying Conditions in the WHERE Clause . 3-36

Specifying Era-Based Dates . 3-36

Loading and Unloading Data . 3-36

Loading Data into a Database . 3-37

Unloading Data from a Database . 3-37

Loading with External Tables (XPS) . 3-37

© Copyright IBM Corp. 1996, 2008 3-1

Loading Simple Large Objects with External Tables (XPS) 3-38

In This Chapter

This chapter explains how the GLS feature affects the Informix implementation of

SQL. It describes how the choice of a locale affects the topics in the following

sections:

v Naming Database Objects

v Using Character Data Types

v Handling Character Data

v Using Locale-Sensitive Data Types

v Using Data Manipulation Statements

For more information about the Informix implementation of SQL, see the IBM

Informix Guide to SQL: Syntax, the IBM Informix Guide to SQL: Reference, the IBM

Informix Guide to SQL: Tutorial, and the IBM Informix Database Design and

Implementation Guide.

Naming Database Objects

You need to declare names for new database objects (and in some cases. for storage

objects, such as dbspaces) when you use data definition language (DDL)

statements such as CREATE TABLE , CREATE INDEX, and RENAME COLUMN.

This section describes considerations for declaring names for database objects in a

nondefault locale. In particular, this section explains which SQL identifiers and

delimited identifiers accept non-ASCII characters.

Important: To use a nondefault locale, you must set the appropriate locale

environment variables for IBM Informix products. For more

information, see “Setting a Nondefault Locale” on page 1-21.

Rules for Identifiers

An SQL identifier is a string of letters, digits, and underscores that represents the

name of a database object such as a table, column, index, or view.

A non-delimited SQL identifier must begin with a letter or underscore (_) symbol.

Trailing characters in the identifier can be any combination of letters, digits,

underscores, or (for Dynamic Server only) dollar ($) signs. Delimited identifiers,

however, can include any character in the code set of the database locale; see

“Delimited Identifiers” on page 3-6 for more information.

Declaring identifiers that are SQL keywords can cause syntactic ambiguity or

unexpected results. For additional information, see the Identifier segment in the

IBM Informix Guide to SQL: Syntax. See also “Non-ASCII Characters in Identifiers”

on page 3-3 and “Valid Characters in Identifiers” on page 3-7.

SQL identifiers can occupy up to 128 bytes on Dynamic Server, or up to 18 bytes

on Extended Parallel Server. When you declare identifiers, make sure not to exceed

the size limit for your database server. For example, the following statement

creates a synonym name of 8 multibyte characters:

CREATE SYNONYM A1A2A3B1B2C1C2C3D1D2E1E2F1F2G1G2H1H2 FOR A1A2B1B2

3-2 IBM Informix GLS User’s Guide

Extended Parallel Server

The synonym declared in the preceding example is 18 bytes long (six 2-byte

multibyte characters and two 3-byte multibyte characters), so it does not exceed

the maximum length for identifiers on Extended Parallel Server. The following

CREATE SYNONYM statement, however, generates an error because the total

number of bytes in this synonym name is 20:

CREATE SYNONYM A1A2A3B1B2B3C1C2C3D1D2D3E1E2F1F2G1G2H1H2 FOR A1A2B1B2

This statement specifies four 3-byte characters and four 2-byte characters for the

synonym. Even though the synonym name has only eight characters, the total

number of bytes in the synonym name is 20 bytes, which exceeds the maximum

length for an identifier.

End of Extended Parallel Server

Non-ASCII Characters in Identifiers

Informix database servers support non-ASCII (wide, 8-bit, and multibyte)

characters from the code set of the database locale in most SQL identifiers, such as

the names of columns, connections, constraints, databases, indexes, roles, SPL

routines, sequences, synonyms, tables, triggers, and views.

Extended Parallel Server

On Extended Parallel Server, use only single-byte characters in the following

identifiers:

v Dbslice

v Logslice

v Coserver

v Cogroup

Use only ASCII alphanumeric 7-bit names for the following identifiers:

v Chunk name

v Filename

v Message-log filename

v Pathname

End of Extended Parallel Server

Dynamic Server

On Dynamic Server, you can use non-ASCII characters (8-bit and multibyte

characters) when you create or refer to any of these database server names:

v Chunk name

v Message-log filename

v Pathname

End of Dynamic Server

 The following restrictions affect the ability of the database server to generate

filenames that contain non-ASCII characters:

Chapter 3. SQL Features 3-3

v The database server must know whether the operating system is 8-bit clean.

v The code set specified by the DB_LOCALE setting must support these

non-ASCII characters.

In a database with a nondefault locale, whose code set supports multibyte (or

other non-ASCII) characters, you can use those non-ASCII characters when you

declare most SQL identifiers, as listed in Table 3-1 on page 3-4.

In the following table, the Type of Identifier column lists various categories of

objects that can have SQL identifiers or operating-system identifiers. The SQL

Segment column shows the segment that provides the syntax of the identifier in

the IBM Informix Guide to SQL: Syntax. The Example Context column lists an SQL

statement that can declares or can reference the identifier.

 Table 3-1. SQL Identifiers That Support Non-ASCII Characters

Type of Identifier SQL Segment Example Context

Alias Identifier SELECT

Cast (IDS Only) Expression CREATE CAST

Column name Identifier CREATE TABLE

Connection name Quoted String CONNECT

For more information, see “Specifying

Quoted Strings” on page 3-14.

Constraint name Database Object Name CREATE TABLE

Cursor name Identifier DECLARE

For more information, see “Handling

Non-ASCII Characters” on page 6-2.

Database name Database Object Name CREATE DATABASE

Distinct data type

name (IDS Only)

Identifier,

Data Type

CREATE DISTINCT

Filename None LOAD

Function name (IDS

Only)

Database Object Name CREATE FUNCTION

Host variable None FETCH

For more information, see “Handling

Non-ASCII Characters” on page 6-2.

Index name Database Object Name CREATE INDEX

Opaque data type

name (IDS Only)

Identifier,

Data Type

CREATE OPAQUE TYPE

Operator-class

name (IDS Only)

Database Object Name CREATE OPCLASS

Partition

(IDS Only)

Identifier ALTER FRAGMENT

Routine name (IDS

Only)

Database Object Name CREATE FUNCTION

Routine name Database Object Name CREATE PROCEDURE

Role name

(IDS Only)

Identifier CREATE ROLE

Row data type (IDS

Only)

Identifier CREATE ROW TYPE

3-4 IBM Informix GLS User’s Guide

Table 3-1. SQL Identifiers That Support Non-ASCII Characters (continued)

Type of Identifier SQL Segment Example Context

Sequence name

(IDS Only)

Database Object Name CREATE SEQUENCE

SQL Statement

identifier

Identifier PREPARE

For more information, see “Handling

Non-ASCII Characters” on page 6-2.)

SPL routine name Database Object Name CREATE PROCEDURE

SPL routine

variables

None

(language-specific)

CREATE PROCEDURE FROM

Synonym Database Object Name CREATE SYNONYM

Table name Database Object Name CREATE TABLE

Trigger correlation

name

Database Object Name CREATE TRIGGER

Trigger name Database Object Name CREATE TRIGGER

View name Database Object Name CREATE VIEW

Qualifiers of SQL Identifiers

The SQL Segment column in Table 3-1 on page 3-4 refers to the segment in the

IBM Informix Guide to SQL: Syntax that describes the syntax of the identifier. In

many cases, the complete syntax can include other identifiers. For example, the

Database Object Name segment shows that the syntax of an index name can also

include a database name, a database server name, and an owner name, as well as the

unqualified name of the index.

Keep in mind that even if the simple, unqualified name of a database object

accepts multibyte characters, other identifiers in the fully-qualified name of that

object, such as database@server:owner.index, can include multibyte characters only if

they also appear in the previous table. In this example, the database qualifier within

the fully-qualified index name can include multibyte characters, but the identifier

of the database server that qualifies the index name cannot include multibyte

characters.

Owner Names

The owner name is the name of the user (or of a pseudo-user, for an owner like

informix that does not correspond to the login name of an actual user) who is

associated with the creation of a database object. The owner name qualifies the

identifier of the database object, which the owner typically can modify or drop. A

synonym for the term owner name is authorization identifier.

American National Standards Institute

The ANSI term for owner name is schema name. In an ANSI-compliant database, you

must specify the owner name as a qualifier of the identifier of any database object

that you do not own.

End of American National Standards Institute

Chapter 3. SQL Features 3-5

Non-ASCII characters are not valid in an owner name unless your operating

system supports those characters in user names.

UNIX Only

If your database server is on a UNIX system, the owner-name qualifier defaults to

the UNIX login ID. Most versions of UNIX, however, do not support multibyte

characters in UNIX login IDs.

Warning: You specify multibyte characters in an owner name at your own risk. If

a UNIX login ID is used to match the owner name, the match might fail

if the UNIX system does not support multibyte characters in login ID

names. In this situation, if you create a database object without explicitly

specifying an owner name, the owner name defaults to the UNIX login

ID. It will attempt to reference the same database object by qualifying its

identifier with an owner name that includes multibyte characters and

fail because a string of only single-byte characters cannot match any

string containing multibyte characters.

End of UNIX Only

 In some East Asian locales, an owner name can include multibyte characters when

you create database objects and specify an explicit owner. For example, you can

assign an owner name that contains multibyte characters when you specify the

owner of an index (within single quotes) in a CREATE INDEX statement. The

following statement declares an index with a multibyte owner name. In this

example, the owner name consists of three 2-byte characters:

CREATE INDEX ’A1A2B1B2C1C2’.myidx ON mytable (mycol)

The preceding example assumes that the client locale supports a multibyte code set

and that A1A2, B1B2, and C1C2 are valid characters in this code set.

Pathnames and Filenames

Valid pathnames and filenames are operating system-dependent; see “Handling

Non-ASCII Characters” on page 6-2. Multibyte characters in hard-coded

pathnames, for example, limits the portability of your application to operating

systems that can support multibyte filenames.

Extended Parallel Server

For Extended Parallel Server, only ASCII alphanumeric 7-bit characters are valid in

pathnames or in filenames.

End of Extended Parallel Server

Delimited Identifiers

A delimited identifier is an identifier that is enclosed in double quotes. When the

DELIMIDENT environment variable is set, the database server interprets strings of

characters in double (″) quotes as delimited identifiers and strings of characters in

single (’) quotes as data strings. This interpretation of single- and double-quotes

is compliant with the ANSI/ISO standard for SQL.

In a nondefault locale, you can specify valid non-ASCII characters of the current

code set in most delimited identifiers. You can put non-ASCII characters in a

delimited identifier if you can put non-ASCII characters in the undelimited form of

the same identifier.

3-6 IBM Informix GLS User’s Guide

For example, Table 3-1 on page 3-4 indicates that you can specify non-ASCII

characters in the declaration of an index name. Thus, you can include non-ASCII

characters in an undelimited index name, or in an index name that you have

enclosed in double quotes to make it a delimited identifier, as in the following SQL

statement:

CREATE INDEX "A1A2#B1B2" ON mytable (mycol)

For a description of delimited identifiers, see the Identifier segment in the IBM

Informix Guide to SQL: Syntax.

Valid Characters in Identifiers

In an SQL identifier, a letter can be any character in the alpha class that the locale

defines. The alpha class lists all characters that are classified as alphabetic. For

more information about character classification, see “The CTYPE Category” on

page A-3. In the default locale, the alpha class of the code set includes the ASCII

characters in the ranges a to z and A to Z. SQL identifiers can use these ASCII

characters wherever letter is valid in an SQL identifier.

In a nondefault locale, the alpha class of the locale also includes the ASCII

characters in the ranges a to z and A to Z. It might also include non-ASCII

characters, such as letters from non-Roman alphabets (such as Greek or Cyrillic) or

ideographic characters. For example, the alpha class of the Japanese UJIS code set

(in the Japanese UJIS locale) contains Kanji characters. When IBM Informix

products use a nondefault locale, SQL identifiers can use non-ASCII characters

wherever letter is valid in the syntax of an SQL identifier. A non-ASCII character is

also valid for letter as long as this character is listed in the alpha class of the locale.

The SQL statements in the following example use non-ASCII characters as letters

in SQL identifiers:

CREATE DATABASE marché;

CREATE TABLE équipement

 (

 code NCHAR(6),

 description NVARCHAR(128,10),

 prix_courant MONEY(6,2)

);

CREATE VIEW çà_va AS

 SELECT numéro, nom FROM abonnés;

In this example, the user creates the following database, table, and view with

French-language character names in a French locale (such as fr_fr.8859-1):

v The CREATE DATABASE statement declares the identifier marché, which

includes the 8-bit character é, for the database.

v The CREATE TABLE statement declares the identifier équipement, which

includes the 8-bit character é, for the table, and the identifiers code, description,

and prix_courant for the columns.

v The CREATE VIEW statement declares the identifier çà_va, which includes the

8-bit characters ç and à, for the view.

v The SELECT clause within the CREATE VIEW statement specifies the identifiers

numéro and nom as columns in the projection list, and the identifier abonnés

for the table in the FROM clause. Both numéro and abonnés include the 8-bit

character é.

Chapter 3. SQL Features 3-7

All of the identifiers in this example conform to the rules for specifying identifiers

within a French locale. For these names to be valid, the database locale must

support a code set that includes these French characters in its alpha class.

For the syntax and usage of identifiers in SQL statements, see the Identifier

segment in the IBM Informix Guide to SQL: Syntax.

Using Character Data Types

The locale affects the collation of built-in SQL character data types:

v Character types that use localized collation: NCHAR and NVARCHAR

v Character types that use code-set order for collation:

– CHAR

Dynamic Server

– LVARCHAR

End of Dynamic Server

– VARCHAR

– TEXT

The IBM Informix Guide to SQL: Reference describes these types. For information

about collation, see “Character Classes of the Code Set” on page 1-9.

Localized Collation of Character Data

The choice of locale can affect the collating order of NCHAR and NVARCHAR

character data types, as the following sections describe.

The NCHAR Data Type

The NCHAR data type stores character data in a fixed-length field as a string of

single-byte or multibyte letters, numbers, and other characters that are supported

by the code set of your database locale. The syntax of the NCHAR data type is as

follows.

��
 (1)

Data

Type

segment
 (1)

NCHAR

(

size

)

��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element Purpose

size Specifies the number of bytes in the column. The total length of an

NCHAR column cannot exceed 32,767 bytes. If you do not specify

size, the default is NCHAR(1).

 Because the length of this column is fixed, when the database server retrieves or

sends an NCHAR value, it transfers exactly size bytes of data. If the length of a

character string is shorter than size, the database server extends the string with

spaces to make up the size bytes. If the string is longer than size bytes, the database

server truncates the string.

3-8 IBM Informix GLS User’s Guide

Collating NCHAR Data: NCHAR is a locale-sensitive data type. The only

difference between NCHAR and CHAR data types is the collation order. The

database server sorts data in NCHAR columns in localized order, if the locale

defines a localized order. (For most operations, the database server collates data in

CHAR columns in code-set order, even if the locale defines a localized collation.)

Tip: The default locale (U.S. English) does not specify a localized order. Therefore,

the database server sorts NCHAR data in code-set order for this locale. When

you use the default locale, there is no difference between CHAR and NCHAR

data.

Handling NCHAR Data: A client application manipulate NCHAR data using the

CLIENT_LOCALE setting of the client system. The client application performs

code-set conversion of NCHAR data automatically if CLIENT_LOCALE differs

from DB_LOCALE, and DBNLS is set to 1.

Multibyte Characters with NCHAR: To store multibyte character data in an

NCHAR column, your database locale must support a code set that includes the

same multibyte characters. When you store multibyte characters, make sure to

calculate the number of bytes that are needed. The size parameter of the NCHAR

data type refers to the number of bytes of storage that is reserved for the data,

rather than to the number of logical characters.

Because one multibyte character requires several bytes for storage, the value of size

bytes does not indicate the number of characters that the column can hold. The

total number of multibyte characters that you can store in the column is less than

the total number of bytes that you can store in the column. Make sure to declare

the size value of the NCHAR column in such a way that it can hold enough

characters for your purposes.

Treating NCHAR Values as Numeric Values: If you plan to perform calculations

on numbers that are stored in a column, assign a numeric data type (such as

INTEGER or FLOAT) to that column. The description of the CHAR data type in

the IBM Informix Guide to SQL: Reference provides detailed reasons why you should

not store certain numeric values in CHAR values. The same reasons apply for

certain numeric values as NCHAR values. Treat only numbers that have leading

zeros (such as postal codes) as NCHAR data types. Use NCHAR only if you need

to sort the numeric values in localized order.

Nonprintable Characters with NCHAR: An NCHAR value can include tabs,

spaces, and other white space and nonprintable characters. Nonprintable NCHAR

and CHAR values are entered, displayed, and treated similarly.

The NVARCHAR Data Type

The NVARCHAR data type stores character data in a variable-length field. Data

can be a string of single-byte or multibyte letters, numbers, and other characters

that are supported by the code set of your database locale.

The syntax of the NVARCHAR data type is as follows:

��
 (1)

Data

Type

segment
 , 0

NVARCHAR

(

max

,

reserve

)

��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Chapter 3. SQL Features 3-9

Element Purpose

max Specifies the maximum number of bytes that can be stored in the

column.

reserve Specifies the minimum number of bytes that can be stored in the

column.

 You must specify max of the NVARCHAR column. The size of this parameter

cannot exceed 255 bytes.

When you place an index on an NVARCHAR column, the maximum size is 254

bytes. You can store shorter, but not longer, character strings than the value that

you specify.

Specify the reserve parameter when you initially intend to insert rows with data

values having few or no characters in this column but later expect the data to be

updated with longer values. This value can range from 0 to 255 bytes but must be

less than the max size of the NVARCHAR column. If you do not specify a

minimum space value, the default value of reserve is 0.

Although use of NVARCHAR economizes on space that is used in a table, it has

no effect on the size of an index. In an index that is based on an NVARCHAR

column, each index key has a length equal to max bytes, the maximum size of the

column.

The database server does not strip an NVARCHAR object of any user-entered

trailing white space, nor does it pad the NVARCHAR object to the full length of

the column. However, if you specify a minimum reserved space (reserve), and some

of the data values are shorter than that amount, some of the space that is reserved

for rows goes unused.

Collating NVARCHAR Data: The NVARCHAR data type is a locale-sensitive

data type. The only difference between NVARCHAR and VARCHAR data types is

the collation order. The database server collates data in NVARCHAR columns in

localized order, if the locale defines a localized order. For most operations, the

database server collates data in CHAR columns in code-set order.

Tip: The default locale (U.S. English) does not specify a localized order. Therefore,

the database server sorts NVARCHAR data in code-set order. When you use

the default locale, there is no difference between VARCHAR and NVARCHAR

data.

Handling NVARCHAR Data: Within a client application, always manipulate

NVARCHAR data in the CLIENT_LOCALE of the client application. The client

application performs code-set conversion of NVARCHAR data automatically if

CLIENT_LOCALE differs from DB_LOCALE. (For information about code-set

conversion, see “Performing Code-Set Conversion” on page 1-27.)

Multibyte Characters with NVARCHAR: To store multibyte character data in an

NVARCHAR column, your database locale must support a code set with these

same multibyte characters. When you store multibyte characters, make sure to

calculate the number of bytes that are needed. The max parameter of the

NVARCHAR data type refers to the maximum number of bytes that the column

can store.

3-10 IBM Informix GLS User’s Guide

Because one multibyte character uses several bytes for storage, the value of max

bytes does not indicate the number of logical characters that the column can hold.

The total number of multibyte characters that you can store in the column is less

than the total number of bytes that the column can store. Make sure to declare the

max value of the NVARCHAR column so that it can hold enough multibyte

characters for your purposes.

Nonprintable Characters with NVARCHAR: An NVARCHAR value can include

tabs, spaces, and nonprintable characters. Nonprintable NVARCHAR characters are

entered, displayed, and treated in the same way as nonprintable VARCHAR

characters.

Tip: The database server interprets the null character (ASCII 0) as a C null

terminator. In NVARCHAR data, the null terminator acts as a

string-terminator character.

Storing Numeric Values in an NVARCHAR Column: The database server does

not pad a numeric value in a NVARCHAR column with trailing blanks up to the

maximum length of the column. The number of digits in a numeric NVARCHAR

value is the number of characters that you need to store that value. For example,

the database server stores a value of 1 in the mytab table when it executes the

following SQL statements:

CREATE TABLE mytab (col1 NVARCHAR(10));

INSERT INTO mytab VALUES (1);

Performance Considerations

The NCHAR data type is similar to the CHAR data type, and NVARCHAR is

similar to the VARCHAR data type. These data types differ in two ways:

v The database server collates NCHAR and NVARCHAR column values in

localized order.

v The database server collates CHAR and VARCHAR column values in code-set

order.

Localized collation depends on the sorting rules that the locale defines, not simply

on the computer representation of the character (the code points). This difference

means that the database server might perform complex processing to compare and

collate NCHAR and NVARCHAR data. Therefore, access to NCHAR data might be

slower with respect to comparison and collation than to access CHAR data.

Similarly, access to data in an NVARCHAR column might be slower with respect

to comparison and collation than access to the same data in a VARCHAR column.

Assess whether your character data needs to take advantage of localized order for

collation and comparison. If code-set order is adequate, use the CHAR,

LVARCHAR, and VARCHAR data types.

Other Character Data Types

The choice of locale can affect the following character data types, which are

individually described in sections that follow:

v CHAR

v VARCHAR

Dynamic Server

Chapter 3. SQL Features 3-11

v LVARCHAR

End of Dynamic Server

v TEXT

v CLOB

The CHAR Data Type

The CHAR data type stores character data in a fixed-length field. Data can be a

string of single-byte or multibyte letters, numbers, and other characters that are

supported by the code set of your database locale.

This list summarizes how the choice of a locale affects the CHAR data type:

v The size of a CHAR column is byte-based, not character-based.

For example, if you define a CHAR column as CHAR(10), the column has a

fixed length of 10 bytes, not 10 characters. If you want to store multibyte

characters in a CHAR column, keep in mind that the total number of characters

you can store in the column might be less than the total number of bytes you

can store in the column. Make sure to define the byte size of the CHAR column

so that it can hold enough characters for your purposes.

v You can enter single-byte or multibyte characters in a CHAR column.

The database locale must support the characters that you want to store in CHAR

columns.

v The database server sorts CHAR columns in code-set order, not in localized

order.

v Within a client application, always manipulate CHAR data in the

CLIENT_LOCALE of the client application.

The client application performs code-set conversion of CHAR data automatically

if CLIENT_LOCALE differs from DB_LOCALE.

The VARCHAR Data Type

The VARCHAR data type stores character strings of up to 255 bytes in a

variable-length field. Data can consist of letters, numbers, and symbols.

CHARACTER VARYING is handled exactly the same as VARCHAR.

The following list summarizes how the choice of a locale affects the VARCHAR

data type:

v The maximum size and minimum reserved space for a VARCHAR column are

byte based, not character based.

For example, if you define a VARCHAR column as VARCHAR(10,6), the column

has a maximum length of 10 bytes and a minimum reserved space of 6 bytes. If

you want to store multibyte characters in a VARCHAR column, keep in mind

that the total number of characters you can store in the column might be less

than the total number of bytes you can store in the column. Make sure to define

the maximum byte size of the VARCHAR column so that it can hold enough

characters for your purposes.

v You can enter single-byte or multibyte characters in a VARCHAR column.

The database locale must support the characters that you want to store in

VARCHAR columns.

v The database server sorts VARCHAR columns in code-set order, not in localized

order.

v Within a client application, always manipulate VARCHAR data in the

CLIENT_LOCALE of the client application.

3-12 IBM Informix GLS User’s Guide

The client application performs code-set conversion of VARCHAR data

automatically if CLIENT_LOCALE differs from DB_LOCALE.

The LVARCHAR Data Type (IDS)

The LVARCHAR data type can store character strings of up to 32,739 bytes in a

variable-length field. If you specify no maximum size in its declaration, the default

upper size limit is 2048 bytes. Data values can include letters, numbers, symbols,

white space, and unprintable characters.

LVARCHAR is similar to the VARCHAR data type in several ways:

v Strings of the LVARCHAR data type are collated in code-set order.

v Client applications perform code-set conversion on LVARCHAR data.

v LVARCHAR supports the built-in SQL length functions. (See “Using SQL Length

Functions” on page 3-28.)

v LVARCHAR data type declarations can specify a maximum size.

Unlike VARCHAR, however, LVARCHAR has no reserved size parameter, and data

strings in LVARCHAR columns can be longer than the VARCHAR limit of 255

bytes.

The database server also uses LVARCHAR to represent the external format of

opaque data types. In I/O operations of the database server, LVARCHAR data

values have no upper limit on their size, apart from file size restrictions or limits of

your operating system or hardware resources.

The TEXT Data Type

The TEXT data type stores any kind of text data. TEXT columns typically store

memos, manual chapters, business documents, program source files, and other

types of textual information. The following list summarizes how the choice of a

locale affects the TEXT data type:

v The database server stores character data in a TEXT column in the code set of

the database locale.

v You can enter single-byte or multibyte characters in a TEXT column.

The database locale should support the characters that you want to store in

TEXT columns. However, you can put any type of character in a TEXT column.

v Text columns do not have an associated collation order.

The database server does not build indexes on TEXT columns. Therefore, it does

not perform collation tasks on these columns.

v Within a client application, always manipulate TEXT data in the

CLIENT_LOCALE of the client application.

The client application performs code-set conversion of TEXT data automatically

if CLIENT_LOCALE differs from DB_LOCALE.

Handling Character Data

The GLS feature allows you to put non-ASCII characters (including multibyte

characters) in the following elements of an SQL statement:

v Quoted strings

v Comments

v Column substrings

Chapter 3. SQL Features 3-13

v TRIM function arguments

Dynamic Server

v UPPER, LOWER, and INITCAP function arguments

End of Dynamic Server

Specifying Quoted Strings

You use quoted strings in a variety of SQL statements, particularly data

manipulation statements such as SELECT and INSERT. A quoted string is a string

of consecutive characters that is delimited by quotation marks. The quotation

marks can be single quotes or double quotes. If the DELIMIDENT environment

variable is set, however, the database server interprets a string of characters in

double quotes as a delimited identifier rather than as a string. For more

information about delimited identifiers, see “Non-ASCII Characters in Identifiers”

on page 3-3.

When you use a nondefault locale, you can use any characters in the code set of

your locale within a quoted string. If the locale supports a code set with non-ASCII

characters, you can use these characters in a quoted string. In the following

example, the user inserts column values that include multibyte characters in the

table mytable:

INSERT INTO mytable

 VALUES (’A1A2B1B2abcd’, ’123X1X2Y1Y2’, ’efgh’)

In this example, the first quoted string includes the multibyte characters A1A2 and

B1B2. The second quoted string includes the multibyte characters X1X2 and Y1Y2.

The third quoted string contains only single-byte characters. This example assumes

that the locale supports a multibyte code set with the A1A2, B1B2, X1X2, and Y1Y2

characters.

For a description of quoted strings, see the Quoted String segment in the IBM

Informix Guide to SQL: Syntax.

Specifying Comments

To use comments after SQL statements, introduce the comment text with one of the

following comment indicators:

American National Standards Institute

v The double-hyphen (--) complies with the ANSI SQL standard.

End of American National Standards Institute

Informix SQL Extension

v Braces ({ }) are an Informix extension to the ANSI standard.

End of Informix SQL Extension

In a nondefault locale, you can use any characters in the code set of your locale

within a comment. If the locale supports a code set with non-ASCII characters, you

can use these characters in an SQL comment.

3-14 IBM Informix GLS User’s Guide

In the following example, the user inserts a column value that includes multibyte

characters in the table mytable:

EXEC SQL insert into mytable

 values (’A1A2B1B2abcd’, ’123’) -- A1A2 and B1B2 are

 multibyte characters.

In this example, the SQL comment includes the multibyte characters A1A2 and

B1B2. This example assumes that the locale supports a multibyte code set that

includes the A1A2 and B1B2 characters. For more information on SQL comments

and comment indicators, see the IBM Informix Guide to SQL: Syntax.

Specifying Column Substrings

In a query (or in any SQL statement containing an embedded SELECT statement),

you can use bracket ([]) symbols to specify that only a subset of the data in a

column of a character data type is to be retrieved. A column expression that

includes brackets to signify a subset of the data in the column is known as a

column substring. The syntax of a column substring is as follows.

��
 (1)

Expression

segment

column

[

first

,

last

]

��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element Purpose

column Identifier of a column within a database table or view

first. last Positions of the first and the last byte (respectively) of the retrieved

substring

Column Substrings in Single-Byte Code Sets

Suppose that you want to retrieve the customer_num column and the seventh

through ninth bytes of the lname column from the customer table. To perform this

query, use a column substring for the lname column in your SELECT statement, as

follows:

SELECT customer_num, lname[7,9] as lname_subset

 FROM customer WHERE lname = ’Albertson’

If the lname column value is Albertson, the query returns these results.

 customer_num lname_subset

114 son

Because the locale supports a single-byte code set, the preceding query seems to

return the seventh through ninth characters of the name Albertson. Column

substrings, however, are byte based, and the query returns the seventh through

ninth bytes of the name. Because one byte is equal to one character in single-byte

code sets, the distinction between characters and bytes in column substrings is not

apparent in these code sets.

Column Substrings in Multibyte Code Sets

For multibyte code sets, column substrings return the specified number of bytes,

not the number of characters. If a character column multi_col contains a string of

three 2-byte characters, this 6-byte string can be represented as follows:

Chapter 3. SQL Features 3-15

A1A2B1B2C1C2

Suppose that a query specified this substring from the multi_col column:

multi_col[1,2]

The query returns the following result:

A1A2

The returned substring consists of 2 bytes (1 character), not 2 characters.

To retrieve the first two characters from the multi_col column, specify a substring

in which first is the position of the first byte in the first character and last is the

position of the last byte in the second character. For the 6-byte string A1A2B1B2C1C2,

this g expression specifies the substring in your query:

multi_col[1,4]

The following result is returned:

A1A2B1B2

The substring that the query returns consists of the first 4 bytes of the column

value, representing the first two logical characters in the column.

Partial Characters in Column Substrings

A multibyte character might consist of 2, 3, or 4 bytes. A multibyte character that

has lost one or more of its bytes so that the original intended meaning of the

character is lost is called a partial character.

Unless prevented, a column substring might truncate a multibyte character or split

it up in such a manner that it no longer retains the original sequence of bytes. A

partial character might be generated when you use column subscript operators on

columns that contain multibyte characters. Suppose that a user specifies the

following column substring for the multi_col column where the value of the string

in multi_col is A1A2B1B2C1C2:

multi_col[2,5]

The user requests the following bytes in the query: A2B1B2C1. If the database server

returned this column substring to the user, however, the first and third logical

characters in the column would be truncated.

Avoidance in a Multibyte Code Set: Informix database servers do not allow

partial characters to occur. The GLS feature prevents the database server from

returning the specified range of bytes literally when this range contains partial

characters. If your database locale supports a multibyte code set and you specify a

particular column substring in a query, the database server replaces any truncated

multibyte characters with single-byte white space characters.

For example, suppose the multi_col column contains the string A1A2A3A4B1B2B3B4,

and you execute the following SELECT statement:

SELECT multi_col FROM tablename WHERE multi_col[2,4] = ’A1A2B1B2’

The query returns no rows because the database server converts the substring

multi_col[2,4], namely the string A2A3A4, to three single-byte blank spaces (sss).

The WHERE clause specifies this search condition:

WHERE ’sss’ = ’A1A2A3’

3-16 IBM Informix GLS User’s Guide

Because this condition is never true, the query retrieves no matching rows.

Informix database servers replace partial characters in each individual substring

operation, even when they are concatenated.

For example, suppose the multi_col column contains A1A2B1B2C1C2D1D2, and the

WHERE clause contains the following condition:

multi_col[2,4] | multi_col[6,8]

The query does not return any rows because the result of the concatenation

(A2B1B2C2D1D2) contains two partial characters, A2 and C2. The Informix database

server converts these partial characters to single-byte blank spaces and creates the

following WHERE clause condition:

WHERE ’sB1B2sD1D2’ = ’A1A2B1B2’

This condition is also never true, so the query retrieves no matching rows.

Errors Involving Partial Characters

Partial characters violate the relational model if the substrings strings can be

processed or presented to users in any way that can prevent the concatenation of

the substrings from reconstructing the original logical string.

This can occur when a multibyte character has a substring that is a valid character

by itself. For example, suppose a multibyte code set contains a 4-byte character,

A1A2A3A4, that represents the digit 1 and a 3-byte character, A2A3A4, that

represents the digit 6. Suppose also that your locale is using this multibyte code set

when you execute the following query:

SELECT multi_col FROM tablename WHERE multi_col[2,4] = ’A2A3A4’

The database server interprets multi_col[2,4] as the valid 3-byte character (a

multibyte 6) instead of a substring of the valid 4-byte character (’sss’).

Therefore, the WHERE clause contains the following condition:

WHERE ’6’ = ’6’

Partial characters do not occur in single-byte code sets because each character is

stored in a single byte. If the database locale supports a single-byte code set, and

you specify a column substring in a query, the query returns exactly the requested

subset of data; no characters are replaced with white space.

Partial Characters in an ORDER BY Clause

Partial characters might also create a problem when you specify column substrings

in an ORDER BY clause of a SELECT statement.

The syntax for specifying column substrings in the ORDER BY clause is as follows.

��
 (1)

SELECT

statement

ORDER BY

column

[

first

,

last

]

��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element Purpose

column Name of a column in the specified table or view.

Chapter 3. SQL Features 3-17

first. last Positions of the first and last byte (respectively) of the substring

 The query results are sorted by the values contained in this column.

Extended Parallel Server

Any column or expression specified in the ORDER BY clause must be listed

explicitly or implicitly in the SELECT list of the Projection clause.

End of Extended Parallel Server

 If the locale supports a multibyte code set whose characters are all of the same

length, you can use column substrings in an ORDER BY clause. The more typical

scenario, however, is that your multibyte code set contains characters with varying

lengths. In this case, you might not find it useful to specify column substrings in

the ORDER BY clause.

For example, suppose that you wish to retrieve all the rows of the multi_data

table, and sort the results according to a substring defined as the fourth through

sixth characters of the multi_chars column, using this query:

SELECT * FROM multi_data ORDER BY multi_chars[7,12]

If the locale supports a multibyte code set whose characters are all 2 bytes in

length, you know that the fourth character in the column begins in byte position 7,

and the sixth character in the column ends in byte position 12. The preceding

SELECT statement does not generate partial characters.

If the multibyte code set contains a mixture of single-byte characters, 2-byte

characters, and 3-byte characters, however, the substring multi_chars[7,12] might

create partial characters. In this case, you might get unexpected results when you

specify a column substring in the ORDER BY clause.

For information on the collation of different types of character data in the ORDER

BY clause, see “The ORDER BY Clause” on page 3-21. For the complete syntax and

usage of the ORDER BY clause, see the SELECT statement in the IBM Informix

Guide to SQL: Syntax.

Tip: A partial character might also be generated when a SQL API copies multibyte

data from one buffer to another. For more information, see “Generating

Non-ASCII Filenames” on page 6-3.

Avoidance in TEXT and BYTE Columns: Partial characters are not a problem

when you specify a column substring for a column of the TEXT or BYTE data type.

The database server avoids partial characters in TEXT and BYTE columns in the

following way:

v Because the database server interprets a BYTE column as a series of bytes, not

characters, the splitting of multibyte characters as a result of the byte range that

a column substring specifies is not an issue.

A substring of a BYTE column returns the exact range of bytes that is specified

and does not replace any bytes with white space characters.

v The database server interprets a TEXT value as a character string.

A substring from a TEXT column returns the exact range of bytes that is

specified. Attempts to resolve partial characters in TEXT data are resource

intensive, but the database server does not replace any bytes with white space.

For more information, see “The TEXT Data Type” on page 3-13.

3-18 IBM Informix GLS User’s Guide

Warning: The processing and interpretation of TEXT and BYTE data are the

responsibility of the client application, which must handle the possibility

of partial characters in these operations.

Specifying Arguments to the TRIM Function

The TRIM function is a built-in SQL function that removes leading or trailing pad

characters from character strings of 255 or fewer characters. By default, this pad

character is ASCII 32, the blank space. If your locale supports a code set that

defines a different white space character, TRIM does not remove this locale-specific

blank space from the front or back of a string. If you specify the LEADING,

TRAILING, or BOTH keywords for TRIM, you can specify a different pad

character.

You cannot, however, specify a non-ASCII character as a pad character, even if

your locale supports a code set that defines the non-ASCII character.

Using Case-Insensitive Search Functions (IDS)

The SQL search functions UPPER, LOWER, and INITCAP support GLS. They

accept multibyte characters in character-type source strings and operate on them.

The returned data type is the same as the type of the source string:

v UPPER converts every letter in a string to uppercase.

v LOWER converts every letter in a string to lowercase.

v INITCAP changes the first letter of a word or series of words to uppercase.

For complete information about these search functions, see the IBM Informix Guide

to SQL: Syntax.

Collating Character Data

Collation is the process of sorting data values in columns that have character data

types. For an explanation of collation order and a discussion of the two methods of

sorting character data (code-set order and localized order), see “Character Classes

of the Code Set” on page 1-9.

By default, the database server sorts strings according to the collation that the

DB_LOCALE setting implies, and client applications sort according to the

CLIENT_LOCALE setting, if this is different from the DB_LOCALE setting.

Dynamic Server

The SET COLLATION statement of Dynamic Server can specify a localized

collation different from the DB_LOCALE setting for the current session.

See the IBM Informix Guide to SQL: Syntax for the syntax of this statement.

Database objects that sort strings, such as indexes or triggers, use the collation that

was in effect at the time of their creation when they sort NCHAR or NVARCHAR

values, if this is different from the DB_LOCALE setting.

End of Dynamic Server

 The collation order of the database server affects SQL statement that perform

sorting operations, including CREATE INDEX and SELECT statements.

Chapter 3. SQL Features 3-19

Collation Order in CREATE INDEX

The CREATE INDEX statement creates an index on one or more columns of a

table. The ASC and DESC keywords in the CREATE INDEX statement control

whether the index keys are stored in ascending or descending order.

When you use a nondefault locale, the following locale-specific considerations

apply to the CREATE INDEX statement:

v The index keys are stored in code-set order when you create an index on

columns of these data types:

– CHAR

Dynamic Server

– LVARCHAR

End of Dynamic Server

– VARCHAR
For example, if the database stores its database locale as the Japanese SJIS locale

(ja_jp.sjis), index keys for a CHAR column in any table of the database are

stored in Japanese SJIS code-set order.

v When you create an index on an NCHAR or NVARCHAR column, the index

keys are stored in localized order.

For example, if the database uses the Japanese SJIS locale, index keys for an

NCHAR column in any table of the database are stored in the localized order

that the ja_jp.sjis locale defines.

Dynamic Server

If the SET COLLATION statement specifies a database locale with localized

collation that is different from the DB_LOCALE setting, any indexes (and any

check constraints) that you subsequently create in the same session always use that

localized collation for sorting NCHAR or NVARCHAR strings.

End of Dynamic Server

 If you use the default locale (U.S. English), the index keys are stored in the

code-set order (in ascending or descending order) of the default code set regardless

of the data type of the character column. Because the default locale does not define

a localized order, the database server that uses this locale (or any other locale that

does not define a localized collating order) sorts strings from columns of the

following data types in code-set order:

v CHAR

Dynamic Server

v LVARCHAR

End of Dynamic Server

v NCHAR

v NVARCHAR

v VARCHAR

3-20 IBM Informix GLS User’s Guide

Collation Order in SELECT Statements

The SELECT statement performs a queries. Collation order affects the following

parts of the SELECT statement:

v The ORDER BY clause

v The relational, BETWEEN, and IN operators of the WHERE clause

v The MATCHES and LIKE conditions of the WHERE clause

The ORDER BY Clause: The ORDER BY clause sorts retrieved rows by the

values that are contained in a column or set of columns. When this clause sorts

character columns, the results of the sort depend on the data type of the column,

as follows:

v Columns that are sorted in code-set order:

– CHAR

Dynamic Server

– LVARCHAR

End of Dynamic Server

– VARCHAR
v NCHAR and NVARCHAR columns are sorted in localized order.

Assume that you use a nondefault locale for the client and database locale, and

you make a query against the table called abonnés. This SELECT statement

specifies three columns of CHAR data type in the select list: numéro (employee

number), nom (last name), and prénom (first name).

SELECT numéro,nom,prénom

 FROM abonnés

 ORDER BY nom;

The statement sorts the query results by the values that are contained in the nom

column. Because the nom column that is specified in the ORDER BY clause is a

CHAR column, the database server sorts the query results in the code-set order.

As this table shows, names that begin with uppercase letters come before names

beginning with lowercase letters, and names that begin with an accented letter

(Ålesund, Étaix, Ötker, and Øverst) are at the end of the list.

Chapter 3. SQL Features 3-21

Table 3-2. Data Set for Code-Set Order of the abonnés Table

numéro nom prénom

13612 Azevedo Edouardo Freire

13606 Dupré Michèle Françoise

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13609 Tiramisù Paolo Alfredo

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13601 Ålesund Sverre

13608 Étaix Émile

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

Results of the query is different, however, if the numéro, nom, and prénom

columns of the abonnés table are defined as NCHAR rather than CHAR.

Suppose the nondefault locale defines a localized order that collates the data as the

following table shows. This localized order defines equivalence classes for

uppercase and lowercase letters and for unaccented and accented versions of the

same letter.

3-22 IBM Informix GLS User’s Guide

Table 3-3. Data Set for Localized Order of the abonnés Table

numéro nom prénom

13612 Azevedo Edouardo Freire

13601 Ålesund Sverre

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13606 Dupré Michèle Françoise

13608 Étaix Émile

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

13609 Tiramisù Paolo Alfredo

The same SELECT statement now returns the query results in localized order

because the nom column that the ORDER BY clause specifies is an NCHAR

column.

The SELECT statement supports use of a column substring in an ORDER BY

clause. However, you need to ensure that this use for column substrings works

with the code set that your locale supports. For more information, see “Partial

Characters in Column Substrings” on page 3-16.

Logical Predicates in a WHERE Clause: The WHERE clause specifies search

criteria and join conditions on the data that you want to select.Collation rules affect

the WHERE clause when the expressions in the condition are column expressions

with character data types and the search condition is one of the following logical

predicates:

v Relational-operator condition

v BETWEEN condition

v IN condition

v EXISTS and ANY conditions

Relational-Operator Conditions: The following SELECT statement assumes a

nondefault locale. It uses the less than (<) relational operator to specify that the

only rows are to be retrieved from the abonnés table are those in which the value

of the nom column is less than Hammer.

SELECT numéro,nom,prénom

 FROM abonnés

 WHERE nom < ’Hammer’;

If nom is a CHAR column, the database server uses code-set order of the default

code set to retrieve the rows that the WHERE clause specifies. The output shows

that this SELECT statement retrieves only two rows.

Chapter 3. SQL Features 3-23

numéro nom prénom

13612 Azevedo Edouardo Freire

13606 Dupré Michèle Françoise

These two rows are those less than Hammer in the code-set-ordered data set shown

in Table 3-2 on page 3-22.

However, if nom is an NCHAR column, the database server uses localized order to

sort the rows that the WHERE clause specifies. The following example of output

shows that this SELECT statement retrieves six rows.

 numéro nom prénom

13612 Azevedo Edouardo Freire

13601 Ålesund Sverre

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13606 Dupré Michèle Françoise

13608 Étaix Émile

These six rows are those less than Hammer in the localized-order data set shown in

Table 3-3 on page 3-23.

BETWEEN Conditions: The following SELECT statement assumes a nondefault

locale and uses a BETWEEN condition to retrieve only those rows in which the

values of the nom column are in the inclusive range of the values of the two

expressions that follow the BETWEEN keyword:

SELECT numéro,nom,prénom

 FROM abonnés

 WHERE nom BETWEEN ’A’ AND ’Z’;

The query result depends on whether nom is a CHAR or NCHAR column. If nom

is a CHAR column, the database server uses the code-set order of the default code

set to retrieve the rows that the WHERE clause specifies. The following example of

output shows the query results.

 numéro nom prénom

13612 Azevedo Edouardo Freire

13606 Dupré Michèle Françoise

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13609 Tiramisù Paolo Alfredo

3-24 IBM Informix GLS User’s Guide

Because the database server uses the code-set order for the nom values, as

Table 3-2 on page 3-22 shows, these query results do not include the following

rows:

v Rows in which the value of nom begins with a lowercase letter: da Sousa and di

Girolamo

v Rows with an accented letter: Ålesund, Étaix, Ötker, and Øverst

However, if nom is an NCHAR column, the database server uses localized order to

sort the rows. The following output shows the query results.

 numéro nom prénom

13612 Azevedo Edouardo Freire

13601 Ålesund Sverre

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13606 Dupré Michèle Françoise

13608 Étaix Émile

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

13609 Tiramisù Paolo Alfredo

Because the database server uses localized order for the nom values, these query

results include rows in which the value of nom begins with a lowercase letter or

accented letter.

IN Conditions: An IN condition is satisfied when the expression to the left of the

IN keyword is included in the parenthetical list of values to the right of the

keyword. This SELECT statement assumes a nondefault locale and uses an IN

condition to retrieve only those rows in which the value of the nom column is any

of the following: Azevedo, Llanero, or Oatfield.

SELECT numéro,nom,prénom

 FROM abonnés

 WHERE nom IN (’Azevedo’, ’Llanero’, ’Oatfield’);

The query result depends on whether nom is a CHAR or NCHAR column. If nom

is a CHAR column, the database server uses code-set order, as Table 3-2 on page

3-22 shows. The database server retrieves rows in which the value of nom is

Azevedo, but not rows in which the value of nom is azevedo or Åzevedo because the

characters A, a, and Å are not equivalent in the code-set order. The query also

returns rows with the nom values of Llanero and Oatfield.

However, if nom is an NCHAR column, the database server uses localized order,

as Table 3-3 on page 3-23 shows, to sort the rows. If the locale defines A, a, and Å as

Chapter 3. SQL Features 3-25

equivalent characters in the localized order, the query returns rows in which the

value of nom is Azevedo, azevedo, or Åzevedo. The same selection rule applies to

the other names in the parenthetical list that follows the IN keyword.

Comparisons with MATCHES and LIKE Conditions

Collation rules also affect the WHERE clause when the expressions in the condition

are column expressions with character data types and the search condition is one

of the following conditions:

v MATCHES condition

v LIKE condition

MATCHES Condition: A MATCHES condition tests for matching character

strings. The condition is true, or satisfied, when the value of the column to the left

of the MATCHES keyword matches the pattern that a quoted string specifies to the

right of the MATCHES keyword. You can use wildcard characters in the string. For

example, you can use brackets to specify a range of characters. For more

information about MATCHES, see the IBM Informix Guide to SQL: Syntax.

When a MATCHES expression does not list a range of characters in the string, it

specifies a literal match. For literal matches, the data type of the column determines

whether collation considerations come into play, as follows:

v For CHAR and VARCHAR columns, no collation considerations come into play.

v For NCHAR and NVARCHAR columns, collation considerations might come

into play, because these data types use localized order and the locale might

define equivalence classes of collation.

For example, the localized order might specify that a and A are an equivalent

class. That is, they have the same rank in the collation order. For more

information about localized order, see “Localized Order” on page 1-10.

The examples in the following table illustrate the different results that CHAR and

NCHAR columns produce when a user specifies the MATCHES keyword without

a range in a SELECT statement. These examples assume use of a nondefault locale

that defines A and a in an equivalence class. It also assumes that col1 is a CHAR

column and col2 is an NCHAR column in table mytable.

 Query Data Type Query Results

SELECT * FROM mytable

WHERE col1 MATCHES ’art’

CHAR All rows in which column col1 contains the

value ’art’ with a lowercase a

SELECT * FROM mytable

WHERE col2 MATCHES ’art’

NCHAR All rows in which column col2 contains the

value ’art’ or ’Art’

When you use the MATCHES keyword to specify a range, collation considerations

come into play for all columns with character data types. When the column to the

left of the MATCHES keyword is an NCHAR, NVARCHAR, CHAR, VARCHAR, or

(for Dynamic Server only) LVARCHAR data type, and the string operand of the

MATCHES keyword includes brackets ([]) to specify a range, sorting follows a

localized order, if the locale defines one.

Important: When the database server determines the characters that fall within a

range with the MATCHES operator, it uses the localized order, if

DB_LOCALE or SET COLLATION has specified one, even for CHAR,

LVARCHAR, and VARCHAR columns. This behavior is an exception to

the rule that the database server uses code-set order for all operations

3-26 IBM Informix GLS User’s Guide

on CHAR, LVARCHAR and VARCHAR columns, and localized order

(if one is defined) for sorting operations on NCHAR and NVARCHAR

columns.

Some simple examples show how the database server treats NCHAR,

NVARCHAR, LVARCHAR, CHAR, and VARCHAR columns when you use the

MATCHES keyword with a range in a SELECT statement. Suppose that you want

to retrieve from the abonnés table the employee number, first name, and last name

for all employees whose last name nom begins in the range of characters E through

P. Also assume that the nom column is an NCHAR column. The following SELECT

statement uses a MATCHES condition in the WHERE clause to pose this query:

SELECT numéro,nom,prénom

 FROM abonnés

 WHERE nom MATCHES ’[E-P]*’

 ORDER BY nom;

The rows for Étaix, Ötker, and Øverst appear in the query result because, in the

localized order, as Table 3-3 on page 3-23 shows, the accented first letter of each

name falls within the E through P MATCHES range for the nom column.

 numéro nom prénom

13608 Étaix Émile

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

If nom is a CHAR column, the query result is exactly the same as when nom was

an NCHAR column. The database server always uses localized order to determine

what characters fall within a range, regardless of whether the column is CHAR or

NCHAR.

LIKE Condition: A LIKE condition also tests for matching character strings. As

with the MATCHES condition, the LIKE condition is true, or satisfied, when the

value of the column to the left of the LIKE keyword matches the pattern that the

quoted string specifies to the right of the LIKE keyword. You can use only certain

symbols as wildcards in the quoted string. For more information about LIKE, see

the IBM Informix Guide to SQL: Syntax.

The LIKE condition can specify only a literal match. For literal matches, the data

type of the column determines whether collation considerations come into play, as

follows:

v For CHAR and VARCHAR columns, no collation considerations come into play.

v For NCHAR and NVARCHAR columns, collation considerations might come

into play because these data types use localized order, and the locale might

define equivalence classes of collation. For example, the localized order might

specify that a and A are an equivalent class.

Chapter 3. SQL Features 3-27

The LIKE keyword does not support ranges of characters. That is, you cannot use

bracketed characters to specify a range in LIKE conditions.

Wildcard Characters in LIKE and MATCHES Conditions: IBM Informix products

support the following ASCII characters as wildcard characters in the MATCHES

and LIKE conditions.

 Condition Wildcard Characters

LIKE _ %

MATCHES * ? [] ^ -

For CHAR and VARCHAR data, the database server performs byte-by-byte

comparison for pattern matching in the LIKE and MATCHES conditions. For

NCHAR and NVARCHAR data, the database server performs pattern matching in

the LIKE and MATCHES conditions based on logical characters, not bytes.

Therefore, the underscore (_) wildcard of the LIKE clause and the ? (question

mark) wildcard of the MATCHES clause match any one single-byte or multibyte

character, as the following table shows.

 Condition Quoted String Column Value Result

LIKE ’ab_d’ ’abcd’ True

LIKE ’ab_d’ ’abA1A2d’ True

MATCHES ’ab?d’ ’abcd’ True

MATCHES ’ab?d’ ’abA1A2d’ True

The database server treats any multibyte character as a literal character. To tell the

database server to interpret a wildcard character as its literal meaning, you must

precede the character with an escape character. You must use single-byte characters

as escape characters; the database server does not recognize use of multibyte

characters for this purpose. The default escape character is the backslash (\)

symbol.

The following MATCHES condition returns a TRUE result for the column value that

is shown.

 Condition Quoted String Column Value Result

MATCHES ’ab\?d’ ’ab?d’ True

Using SQL Length Functions

You can use SQL length functions in the SELECT statement and other data

manipulation statements. Length functions return the length of a column, string, or

variable in bytes or characters.

The choice of locale affects the following three SQL length functions:

v The LENGTH function

v The OCTET_LENGTH function

v The CHAR_LENGTH (or CHARACTER_LENGTH) function

For the syntax of these functions, see the Expression segment in the IBM Informix

Guide to SQL: Syntax.

3-28 IBM Informix GLS User’s Guide

The LENGTH Function

The LENGTH function returns the number of bytes of data in character data.

However, the behavior of the LENGTH function varies with the type of argument

that the user specifies. The argument can be a quoted string, a character-type

column other than the TEXT data type, a TEXT column, a host variable, or an SPL

routine variable.

The following table shows how the LENGTH function operates on each of these

argument types. The Example column in this table uses the symbol s to represent a

single-byte trailing white space character.

This table assumes that all arguments consist of single-byte characters.

 LENGTH

Argument Behavior Example

Quoted string Returns number of bytes in

string, minus any trailing

white space (as defined in the

locale).

If the string is ’Ludwig’, the result is

6. If the string is ’Ludwigssss’, the

result is still 6.

CHAR, VARCHAR,

LVARCHAR,

NCHAR, or

NVARCHAR

column

Returns number of bytes in a

column, minus any trailing

white- space characters,

regardless of defined length of

the column.

If the fname column of the customer

table is a CHAR(15) column, and this

column contains the string ’Ludwig’,

the result is 6. If the fname column

contains the string ’Ludwigssss’, the

result is still 6.

TEXT column Returns number of bytes in a

column, including trailing

white-space characters.

If the cat_descr column in the catalog

table is a TEXT column, and this

column contains the string ’Ludwig’,

the result is 6. If the cat_descr

column contains the string

’Ludwigssss’, the result is 10.

Host or procedure

variable

Returns number of bytes that

the variable contains, minus

any trailing white pace,

regardless of defined length of

the variable.

If the procedure variable f_name is

defined as CHAR(15), and this

variable contains the string ’Ludwig’,

the result is 6. If the f_name variable

contains the string ’Ludwigssss’, the

result is still 6.

When you use the default locale or any locale with a single-byte code set, the

LENGTH function seems to return the number of characters in the column. In the

following example, the stores_demo database, which contains the customer table,

uses the default code set for the U.S. English locale. Suppose a user enters a

SELECT statement with the LENGTH function to display the last name, length of

the last name, and customer number for rows where the customer number is less

than 106.

SELECT lname AS cust_name,

 length (fname) AS length, customer_num AS cust_num

 FROM customer WHERE customer_num < 106

The following example of output shows the result of the query. For each row that

is retrieved, the length column seems to show the number of characters in the

lname (cust_name) column. However, the length column actually displays the

number of bytes in the lname column.

In the default code set, one byte stores one character. For more information about

the default code set, see “The Default Locale” on page 1-19.

Chapter 3. SQL Features 3-29

cust_name length cust_num

Ludwig 6 101

Carole 6 102

Philip 6 103

Anthony 7 104

Raymond 7 105

When you use the LENGTH function in a locale that supports a multibyte code

set, such as the Japanese SJIS code set, the distinction between characters and bytes

is meaningful. LENGTH returns the number of bytes in its argument. This result

might be different from the number of characters.

The next example assumes that the database that contains the customer_multi

table has locale with a multibyte code set. Suppose that the user enters a SELECT

statement with the LENGTH function to display lname, its length, and

customer_num for the customer whose number is 199.

SELECT lname AS cust_name,

 length (fname) AS length, customer_num AS cust_num

 FROM customer_multi WHERE customer_num = 199

Suppose that lname for customer 199 consists of four characters:

aA1A2bB1B2

In this representation, the first character (the symbol a) is a single-byte character.

The second character (the symbol A1A2) is a 2-byte character. The third character

(the symbol b) is a single-byte character. The fourth character (the symbol B1B2) is

a 2-byte character.

The following example of output shows the result of the query. Although the

customer first name consists of 4 characters, the length column shows that the total

number of bytes in this name is 6.

 cust_name length cust_num

aA1A2bB1B2 6 199

The OCTET_LENGTH Function

The OCTET_LENGTH function returns the number of bytes and generally includes

trailing white space characters in the byte count. This SQL length function uses the

definition of white space that the locale defines. OCTET_LENGTH returns the

number of bytes in a character column, quoted string, host variable, or SPL

variable. The actual behavior of OCTET_LENGTH varies with the type of

argument that the user specifies.

The following table shows how the OCTET_LENGTH function operates on each of

the argument types. The Example column in this table uses the symbol s to

represent a single-byte trailing white space character. For simplicity, the Example

column also assumes that the example strings consist of single-byte characters.

3-30 IBM Informix GLS User’s Guide

OCTET_LENGTH

Argument Behavior Example

Quoted string Returns number of bytes in

string, including any trailing

white- space characters.

If the string is ’Ludwig’, the result is

6. If the string is ’Ludwigssss’, the

result is 10.

CHAR or

NCHAR column

Returns number of bytes in

string, including trailing white

space characters. This value is

the defined length, in bytes,

of the column.

If the fname column of the customer

table is a CHAR(15) column, and this

column contains the string ’Ludwig’,

the result is 15. If the fname column

contains the string ’Ludwigsss’, the

result is still 15.

VARCHAR or

NVARCHAR column

Returns number of bytes in

string, including trailing white

space. Value is the actual

length, in bytes, of the

character string, not the

declared maximum column

size.

If the cat_advert column of the

catalog table is a VARCHAR(255, 65)

column, and this column contains the

string ″Ludwig″, the result is 6. If the

column contains the string

’Ludwigssss’, the result is 10.

TEXT column Returns number of bytes in

column, including trailing

white- space characters.

If the cat_descr column in the catalog

table is a TEXT column, and this

column contains the string ’Ludwig’,

the result is 6. If the cat_descr

column contains the string

’Ludwigssss’, the result is 10.

Host or procedure

variable

Returns number of bytes that

the variable contains,

including any trailing white

space, regardless of defined

length of variable.

If the procedure variable f_name is

defined as CHAR(15), and this

variable contains the string ’Ludwig’,

the result is 6. If the f_name variable

contains the string ’Ludwigssss’, the

result is 10.

The difference between the LENGTH and OCTET_LENGTH functions is that

OCTET_LENGTH generally includes trailing white space in the byte count,

whereas LENGTH generally excludes trailing white space from the byte count.

The advantage of the OCTET_LENGTH function over the LENGTH function is

that the OCTET_LENGTH function provides the actual column size whereas the

LENGTH function trims the column values and returns the length of the trimmed

string. This advantage of the OCTET_LENGTH function applies both to single-byte

code sets such as ISO8859-1 and multibyte code sets such as the Japanese SJIS code

set.

The following table shows some results that the OCTET_LENGTH function might

generate.

 OCTET_LENGTH

Input String Description Result

’abc ’ A quoted string with four single-byte characters (the

characters abc and one trailing space)

4

’A1A2B1B2’ A quoted string with two multibyte characters 4

’aA1A2bB1B2’ A quoted string with two single-byte and two multibyte

characters

6

Chapter 3. SQL Features 3-31

The CHAR_LENGTH Function

The CHAR_LENGTH function (also known as the CHARACTER_LENGTH

function) returns the number of characters in a quoted string, column with a

character data type, host variable, or procedure variable. However, the actual

behavior of this function varies with the type of argument that the user specifies.

The following table shows how the CHAR_LENGTH function operates on each of

the argument types. The Example column in this table uses the symbol s to

represent a single-byte trailing white space. For simplicity, the Example column

assumes that the strings consist of single-byte characters.

 CHAR_LENGTH

Argument Behavior Example

Quoted string Returns number of characters

in string, including any trailing

white- space (as defined in the

locale).

If the string is ’Ludwig’, the result is

6. If the string is ’Ludwigssss’, the

result is 10.

CHAR or

NCHAR column

Returns number of characters

in string, including trailing

white space characters. This

value is the defined length, in

bytes, of the column.

If the fname column of the customer

table is a CHAR(15) column, and this

column contains the string ’Ludwig’,

the result is 15. If the fname column

contains the string ’Ludwigssss’, the

result is 15.

VARCHAR or

NVARCHAR

column

Returns number of characters

in string, including white

space characters. Value is the

actual length, in bytes, of the

string, not the declared

maximum column size.

If the cat_advert column of the

catalog table is a VARCHAR(255, 65),

and this column contains the string

″Ludwig″, the result is 6. If the

column contains the string

’Ludwigssss’, the result is 10.

TEXT column Returns number of characters

in column, including trailing

white space characters.

If the cat_descr column in the catalog

table is a TEXT column, and this

column contains the string ’Ludwig’,

the result is 6. If the cat_descr

column contains the string

’Ludwigssss’, the result is 10.

Host or procedure

variable

Returns number of characters

that the variable contains,

including any trailing white

space, regardless of declared

length of the variable.

If the procedure variable f_name is

defined as CHAR(15), and this

variable contains the string ’Ludwig’,

the result is 6. If the f_name variable

contains the string ’Ludwigssss’, the

result is 10.

The CHAR_LENGTH function is especially useful with multibyte code sets. If a

quoted string of characters contains any multibyte characters, the number of

characters in the string differs from the number of bytes in the string. You can use

the CHAR_LENGTH function to determine the number of characters in the quoted

string.

However, the CHAR_LENGTH function can also be useful in single-byte code sets.

In these code sets, the number of bytes in a column is equal to the number of

characters in the column. If you use the LENGTH function to determine the

number of bytes in a column (which is equal to the number of characters in this

case), LENGTH trims the column values and returns the length of the trimmed

string. In contrast, CHAR_LENGTH does not trim the column values but returns

the declared size of the column.

3-32 IBM Informix GLS User’s Guide

The following table shows some results that the CHAR_LENGTH function might

generate for quoted strings.

 CHAR_LENGTH

Input String Description Result

’abc ’ A quoted string with 4 single-byte characters (the

characters abc and 1 trailing space)

4

’A1A2B1B2’ A quoted string with 2 multibyte characters 2

’aA1A2B1B2’ A quoted string with 2 single-byte and 2 multibyte

characters

4

Using Locale-Sensitive Data Types

The previous section described how NCHAR and NVARCHAR data types are

sorted in localized order, if the locale defines one. This section explains how a

locale affects the way that a database server handles the MONEY data type,

extended data types, and smart large objects (CLOB and BLOB data types).

For the syntax of these data types, see the IBM Informix Guide to SQL: Syntax. For

descriptions of these data types, see the IBM Informix Guide to SQL: Reference.

Handling the MONEY Data Type

The MONEY data type stores currency amounts. This data type stores fixed-point

decimal numbers up to a maximum of 32 significant digits. You can specify

MONEY columns in data definition statements such as CREATE TABLE and

ALTER TABLE.

The choice of locale affects monetary data in the following ways:

v The default value of scale in the declaration of MONEY columns

v The currency notation that the client application uses

The locale defines the default scale and currency notation in the MONETARY

category of the locale file. For information on the MONETARY category of the

locale file, see “The MONETARY Category” on page A-4.

Specifying Values for the Scale Parameter

Define a MONEY column with the following syntax.

��
 (1)

Data

Type

MONEY

16

2

(

precision

,

scale

)

��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element Purpose

precision Total number of significant digits in a decimal or money data type

 You must specify an integer between 1 and 32, inclusive. The

default precision is 16.

scale Number of digits to the right of the decimal point.

Chapter 3. SQL Features 3-33

The scale must be an integer between 1 and precision. If you omit the scale, the

database server provides a default scale that the database locale defines. For the

default locale (U.S. English), the default is 2, as the diagram indicates.

Internally, the database server stores MONEY values as DECIMAL values. The

precision parameter defines the total number of significant digits, and the scale

parameter defines the total number of digits to the right of the decimal separator.

For example, if you define a column as MONEY(8,3), the column can contain a

maximum of eight digits, and three of these digits are to the right of the decimal

separator. An example of a data value in the column might be 12345.678.

If you omit the scale parameter from the declaration of a MONEY column, the

database server provides a scale that the locale defines. For the default locale (U.S.

English), the database server uses a default scale of 2. It stores the data type

MONEY(precision) in the same internal format as the data type

DECIMAL(precision,2). For example, if you define a column as MONEY(10), the

database server creates a column with the same format as the data type

DECIMAL(10,2). A data value in the column might be 12345678.90.

For nondefault locales, if you omit the scale when you declare a MONEY column,

the database server declares a column with the same internal format as DECIMAL

data types with a locale-specific default scale. For example, if you define a column

as MONEY(10), and the locale defines the default scale as 4, the database server

stores the data type of the column in the same format as DECIMAL(10,4). A data

value in the column might be 123456.7890.

The GLS code sets for most European languages can support the euro symbol in

monetary values. For the complete syntax of the MONEY data type, see the IBM

Informix Guide to SQL: Syntax. For a complete description of the MONEY data type,

see the IBM Informix Guide to SQL: Reference.

Format of Currency Notation

Client applications format values in MONEY columns with the currency notation

that the locale defines. This notation specifies the currency symbol, thousands

separator, and decimal separator. For more information about currency notation,

see “Numeric and Monetary Formats” on page 1-13.

In the default locale, the default currency symbol is a dollar sign ($), the default

thousands separator is a comma (,), and the default decimal separator is a period

(.) symbol. For nondefault locales, the locale defines the appropriate

culture-specific currency notation for monetary values. You can also use the

DBMONEY environment variable to customize the currency symbol and decimal

separator for monetary values. For more information, see “Customizing Monetary

Values” on page 1-31.

Handling Extended Data Types (IDS)

The extensible data type system of Dynamic Server allows users to define new

data types and the behavior of these new data types to the database server. This

section explains how these types are handled in GLS processing. See also IBM

Informix User-Defined Routines and Data Types Developer’s Guide.

Opaque Data Types

An opaque data type is fully encapsulated to client applications; that is, its internal

structure is not known to the database server. Therefore, the database server

cannot automatically perform locale-specific tasks such as code-set conversion for

3-34 IBM Informix GLS User’s Guide

opaque types. All GLS processing (code-set conversion, localized collation order,

end-user formats, and so on) must be performed in the opaque-type support

functions.

When you create an opaque data type, you can write the support functions as C

UDRs that can handle any locale-sensitive data. For more information, see

“Locale-Sensitive Data in an Opaque Data Type” on page 4-17.

Complex Data Types

Dynamic Server also supports complex data types:

v Collection data types: SET, MULTISET, and LIST

v Row data types: named ROW types and unnamed ROW types

Any of these data types can have members with character, time, or numeric data

types. The database server can still handle the GLS processing for these data types

when they are part of a complex data type.

Distinct Data Types

A distinct data type has the same internal storage representation as its source type

but has a different name. Its source type can be an opaque or built-in type, a

named ROW type, or another distinct data type. Dynamic Server handles GLS

considerations for a distinct type as it would for the source type.

Handling Smart Large Objects (IDS)

A smart large object can store text or images. Smart large objects are stored and

retrieved in pieces and have database properties such as recovery and transaction

rollback. Dynamic Server supports two smart-large-object types:

v The BLOB data type stores any type of binary data, including images and video

clips.

v The CLOB data type stores text such as PostScript or HTML files.

You can seek smart large objects in bytes but not in characters. Therefore, you need

to manage the byte offset of multibyte characters when you search for information

in smart large objects.

To access smart large objects through a client application, you must use an API,

such as Informix ESQL/C or DataBlade API. Because GLS does not support direct

access to smart-large-object data through SQL, GLS does not automatically handle

the data (no automatic code-set conversion, localized collation order, end-user

formats, and so on). All support must be done within an API.

When you copy CLOB data from a file, Dynamic Server performs any necessary

character-set conversions. If the client or server locale (when it copies from client

and server files, respectively) differs from the database locale, Dynamic Server

invokes the routines to convert to the database locale.

Using Data Manipulation Statements

The choice of a locale can affect these SQL data manipulation statements:

v DELETE

v INSERT

v LOAD

v UNLOAD

Chapter 3. SQL Features 3-35

v UPDATE

Sections describe the GLS aspects of these SQL statements. For a complete

description of these statements, see the IBM Informix Guide to SQL: Syntax.

Specifying Conditions in the WHERE Clause

These statements can include a WHERE clause to specify rows to operate on:

v For the DELETE statement, the WHERE clause specifies rows to delete.

v For the INSERT statement with an embedded SELECT, the WHERE clause

specifies which rows to insert from another table.

v For the UPDATE statement, the WHERE clause specifies which rows to update.

In addition, the SET clause can include an embedded SELECT statement whose

WHERE clause identifies a row whose values are to be assigned to another row.

v For the UNLOAD statement, the WHERE clause of the embedded SELECT

specifies which rows to unload.

The choice of a locale affects these uses of a WHERE clause in the same way that it

affects the WHERE clause of a SELECT. For more information, see “Logical

Predicates in a WHERE Clause” on page 3-23 and “Comparisons with MATCHES

and LIKE Conditions” on page 3-26.

Specifying Era-Based Dates

These SQL statements might specify DATE and DATETIME column values:

v The WHERE clause of the DELETE statement

v The VALUES clause of the INSERT statement

v The SET clause of the UPDATE statement

When you specify a DATE column value in one of the preceding SQL statements,

the database server uses the GL_DATE (or DBDATE) environment variable to

interpret the date expression, as follows:

v If you have set GL_DATE (or DBDATE) to an era-based (Asian) date format,

you can use era-based date formats for date expressions.

v If you have not set the GL_DATE (or DBDATE) environment variable to an

era-based date format, you can use era-based date formats for date expressions

only if the server-processing locale supports era-based dates. For more

information on the server-processing locale, see “Determining the

Server-Processing Locale” on page 1-24.

v If your locale does not support era-based dates, you cannot use era-based date

formats for date expressions. If you attempt to specify an era-based date format

in this case, the SQL statement fails.

When you specify a DATETIME column value, the database server uses the

GL_DATETIME (or DBTIME) environment variable instead of the GL_DATE (or

DBDATE) environment variable to interpret the expression.

For more information, see “Era-Based Date and Time Formats” on page 1-31.

Loading and Unloading Data

The LOAD and UNLOAD statements allow you transfer data to and from your

database with operating-system text files. The following sections describe the GLS

aspects of the LOAD and UNLOAD statements. For a complete description of the

use and syntax of these statements, see the IBM Informix Guide to SQL: Syntax.

3-36 IBM Informix GLS User’s Guide

Loading Data into a Database

The LOAD statement inserts data from an operating-system file into an existing

table or view. This operating-system file is called a LOAD FROM file. The data in

this file can contain any character that the client code set defines. If the client

locale supports a multibyte code set, the data can contain multibyte characters. If

the database locale supports a code set that is different from but convertible to the

client code set, the client performs code-set conversion on the data before sending

the data to the database server. For more information, see “Performing Code-Set

Conversion” on page 1-27.

The locale also defines the formats for date, time, numeric, and monetary data. You

can apply any format that the client locale supports to column values in the LOAD

FROM file. For example, a French locale might define monetary values that have a

blank space as the thousands separator and a comma as the decimal separator.

When you use this locale, the following literal value for a MONEY column is valid

in a LOAD FROM file:

3 411,99

You can specify alternative formats for date and monetary data. If you set

appropriate environment variables, the LOAD FROM files can use the alternative

end-user formats for DATE, DATETIME, and MONEY column values. For more

information, see “Customizing Date and Time End-User Formats” on page 1-30

and “Customizing Monetary Values” on page 1-31.

Unloading Data from a Database

The UNLOAD statement writes the rows that a SELECT statement retrieves to an

operating-system file. This operating-system file is called an UNLOAD TO file. The

data values in this file contains characters that the client code set defines. If the

client locale supports a multibyte code set, the data can include multibyte

characters from the code set.

If the database locale supports a code set that is different from but convertible to

the client code set, the client performs code-set conversion on the data before it

writes the data to the UNLOAD TO file. (For more information, see “Performing

Code-Set Conversion” on page 1-27.)

The client locale and certain environment variables determine the output format of

certain data types in the UNLOAD TO file. These data types include DATE values,

MONEY values, values of numeric data types, and DATETIME values. For further

information, see “End-User Formats” on page 1-11 and “Customizing End-User

Formats” on page 1-30.

Important: You can use an UNLOAD TO file, which the UNLOAD statement

generates, as the input file (the LOAD FROM file) to a LOAD

statement that loads another table or database. When you use an

UNLOAD TO file in this manner, make sure that all environment

variables and the client locale have the same values when you perform

the LOAD as they did when you performed the UNLOAD.

Loading with External Tables (XPS)

High-performance parallel loading and unloading for Extended Parallel Server

uses external tables. It uses a series of enhanced SQL statements that you can issue

with DB–Access or embed in Informix ESQL/C.

The high-performance loader (HPL) provides extensive support for loading tables

from many different sources, and performs a variety of data-format conversions. It

Chapter 3. SQL Features 3-37

also supports non-ASCII characters in field and record delimiters.

High-performance loading performs operations like the following that might

involve support for non-ASCII characters:

v Transfers data files across platforms with the Informix data format

v Transfers operational data from a mainframe to a data warehouse

v Uses the database server to convert data between delimited ASCII, fixed ASCII,

EBCDIC, and Informix internal (raw) representation

v Uses INSERT and SELECT statements of SQL to specify the mapping of data to

new columns in a database table

In nondefault locales, enhanced SQL statements for the loader, such as CREATE

EXTERNAL TABLE...USING, INSERT INTO...SELECT, and SELECT...INTO

EXTERNAL table-name USING, support identifiers that can include non-ASCII

characters. For information about identifiers for Extended Parallel Server, see

“Non-ASCII Characters in Identifiers” on page 3-3.

Loading Simple Large Objects with External Tables (XPS)

Extended Parallel Server supports external tables to load and unload simple large

objects. Simple large objects (TEXT or BYTE data type columns) are supported only

by delimited and INFORMIX format external tables. In delimited format, a

simple-large-object column can be represented in either text or hex encoding. In

text encoding, a simple large object is written to data file as is. Backslashes and

delimiters are escaped. In hex encoding, each data byte in a simple large object is

represented by two hexadecimal digits (0 through 9, and A through F).

Nonprintable characters in simple large objects are included unchanged in data

files.

For information about how to define simple-large-object columns in an external

table, see the CREATE EXTERNAL TABLE statement in the IBM Informix Guide to

SQL: Syntax. For information on file formats and performance considerations, as

well as a step-by-step procedure for loading with external tables, see the IBM

Informix Administrator’s Reference.

Specifying an Escape Character: You can specify an escape character to direct the

database server to recognize incomplete or invalid multibyte character data in the

simple large object. If you do not specify an escape character, the database server

does not check the character fields in text-based data files for embedded special

characters during loading.

When you specify an escape character, the backslash (\) character precedes any

single character to indicate the occurrence of the actual character, regardless of

whether it would otherwise have a special significance to the loading and

unloading process. For example, ’\|’ is interpreted as the literal ’|’ character

instead of as a column separator.

During unloading, the database server escapes delimiters and backslash (\)

symbols. During loading, any character that immediately follows a backslash is

taken literally. Nonprintable characters are directly embedded in the data file for

TEXT column values.

Defining a Delimiter: Simple-large-object data values are inserted directly into

the record at the point where the TEXT or Byte column is defined, between field

delimiters.

3-38 IBM Informix GLS User’s Guide

User-defined delimiters are limited to one byte each. Therefore, in multibyte

locales, only characters with a length of exactly one byte can be defined as

delimiters. In both single byte and multibyte locales, a simple large object is

always traversed byte by byte. If a byte matches one of the delimiters or a

backslash, it is escaped during unloading. During loading, only the byte

immediately following a backslash is escaped, not the (possibly multibyte)

character following the backslash.

Transversal of delimited simple-large-object data is performed byte by byte in all

locales. A simple large object is not traversed character by (possibly multibyte)

character because it does not always contain valid text, and might contain

incomplete or invalid multibyte characters. Unlike character columns, blank filling

or truncating for simple large objects is not an option for invalid multibyte

characters. You cannot have random access to the data in simple large objects, and

you cannot alter simple large objects in any way.

Important: The database server does not detect incomplete or invalid multibyte

characters in simple-large-object data in the loading or unloading

process. You must ensure that multibyte data is consistent and accurate

before you load it into a character column.

Chapter 3. SQL Features 3-39

3-40 IBM Informix GLS User’s Guide

Chapter 4. Database Server Features

In This Chapter . 4-1

GLS Support by Informix Database Servers . 4-1

Database Server Code-Set Conversion . 4-2

Data That the Database Server Converts . 4-3

Locale-Specific Support for Utilities . 4-4

Non-ASCII Characters in Database Server Utilities . 4-4

Non-ASCII Characters in SQL Utilities . 4-5

Locale Support For C User-Defined Routines (IDS and DB API) 4-6

Current Processing Locale for UDRs . 4-6

Non-ASCII Characters in Source Code . 4-6

In C-Language Statements . 4-7

In SQL Statements . 4-7

Copying Character Data . 4-8

The IBM Informix GLS Library . 4-8

Character Processing with IBM Informix GLS . 4-8

Compatibility of Wide-Character Data Types . 4-8

Code-Set Conversion and the DataBlade API . 4-9

Character Strings in UDRs . 4-9

Character Strings in Opaque-Type Support Functions 4-9

Locale-Specific Data Formatting . 4-10

Internationalized Exception Messages . 4-11

Inserting Customized Exception Messages . 4-11

Inserting a Localized Exception Message from a C UDR 4-12

Searching for Customized Messages . 4-14

Specifying Parameter Markers . 4-14

Internationalized Tracing Messages . 4-14

Inserting Messages in the systracemsgs System Catalog Table 4-14

Putting Internationalized Trace Messages into Code 4-15

Searching for Trace Messages . 4-16

Locale-Sensitive Data in an Opaque Data Type . 4-17

Internationalized Input and Output Support Functions 4-17

Internationalized Send and Receive Support Functions 4-18

In This Chapter

This chapter describes how the GLS feature affects the database server. It covers

the following main topics:

v Which operating-system files the database server can access

v When the database server uses code-set conversion

v Which database server utilities provide support for the GLS feature

For more information about these database server features, see the IBM Informix

Administrator’s Guide. For more information about database server utilities, see the

IBM Informix Administrator’s Reference. For information about migrating to a

different Informix database server, see the IBM Informix Migration Guide.

GLS Support by Informix Database Servers

The database server can perform read and write operations to the following

operating-system files:

v Diagnostic files

Diagnostic files include the following files:

© Copyright IBM Corp. 1996, 2008 4-1

– af.xxx

– shmem.xxx

UNIX Only

– gcore.xxx

End of UNIX Only

– core
The database server generates diagnostic files when you set one or more of the

following configuration parameters:

UNIX Only

– DUMPDIR

– DUMPSHMEM

– DUMPCNT

– DUMPCORE

– DUMPGCORE

End of UNIX Only

v Message-log file

The database server generates a user-specified message-log file when you set the

MSGPATH configuration parameter.

These operating-system files reside on the server computer, where the database

server resides. When the database server reads from or writes to these files, it must

use a code set that the server computer supports. The database server obtains this

code set from the server locale.

Set the server locale with the SERVER_LOCALE environment variable. If you do

not set SERVER_LOCALE, the database server uses the default locale, as the

server locale. For details, see “SERVER_LOCALE” on page 2-21.

Extended Parallel Server

For Extended Parallel Server, all coservers must have identical GLS

operating-system environments.

End of Extended Parallel Server

 To perform code-set conversion and handle non-ASCII characters that are

associated with read and write operations on operating-system files, the database

server determines the database server code set (the code set that the database

server locale supports). For information about the use of non-ASCII characters, see

“Non-ASCII Characters in Identifiers” on page 3-3.

Database Server Code-Set Conversion

This section summarizes the code-set conversion that the database server performs.

For more general information about code-set conversion, see “Performing Code-Set

Conversion” on page 1-27.

4-2 IBM Informix GLS User’s Guide

An Informix database server automatically performs code-set conversion between

the code sets of the server-processing locale and the server locale when the

following conditions are true:

v The CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE environment

variables are set such that the code sets of the server-processing locale and the

server locale are different.

v A valid code-set conversion exists between the code sets of the server-processing

locale and server locale.

For a list of files for which Informix database servers perform code-set conversion,

see “GLS Support by Informix Database Servers” on page 4-1. For information on

GLS code-set conversion files, see “Code-Set-Conversion Files” on page A-7.

Once the database server creates the operating-system file, it has generated a

filename and written file contents in the code set of the server locale (the server

code set). Any IBM Informix product or client application that needs to access this

file must have a server-processing locale that supports this same server code set.

You must ensure that the appropriate CLIENT_LOCALE, DB_LOCALE, and

SERVER_LOCALE environment variables are set so that the server-processing

locale supports a code set with these non-ASCII characters. For more information

about the server-processing locale, see “Determining the Server-Processing Locale”

on page 1-24.

The database server checks the validity of a filename with respect to the

server-processing locale before it references the filename.

Extended Parallel Server

Extended Parallel Server rejects any filename that includes any character that is not

ASCII alphanumeric 7-bit.

End of Extended Parallel Server

Data That the Database Server Converts

When the database server transfers data to and from its operating-system files, it

handles any differences in the code sets of the server-processing locale and the

server locale as follows:

v If these two code sets are the same, the database server can read from or write

to its operating-system files in the code set of the server locale.

v If these two code sets are different and an Informix code-set conversion exists

between them, the database server automatically performs code-set conversion

when it reads from or writes to its operating-system files.

For code-set conversion to resolve the difference in code sets, the server locale

must support the actual code set that the database server used to create the file.

For more information, see “Making Sure That Your Product Supports the Same

Code Set” on page 2-10.

v If these two code sets are different, but no Informix code-set conversion exists,

the database server cannot perform code-set conversion.

If the database server reads from or writes to an operating-system file for which

no code-set conversion exists, it uses the code set of the server-processing locale

to perform the read or write operation.

Chapter 4. Database Server Features 4-3

Locale-Specific Support for Utilities

This section provides information that is specific to the use of the GLS feature by

database server utilities. For a complete description of utilities, see your IBM

Informix Administrator’s Reference.

For information about database server utilities for auditing, see the IBM Informix

Security Guide.

Database server utilities and SQL utilities are client applications that request

information from an instance of the database server. Therefore, these utilities use

the CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE environment

variables to obtain the name of a nondefault locale, as follows:

v If a database utility is to use a nondefault code set to accept input (including

command-line arguments) and to generate output, you must set the

CLIENT_LOCALE environment variable.

v If a database utility accesses a database with a nondefault locale, you must set

the DB_LOCALE environment variable.

v If a database utility causes the database server to write data on the server

computer that has a nondefault code set, you must set the SERVER_LOCALE

environment variable.

These utilities also perform code-set conversion if the database and the client

locales support convertible code sets. For more information on code-set conversion,

see “Performing Code-Set Conversion” on page 1-27.

Windows Only

Changes to locale environment variables should also be reflected in the Windows

registry database under HKEY_LOCAL_MACHINE.

End of Windows Only

Non-ASCII Characters in Database Server Utilities

Most database server utilities support non-ASCII characters in command-line

arguments. These utilities interpret all command-line arguments in the client code

set (which CLIENT_LOCALE defines).

The following table shows utilities that accept non-ASCII characters in

command-line arguments or produce non-ASCII output.

4-4 IBM Informix GLS User’s Guide

Utility Name Non-ASCII Characters in Command-Line Arguments

Non-ASCII

Output

onaudit

(IDS)

-f input_file Yes

oncheck
(IDS)

-cc -pc database

-ci -cI -pk -pK -pl -pL database:table#index_name
-ci -cI -pk -pK -pl -pL -cd -cD -pB -pt -pT -pd -pD -pp

database:table

Yes

onload
(IDS)

database:table
-i old_index new_index

-t tape_device

Yes

onlog

(IDS)

-d tape_device

onpload
(IDS)

-d source

-j jobname

-p projectname

Yes

onshowaudit -f input_file

-s server_name

Yes

onspaces

(IDS)

-p pathname

-f filename

onstat -o filename -dest (IDS)
filename_source (IDS)

None (XPS)

Yes

onunload
(IDS)

database:table

-t tape_device

Yes

onutil
(XPS)

CHECK TABLE DATA database:owner:table
CHECK TABLE INFO database:owner:table

Yes

Extended Parallel Server

You can use xctl, the Extended Parallel Server control utility, to execute other

database server utilities such as onstat.

End of Extended Parallel Server

Non-ASCII Characters in SQL Utilities

The following SQL utilities also accept non-ASCII characters in command-line

arguments and generate any output in the client code set:

v chkenv

v dbexport

v dbimport

v dbload

v dbschema

For a description of the chkenv utility, refer to the IBM Informix Guide to SQL:

Reference. For a description of the dbload, dbschema, dbexport, and dbimport

utilities, refer to the IBM Informix Migration Guide. For information about

DB–Access, see the IBM Informix DB–Access User’s Guide.

Chapter 4. Database Server Features 4-5

The DB–Access utility generates labels and messages in the code set of the client

locale.

Extended Parallel Server

For Extended Parallel Server, DB–Access accepts multibyte command-line

arguments for database and script_file.

End of Extended Parallel Server

Locale Support For C User-Defined Routines (IDS and DB API)

Dynamic Server allows you to create user-defined routines (UDRs) that are written

in the C programming language. These C UDRs use the DataBlade API to

communicate with the database server. For a complete description of the DataBlade

API, see the IBM Informix DataBlade API Programmer’s Guide. This section describes

how to internationalize a C UDR.

Internationalization is the process of creating a user-defined routine (UDR) that can

support different languages, territories, and code sets without changing or

recompiling its code.

An internationalized C UDR must handle the following GLS considerations:

v Where can the UDR use non-ASCII characters in source code?

v What steps must the C UDR take when copying character data?

v How can the UDR access GLS locales?

v How does the UDR handle code-set conversion?

v How does the UDR handle locale-specific end-user formats?

v How can the UDR access internationalized exception messages?

v How can the UDR access internationalized tracing messages?

v How do opaque-type support functions handle locale-sensitive data?

Current Processing Locale for UDRs

To access a database, a client application first requests a connection to the database

server, which must verify that it can access the specified database and establish the

connection between the client and this database. In the process, the database server

establishes the server-processing locale to use the duration of the connection. When

the client application executes a UDR, this UDR executes on the server computer

in the context of the server-processing locale. This locale is often called the current

processing locale.

Many user-defined routines handle non-ASCII data correctly even if they were

originally written for ASCII data. Some routines, however, might perform

abnormally. To internationalize your C UDR, you must ensure that your UDR

handles the server-processing locale in any GLS-related operations. If the UDR

does not properly support the server-processing locale, the routine might return

unexpected results or an error message.

Non-ASCII Characters in Source Code

Non-ASCII characters might appear in these contexts in a C-UDR source file:

v In C-language statements, such as variable declarations and if statements

4-6 IBM Informix GLS User’s Guide

v In SQL statements, which are sent to the database server through the mi_exec()

or mi_exec_prepared_statement() functions

In C-Language Statements

The C compiler must recognize the code set that you use in your C-language

statements. The capabilities of your C compiler might limit your ability to use

non-ASCII characters within the C-language statements in a UDR source file. For

example, some C-language compilers support multibyte characters in literals or

comments only.

If the C compiler does not fully support non-ASCII characters, it might not

successfully compile a UDR that contains these characters. In particular, the

following situations might affect compilation of your UDR:

v Multibyte characters might contain C-language tokens.

A component of a multibyte character might be indistinguishable from certain

single-byte characters such as percent (%), comma, backslash (\), and double

quote (″). If such characters exist in a quoted string, the C compiler might

interpret them as C-language tokens, which can result in compilation errors or

even lost characters.

v The C compiler might not be 8-bit clean.

If a code set contains non-ASCII characters (with code values that are greater

than 127), the C compiler must be 8-bit clean to interpret the characters. To be

8-bit clean, a compiler must read the eighth bit as part of the code value; it must

not ignore or put its own interpretation on the meaning of this eighth bit.

Tip: The C compiler must also recognize the ASCII code set to be able to interpret

the names of the DataBlade API functions within your C UDR.

In SQL Statements

In C UDRs, SQL statements occur as literal strings to the mi_exec() and

mi_prepare() functions. The C compiler does not parse these literal strings.

Therefore, it does not need to recognize the code set of the characters in these SQL

statements.

Within a C source file, you can use non-ASCII characters in SQL statements for the

following objects:

v Names of SQL identifiers such as databases, tables, columns, views, constraints,

prepared statements, and cursors

For more information, see “Naming Database Objects” on page 3-2.

v Literal strings

For example, in a UDR, the following use of multibyte characters is valid:

mi_exec(conn,

 "insert into tbl1 (nchr1) values ’A1A2B1B2’", 0);

v Filenames and pathnames, as long as your operating system supports multibyte

characters in filenames and pathnames

Important: To use non-ASCII characters in your SQL statements, your

server-processing locale must include either a code set that supports

these characters or a code set that is compatible with the character

code set. For information on how to perform code-set conversion, see

“Character Strings in UDRs” on page 4-9.

Chapter 4. Database Server Features 4-7

Copying Character Data

When you copy data, you must ensure that the buffers are an adequate size to

hold the data. If the destination buffer is not large enough for the multibyte data in

the source buffer, the data might be truncated during the copy. For example, the

following C code fragment copies the multibyte data A1A2A3B1B2B3 from buf1 to

buf2:

char buf1[20], buf2[5];

...

stcopy("A1A2A3B1B2B3", buf1);

...

stcopy(buf1, buf2);

Because buf2 is not large enough to hold the multibyte string, the copy truncates

the string to A1A2A3B1B2. To prevent this situation, ensure that the multibyte string

fits into a buffer before the DataBlade API module performs the copy.

The IBM Informix GLS Library

The IBM Informix GLS library is an application programming interface (API)

through which developers of user-defined routines and of DataBlade™ modules can

create internationalized applications.

Character Processing with IBM Informix GLS

The macros and functions of IBM Informix GLS provide access within a DataBlade

API module to GLS locales for culture-specific information. This library contains

functions that provide the following capabilities:

v Process single-byte and multibyte characters

v Format date, time, and numeric data to locale-specific formats

Compatibility of Wide-Character Data Types

Wide character data types are an alternative form for the processing of multibyte

characters. A wide-character form of a code set involves the normalization of the

size of each multibyte character so that each character is the same size. A legacy

DataBlade API module might use any of the following data types to hold wide

characters.

 Wide-Character

Data Type Description Drawback

mi_wchar A legacy DataBlade API data type

currently defined as unsigned

short on all systems

The DataBlade API does not provide

wide-character functions that operate

on mi_wchar values.

wchar_t An operating-system data type

that is platform-specific

The operating-system provides

wide-character functions that operate

on wchar_t values. Use of these

functions is platform specific.

The IBM Informix GLS library provides the gl_wchar_t data type for support of

wide characters. IBM Informix GLS also provides its own set of wide-character

functions that operate on gl_wchar_t. Use of the IBM Informix GLS wide-character

functions removes platform dependency from your application and provides access

within your DataBlade API module to IBM Informix GLS locales.

The IBM Informix GLS library does not provide any functions for conversion

between gl_wchar_t and mi_wchar or gl_wchar_t an wchar_t. If a DataBlade API

4-8 IBM Informix GLS User’s Guide

module continues to use either mi_wchar or wchar_t and also needs to use the

IBM Informix GLS wide-character processing, you must write code to perform any

necessary conversions.

Code-Set Conversion and the DataBlade API

Within a UDR, the DataBlade API does not perform any code-set conversion

automatically. Your C UDR might need to perform code-set conversion in the

following situations:

v In strings that contain SQL statements

v In an opaque-type support function for an opaque type that contains character

data

Character Strings in UDRs

When your C UDR contains character strings that are sent to the database server, it

must perform any required code-set conversion on these strings. This code-set

conversion must handle any differences between the code set of this character

string and the code set of the server-processing locale in which the UDR executes.

For example, the DataBlade API does not perform code-set conversion on the

multibyte table name, A1A2A3B1B2, in the following SELECT statement:

mi_exec(conn, "SELECT * from A1A2A3B1B2", 0);

If your UDR might execute in a server-processing locale that does not include a

code set that supports characters in your SQL statements, the UDR can explicitly

perform code-set conversion between the code sets of the server-processing locale

and a specified locale.

The DataBlade API provides the following functions to assist in this code-set

conversion.

 Code-Set Conversion on a String DataBlade API Function

Perform code-set conversion on a specified string

from a specified locale to the server-processing

locale

mi_convert_from_codeset()

Perform code-set conversion on a specified string

from the server-processing locale to a specified

locale

mi_convert_to_codeset()

For more information on the syntax of these DataBlade API functions, see the

function reference of the IBM Informix DataBlade API Programmer’s Guide.

Character Strings in Opaque-Type Support Functions

The client application performs code-set conversion of non-opaque-type data that

is transferred to and from the client, but the database server does not know about

the internal format of an opaque data type. Therefore, for opaque data types, the

support functions are responsible for explicitly converting any string that is not in

the code set of the server-processing locale.

You might need to perform code-set conversion in the following opaque-type

support functions:

v In the input and output support functions: to convert the external format of the

opaque type between the code sets of the client locale and the

server-processing-locale

Chapter 4. Database Server Features 4-9

v In the receive and send support functions: to convert any character fields in the

internal structure of the opaque type

Tip: The code that the Informix DataBlade Developers Kit (DBDK) generates for

opaque-type input and output support functions handles external formats

from nondefault locales.

The DataBlade API provides the following functions for code-set conversion in the

support functions of an opaque data type.

 Code-Set Conversion on an Opaque Type DataBlade API Function

Perform code-set conversion on a string argument from the

code set of the server-processing locale to that of the client

locale

mi_put_string()

Perform code-set conversion on a string from the code set of

the client locale to that of the server-processing locale

mi_get_string()

For more information on the syntax of these DataBlade API functions, see the

function reference in the IBM Informix DataBlade API Programmer’s Guide.

Locale-Specific Data Formatting

When a C UDR handles strings that contain end-user formats for date, time,

numeric, or monetary data, you must write the UDR so that it handles any

locale-specific formats of these end-user formats. The DataBlade API provides

functions that convert between the internal representation of several data types

and its end-user format.

The following DataBlade API functions convert an internal database value to a

string that uses the locale-specific end-user format.

 DataBlade API Function Description

mi_date_to_string() Uses the locale-specific end-user date format to convert an

internal DATE value to its string equivalent.

mi_money_to_string() Uses the locale-specific end-user monetary format to

convert an internal MONEY value to its string equivalent.

mi_decimal_to_string() Uses the locale-specific end-user numeric format to convert

an internal DECIMAL value to its string equivalent.

Important: The mi_datetime_to_string() and mi_interval_to_string() functions do

not format strings in the date and time formats of the current

processing locale. Instead, they create a date, time, or interval string in

a fixed ANSI SQL format.

The following DataBlade API functions interpret a string in its locale-specific

end-user format and convert it to its internal database value.

4-10 IBM Informix GLS User’s Guide

DataBlade API Function Description

mi_string_to_date() Converts a string in its locale-specific date end-user format

to its internal DATE format.

mi_string_to_money() Converts a string in its locale-specific currency end-user

format to its internal MONEY format.

mi_string_to_decimal() Converts a string in its locale-specific numeric end-user

format to its internal DECIMAL format.

Important: The mi_string_to_datetime() and mi_string_to_interval() functions do

not interpret the date and time formats of the current processing locale.

Instead, they interpret the date/time or interval string in a fixed ANSI

SQL format.

Internationalized Exception Messages

The DataBlade API function mi_db_error_raise() sends an exception message to

an exception callback. This message can be either of the following:

v A literal message, which you provide as the third argument to mi_db_error_raise(

)

v A customized message that is associated with a value of SQLSTATE, which you

provide as the third argument to mi_db_error_raise()

The mi_db_error_raise() function can raise exceptions with customized

messages, which DataBlade modules and UDRs can store in the syserrors system

catalog table. The syserrors table maps these messages to five-character

SQLSTATE values. In the syserrors table, you can associate a locale with the

text of a customized message.

For general information on how to specify a literal message in mi_db_error_raise(

) and how to specify a customized message for mi_db_error_raise(), see the

chapter on how to handle exceptions and events in the IBM Informix DataBlade API

Programmer’s Guide.

This section discusses the following tasks about how to raise locale-specific

exception messages:

v How to add a locale-specific exception message to the syserrors system catalog

table

v How the choice of locale in a customized message affects the way that

mi_db_error_raise() searches for a customized message

v How to specify parameter markers that contain non-ASCII characters

Inserting Customized Exception Messages

You can store customized status codes and their associated messages in the

syserrors system catalog table. To create a customized exception message, insert a

row directly in the syserrors table. The syserrors table provides the following

columns for an internationalized exception message.

Chapter 4. Database Server Features 4-11

Column Name Description

sqlstate The SQLSTATE value that is associated with the exception You

can use the following query to determine the current list of

SQLSTATE message strings in syserrors:

SELECT sqlstate, locale, message

FROM syserrors

ORDER BY sqlstate, locale

For more information on how to determine SQLSTATE values,

see the IBM Informix DataBlade API Programmer’s Guide.

message The text of the exception message, with characters in the code

set of the target locale By convention, do not include any

newline characters in the message.

locale The locale with which the exception message is to be used The

locale column identifies the language and code set used for the

internationalization of error and warning messages. This name

is the name of the target locale of the message text.

For more information on the syserrors system catalog table, see the chapter that

describes the system catalog in the IBM Informix Guide to SQL: Reference. Do not

allow any code-set conversion when you insert the text in syserrors.

If the code sets of the client and database locales differ, temporarily set both the

CLIENT_LOCALE and DB_LOCALE environment variables in the client

environment to the name of the database locale. This workaround prevents the

client application from performing code-set conversion.

If you specify any parameters in the message text, include only ASCII characters in

the parameter names, so s that the parameter name can be the same for all locales.

Most code sets include the ASCII characters. For example, the following INSERT

statements insert new messages in syserrors whose SQLSTATE value is ″03I01″:

INSERT INTO syserrors VALUES ("03I01", "en_us.8859-1", 0, 1,

 "Operation Interrupted.")

INSERT INTO syserrors VALUES ("03I01", "fr_ca.8859-1", 0, 1,

 "Traitement Interrompu.")

The ’03I01’ SQLSTATE value now has two locale-specific messages. The database

server chooses the appropriate message based on the server-processing locale of

the UDR when it executes. For more information on how mi_db_error_raise()

locates an exception message, see “Searching for Customized Messages” on page

4-14.

Inserting a Localized Exception Message from a C UDR

As noted in the previous section, when you create messages for exceptions raised

within user-defined routines (UDRs) by mi_db_error_raise(), the locale of the

message text must match the server-processing locale. If these locales are different,

use of an SQL script or of a C UDR that calls the mi_exec() function to insert the

message is not reliable, because the SQL parser issues an exception when it

encounters characters that it does not recognize. To avoid this restriction, you can

use a UDR that prepares the INSERT statement (with mi_prepare()) to load the

error messages:

v Use placeholders (’?’ symbols) for the SQLSTATE value and the error-message

text. These values are in the first and last columns (sqlstate and message,

respectively) of the syserrors system catalog table.

4-12 IBM Informix GLS User’s Guide

v Hardcode the name of the locale that the message text uses. The locale name is

in the second column (locale) of syserrors.

For example, the following line prepares an INSERT statement for messages in the

default locale (en_us) on a UNIX system:

stmt = mi_prepare(conn,

 "insert into syserrors (?, ’en_us.8859-1’, 0, 1, ?)", NULL);

When executing this statement, you must provide values for the placeholders

(sqlstate and message) and then use the mi_exec_prepared_statement() function

to send the prepared INSERT statement to the database server.

The following UDR code uses a message array (enus_msg) to hold the SQLSTATE

values and their associated message text. It puts information about each element of

this message array in the appropriate placeholder arrays (args, lens, nulls, and

types) of the mi_exec_prepared_statement() function.

#include <stdio.h>

#include <string.h>

#include "mi.h"

#define MAX_MSG 3

char *enus_msg[MAX_MSG][2] = {

 "XT010", "First error message for insertion",

 "XT020", "Second error message for insertion",

 "XT030", "Third error message for insertion"

 };

/*

 * Title: gls_insert_enus

 * Purpose: Add localized messages to ’syserrors’ system error table

 * for given locale, independent of session locale setting.

 */

mi_integer

gls_insert_enus()

{

MI_DATUM args[2]; /* pointers to column values */

mi_integer lens[2]; /* lengths of column values */

mi_integer nulls[2]; /* null capability of columns */

mi_string *types[2]; /* types of columns */

mi_integer i;

MI_STATEMENT *stmt;

MI_CONNECTION *conn = mi_open(NULL, NULL, NULL);

/*

 * Prepare statement using placeholder values for sqlstate and message

 * columns and fixed values for locale, level, and seqno columns.

 */

stmt = mi_prepare(conn,

 "insert into syserrors values(?,’en_us.8859-1’,0,1,?)", NULL);

for (i=0; i<MAX_MSG; i++) /* Loop through message array */

{

 args[0] = (MI_DATUM)enus_msg[i][0];

 /* Set pointer to sqlstate string */

 lens[0] = strlen(args[0]); /* Set length of sqlstate string */

 nulls[0] = MI_FALSE; /* Set null handling capability */

 types[0] = "char(5)"; /* Set sqlstate column type */

 args[1] = (MI_DATUM)enus_msg[i][1];

 /* Set pointer to message string */

 lens[1] = strlen(args[1]); /* Set length of message string */

 nulls[1] = MI_FALSE; /* Set null handling capability */

 types[1] = "varchar(255)"; /* Set message column type */

mi_exec_prepared_statement(stmt,0,0,2,args,lens,nulls,types,

 NULL,NULL);

}

mi_close(conn);

return 0;

}

Chapter 4. Database Server Features 4-13

For descriptions of executing prepared statements and of how to add customized

messages to the syserrors system catalog table, see the IBM Informix DataBlade API

Programmer’s Guide.

Searching for Customized Messages

When the mi_db_error_raise() function initiates a search of the syserrors system

catalog table, it requests the message in which all components of the locale

(language, territory, code set, and optional modifier) are the same in the current

processing locale and the locale column of syserrors.

For C UDRs that use the default locale, the current processing locale is U.S. English

(en_us). When the current processing locale is U.S. English, mi_db_error_raise()

looks only for messages that use the U.S. English locale. For C UDRs that use

nondefault locales, however, the current processing locale is the server-processing

locale.

For a description of how mi_db_error_raise() searches for messages in the

syserrors system catalog table, see the chapter on exceptions in the IBM Informix

DataBlade API Programmer’s Guide.

Specifying Parameter Markers

The customized message in the syserrors system catalog table can contain

parameter markers. These parameter markers are strings of characters enclosed by a

single percent (%) symbol on each end (for example, %TOKEN%). A parameter

marker is treated as a variable for which the mi_db_error_raise() function can

supply a value. The mi_db_error_raise() function assumes that any message text

or message parameter strings that you supply are in the server-processing locale.

For a complete description of how to specify parameter markers for a customized

message, see the IBM Informix DataBlade API Programmer’s Guide.

Internationalized Tracing Messages

The API supports trace messages that correspond to a particular locale. The current

database locale determines which code set the trace message uses. Based on the

current database locale, a given tracepoint can produce an internationalized trace

message. Internationalized tracing enables you to develop and test the same code

in many different locales.

To provide internationalized tracing support, the API provides the following

capabilities:

v The systracemsgs system catalog table stores internationalized trace messages.

v Two internationalized trace functions, gl_dprintf() and gl_tprintf(), format

internationalized trace messages.

Inserting Messages in the systracemsgs System Catalog Table

The systracemsgs system catalog table stores internationalized trace messages that

you can use to debug your C UDRs. To create an internationalized trace message,

insert a row directly into the systracemsgs table.

The systracemsgs table describes each internationalized trace message.

 Column Name Description

name The name of the trace message

locale The locale with which the trace message is to be used

message The text of the trace message

4-14 IBM Informix GLS User’s Guide

The combination of message name and locale must be unique within the table.

Once you insert a new trace class into systracemsgs, the database server assigns it

a unique identifier, called a trace-message identifier. It stores the trace-class identifier

in the msgid column of systracemsgs. Once a trace message exists in the

systracemsgs table, you can specify the message either by name or by

trace-message identifier to API tracing functions.

The trace-message text can be a string of text in the appropriate language and code

set for the locale, and can contain tokens to indicate where to substitute a piece of

text. Token names are delimited between percent (%) symbols. The following

INSERT statement puts a new message called qp1_exit in the systracemsgs table:

INSERT INTO informix.systracemsgs(name, locale, message)

VALUES (’qp1_exit’, ’en_us.8859-1’,

 ’Exiting msg number was %ident%; the input is still %i%’)

This message text is in English and therefore the systracemsgs row specifies the

default locale of U.S. English.

This second message is the French version of the qp1_exit message and therefore

the systracemsgs row specifies a French locale on a UNIX system (fr_fr.8859-1):

INSERT INTO informix.systracemsgs(name, locale, message)

VALUES (’qp1_exit’, ’fr_fr.8859-1’,

 ’Le numéro de message en sortie était %ident%; \

 l’entrée est toujours %i%’)

Enter message text in the language of the server locale, with any characters

available in the server code set. To insert a variable, enclose the variable name with

a a single percent sign on each end (for example, %a%). When the database server

prepares the trace message for output, it replaces each variable with its actual

value.

Putting Internationalized Trace Messages into Code

The DataBlade API provides the following tracing functions to insert

internationalized tracepoints into UDR code:

v The GL_DPRINTF macro formats an internationalized trace message and

specifies the threshold for the tracepoint. The syntax for GL_DPRINTF is as

follows:

GL_DPRINTF(trace_class, threshold,

 (message_name [,toktype, val]...,MI_LIST_END));

v The gl_tprintf() function formats an internationalized trace message but does

not specify a tracepoint threshold.

The gl_tprintf() function is for use within a trace block, which uses the tf()

function to compare a specified threshold with the current trace level. The

syntax for gl_tprintf() is as follows:

gl_tprintf(message_name [,toktype ,val]...,

 MI_LIST_END);

Syntax elements for both GL_DPRINTF and gl_tprintf() have these values:

trace_class is either a trace-class name or the trace-class identifier integer

value expressed as a character string.

threshold is a nonnegative integer that sets the tracepoint threshold for

execution.

message_name is the identifier for an internationalized message stored in the

systracemsgs system catalog table of the database.

Chapter 4. Database Server Features 4-15

toktype is a string made up of a token name followed by a single percent

(%) symbol followed by a single character output specifier as used

in printf formats.

val is a value expression to be output that must match the type of the

output specifier in the preceding token.

MI_LIST_END is a macro constant that ends the variable-length list.

Important: The MI_LIST_END constant marks the end of the

variable-length list. If you do not include

MI_LIST_END, the user-defined routine might fail.

 This internationalized trace statement uses the GL_DPRINTF macro:

i = 6;

/* If the current trace level of the funcEntry class is greater

 * than or equal to 20, find the version of the qp1_entry

 * message whose locale matches the current database locale

 */

GL_DPRINTF("funcEntry", 20,

 ("qp1_entry",

 "ident%s", "one",

 "i%d", i,

 MI_LIST_END));

In the default locale, if the current trace level of the funcEntry class is greater than

or equal to 20, this tracepoint generates the following trace message:

13:21:51 Exiting msg number was one; the input is still 6

The following internationalized trace block that uses the gl_tprinf() function:

i = 6;

/* Compare current trace level of "funcEnd" class and

 * with a tracepoint threshold of 25. Continue execution of

 * trace block if trace level >= 25

 */

if (tf("funcEnd", 25))

 {

 i = doSomething();

 /* Generate an internationalized trace message (based

 * on current database locale) */

 gl_tprintf("qp1_exit", "ident%s", "deux", "i%d", i,

 MI_LIST_END);

 }

If the locale is French and the current trace level of the funcEntry class is greater

than or equal to 25, the tracepoint generates this trace message:

13:21:53 Le numéro de message en sortie était deux; l’entrée

est toujours 6

The database server writes the trace messages in the trace-output file in the code

set of the locale associated with the message. If the trace message originated from

the systracemsgs system catalog table, its characters are in the code set of the

locale specified in the locale column of its systracemsgs entry. The database server

might have performed code-set conversion on these trace messages if the code set

in the UDR source is different from (but compatible with) the code set of the

server-processing locale.

Searching for Trace Messages

To write an internationalized trace message to your trace-output file, the database

server must locate a row in the systracemsgs system catalog table whose locale

4-16 IBM Informix GLS User’s Guide

column matches (or is compatible with) the server-processing locale for your UDR.

Therefore, to see a particular trace message in the trace-output file, environment

variables that specify the locale (CLIENT_LOCALE, DB_LOCALE, and

SERVER_LOCALE) must be set so that the database server generates a

server-processing locale that matches an entry in the systracemsgs system catalog

table.

The database server searches the systracemsgs table for an entry with the same

name as the tracepoint and a locale in which all components of the locale

(language, territory, and code set) are the same in the current processing locale and

the locale column of systracemsgs. If only the language and territory match, the

database server converts the code set. If no message has matching language and

territory, it uses the first available message with the correct language. If there is no

message in the appropriate language, it uses the message for the default language,

en_us.

Locale-Sensitive Data in an Opaque Data Type

An opaque data type is fully encapsulated. Its internal structure is not known to

the database server. The database server cannot automatically perform the

locale-specific tasks such as code-set conversion on character data or locale-specific

formatting of date, numeric, or monetary data. When you create an opaque data

type, you must write the support functions of the opaque type so that they handle

any locale-sensitive data.

In particular, consider how to handle any locale-sensitive data when you write the

following support functions:

v The input() and output() support functions

v The receive() and send() support functions

The DataBlade API and IBM Informix GLS provide GLS support for opaque-type

support functions written in C. The following sections summarize GLS

considerations for these support functions. For general information on the support

functions of an opaque data type, see IIBM Informix User-Defined Routines and Data

Types Developer’s Guide.

Internationalized Input and Output Support Functions

The internal representation of an opaque data type is the C structure that stores the

opaque-type data. Each opaque type also has a character-based format, known as

its external representation, which is received by the database server as an

LVARCHAR value. This can hold single-byte (ASCII and non-ASCII) and multibyte

character strings, depending on the locale of the client application. (The data

length of an LVARCHAR external representation is limited only by the operating

system, not by the 32,739 byte maximum size of LVARCHAR columns in Dynamic

Server databases.)

Client applications perform code-set conversion on LVARCHAR data types. The

ability to transfer the data between a client application and database server,

however, is not sufficient to support locale-sensitive data in opaque data types. It

does not ensure that data values are correctly manipulated at the destination.

The input() and output() support functions convert the opaque data type from its

internal to an external representation, and vice versa, as follows:

v The input() function converts the external representation of the data type to the

internal representation.

Chapter 4. Database Server Features 4-17

v The output() function converts the internal representation of the data type to

the external representation.

Opaque-type support functions written as C UDRs must ensure that these

functions correctly handle any locale-sensitive data, including these tasks.

 Locale-Sensitive Task For More Information

Any code-set conversion on character data “Code-Set Conversion and the DataBlade

API” on page 4-9

Any handling of multibyte or wide characters in

character data

“The IBM Informix GLS Library” on page

4-8

Any formatting of locale-specific date, numeric,

or monetary data

“Locale-Specific Data Formatting” on

page 4-10

Internationalized Send and Receive Support Functions

The send() and receive() functions support binary transfer of opaque data types.

That is, they convert the opaque data type from its internal representation on the

client computer to its internal representation on the server computer (where it is

stored), as follows:

v The receive() function converts the internal representation of the opaque data

type on the client computer to its internal representation on the server computer.

v The send() function converts the internal representation of the opaque data type

on the server computer to its internal representation on the client computer.

If the internal representation contains character data, the client application cannot

perform any locale-specific translations, including these.

 Locale-Sensitive Task For More Information

Any code-set conversion on character data “Character Strings in Opaque-Type Support

Functions” on page 4-9

Any handling of multibyte or wide

characters in character data

“The IBM Informix GLS Library” on page 4-8

When you write receive() and send() support functions as C UDRs, you must

ensure that these functions handle these locale-sensitive tasks correctly.

4-18 IBM Informix GLS User’s Guide

Chapter 5. General SQL API Features (ESQL/C)

In This Chapter . 5-1

Supporting GLS in IBM Informix Client Applications . 5-1

Client Application Code-Set Conversion . 5-1

Data That a Client Application Converts . 5-3

Internationalizing Client Applications . 5-4

Internationalization . 5-4

Localization . 5-4

Choosing a GLS Locale . 5-5

Translating Messages . 5-5

Handling Locale-Specific Data . 5-6

Processing Characters . 5-6

Formatting Data . 5-7

Avoiding Partial Characters . 5-7

Copying Character Data . 5-7

Using Code-Set Conversion . 5-8

In This Chapter

This chapter explains how the GLS feature affects applications that you develop

with the IBM Informix Client Software Development Kit. This chapter includes the

following sections:

v Supporting GLS in IBM Informix Client Applications

v Internationalizing Client Applications

v Handling Locale-Specific Data

Supporting GLS in IBM Informix Client Applications

To connect to a database, an Informix ESQL/C client application requests a

connection from the database server. The database server must verify that it can

access the database and establish the connection between the client and the

database. Your client application performs the following tasks:

v Sends its client and database locale information to the database server

The Informix ESQL/C program performs this step automatically when it

requests a connection.

v Checks for connection warnings that the database server generates

You must include code in your Informix ESQL/C program to perform this step.

Client Application Code-Set Conversion

This section summarizes the code-set conversion that a client product performs.

For more general information about code-set conversion, see “Performing Code-Set

Conversion” on page 1-27.

The client application automatically performs code-set conversion between the

client and database code sets when both of these conditions are true:

v The code sets of the client and database locales do not match.

v A valid object code-set conversion exists for the conversion between the client

and database code sets.

© Copyright IBM Corp. 1996, 2008 5-1

When the client application begins execution, it compares the names of the client

and database locales to determine whether to perform code-set conversion. If the

CLIENT_LOCALE and DB_LOCALE environment variables are set, the client

application uses these locale names to determine the client and database code sets,

respectively. If CLIENT_LOCALE is not set (and DBNLS is not set), the client

application assumes that the client locale is the default locale. If DB_LOCALE is

not set (and DBNLS is not set), the client application assumes that the database

locale is the same as the client locale (the value of the CLIENT_LOCALE setting).

If the client and database code sets are the same, no code-set conversion is needed.

If the code sets do not match, however, the client application must determine

whether the two code sets are convertible. Two code sets are convertible if the client

can locate the associated code-set-conversion files. These code-set-conversion files

must exist on the client computer.

On UNIX, you can use the glfiles utility to obtain a list of code-set conversions

that your IBM Informix product supports. For more information, see “The glfiles

Utility (UNIX)” on page A-11. On Windows, you can examine the directory

%INFORMIXDIR%\gls\cvY to determine the GLS code-set conversions that your

IBM Informix product supports. For more information on this directory, see

“Code-Set-Conversion Files” on page A-7.

If no code-set-conversion files exist, the client application generates a run-time

error when it starts up to indicate incompatible code sets. If code-set-conversion

files exist, the client application automatically performs code-set conversion when

it sends data to or receives data from the database server.

When a client application performs code-set conversion, it assumes that:

v All data values that is processes are handled in the client code set.

v All databases that the client application accesses on a single database server use

the same database locale, territory, and code set. When the client application

opens a different database, it does not recheck the database locale to determine

if the code set has changed.

Warning: Check the eighth character field of the SQLWARN array for a warning

flag after each request for a connection. If the two database locales do

not match, the client application might be performing code-set

conversion incorrectly. The client application continues to perform any

code-set conversion based on the code set that DB_LOCALE supports. If

you proceed with such a connection, it is your responsibility to

understand the format of the data that is being exchanged.

For example, suppose your client application has CLIENT_LOCALE set to

en_us.1252 and DB_LOCALE set to en_us.8859-1. The client application

determines that it must perform code-set conversion between the Windows Code

Page 1252 (in the client locale) and the ISO8859-1 code set (in the database locale).

The client application then opens a database with the French fr_fr.8859-1 locale.

The database server sets the eighth character field of the SQLWARN array to W

because the languages and territories of the two locales are different. The database

server then uses the locale of the database (fr_fr.8859-1) for the localized order of

the data

Your application, however, might use this connection. It might be acceptable for

the application to receive the NCHAR and NVARCHAR data that is sorted in a

5-2 IBM Informix GLS User’s Guide

French localized order. Any code-set conversion that the client application

performs is still valid because both database locales support the default ISO8859-1

code set.

Instead, if the application opens a database with the Japanese SJIS (ja_jp.sjis)

locale, the database server sets the SQLWARN warning flag because the language,

territory, and code sets differ. The database server then uses the ja_jp.sjis locale for

the localized order of the data.

Your application would probably not continue with this connection. When the

client application started, it determined that code-set conversion was required

between the Windows Code Page 1252 and ISO8859-1 code set. The client

application performs this code-set conversion until it terminates.

When you open a database with ja_jp.sjis, the client application would perform

code-set conversion incorrectly because the code sets are different. It would

continue to convert between Windows Code Page 1252 and ISO8859-1 instead of

between Windows Code Page 1252 and Japanese SJIS. This situation could lead to

corruption of data.

Tip: If your ESQL/C client application uses code-set conversion, you might need

to take special programming steps. For more information, see “Handling

Code-Set Conversion” on page 6-15.

Data That a Client Application Converts

When the code sets of two locales differ, an IBM Informix client product must use

code-set conversion to prevent data corruption of character data. Code-set

conversion converts the following character data elements:

v Values of SQL data types

– CHAR, VARCHAR, NCHAR and NVARCHAR

– TEXT (the BYTE data type is not converted)

Dynamic Server

– LVARCHAR

– Character data in opaque data types (if their support functions perform the

code-set conversions)

End of Dynamic Server

v Values of Informix ESQL/C character types (char, fixchar, string, and varchar)

v SQL statements, both static and dynamic

v SQL identifiers. These include names of columns, tables, views, prepared

statements, cursors, constraints, indexes, triggers, and other database objects. For

a list of SQL objects that can include non-ASCII characters in their identifiers,

see “Non-ASCII Characters in Identifiers” on page 3-3.

v SPL text

v Command text

v Error message text in the sqlca.sqlerrm field

Chapter 5. General SQL API Features (ESQL/C) 5-3

Internationalizing Client Applications

To internationalize or localize a client application, use IBM Informix GLS, an

application programming interface (API) for applications that use a C-language

interface. For more information, see “GLS Support by IBM Informix Products” on

page 1-3.

Internationalization

Internationalization is the process of creating or modifying an application so that it

can use the correct GLS locale to support different languages, territories, and code

sets without changing or recompiling the code.

This process makes IBM Informix database applications easily adaptable to any

culture and language. For a database application, you perform internationalization

on the application that accesses a database, not on the database. The data in a

database that the application accesses should already be in a language that the end

user can understand.

To internationalize a database application, design the application so that the tasks

in the following table do not make any assumptions about the language, territory,

and code set that the application uses at runtime.

 Application Task Description

User interfaces Includes any text that is visible to end users, including menus, buttons,

prompts, help text, status messages, error messages, and graphics

Character

processing

Includes the following processing tasks:

v Character classification

v Character case conversion

v Collation and sorting

v Character versus byte processing

v String traversal

v Code-set conversion

Data

formatting

Includes any culture-specific formats for numeric, monetary, date, and

time values

Documentation Includes any explanatory material such as printed manuals, online

documentation, and README files

Debugging via

tracing

(IDS, DB API)

The DataBlade API provides the application or DataBlade developer the

capability of using internationalized trace messages. It uses in-line code

working with system catalog tables: systracemsgs and systraceclasses.

For more information, see the IBM Informix DataBlade API Programmer’s

Guide.

An internationalized application dynamically obtains language-specific information

for these application tasks. Therefore, one executable file for the application can

support multiple languages.

Localization

Localization is the process of adapting a product to a specific cultural environment.

This process usually involves the following tasks:

v Creating culture-specific resource files

v Translating message or resource files

5-4 IBM Informix GLS User’s Guide

v Setting date, time, and money formats

v Translating the product user interface

Localization might also include the translation and production of end-user

documentation, packaging, and collateral materials.

To localize a database application, you create a database application for a specific

language, territory, and code set. Localization involves the following tasks:

v Ensure that GLS locales exist for the desired language, territory, and code set.

v Translate the character strings in any external resource or message files that the

application uses.

Important: An internationalized application is much easier localize than a

non-internationalized application.

Choosing a GLS Locale

To localize your application, choose a locale that provides the culture-specific

information for the language, territory, and code set that the application is to

support. For information about locales, see “Setting a GLS Locale” on page 1-14.

An internationalized application makes no assumptions about how these locales

are set at runtime. Once the application environment specifies the locales to use,

the application can access the appropriate GLS locale files for locale-specific

information. As long as a GLS locale is provided that supports a particular

language, territory, and code set, the application can obtain the locale-specific

information dynamically.

The current processing locale (sometimes called just the current locale) is the locale

that is currently in effect for an application. It is based on one of the following

environments:

v The client environment

Informix ESQL/C creates client applications. Therefore, the current processing

locale for Informix ESQL/C applications is the client locale.

v The database that the database server is currently accessing

Database API

The current processing locale for DataBlade client applications is the client locale.

The current processing locale for DataBlade UDRs is the server-processing locale,

which the database server determines from the client, database, and server locales.

End of Database API

Translating Messages

An internationalized application should not have any language-specific text within

the application code. This language-specific text includes the following kinds of

strings:

v Strings that the application displays or writes

Examples include error messages, informational messages, menu items, and

button labels.

v Strings that the application uses internally

Examples include constants, filenames, and literal characters or strings.

v Strings that an end user is expected to enter

Chapter 5. General SQL API Features (ESQL/C) 5-5

Examples include yes and no responses.

Tip: You do not need to put SQL keywords (such as SELECT, WHERE, INSERT,

and CREATE) in a message file. In addition, language keywords (such as if,

switch, for, and char) do not need to appear in a message file.

In an internationalized application, these strings appear as references to external

files, called resource files or message files. To localize these strings of the database

application, you must perform the following tasks:

v Translate all strings within the external files.

The new external files contain the translated versions of the strings that the

application uses.

v Set the DBLANG environment variable to the subdirectory within

INFORMIXDIR that contains the translated message files that the IBM Informix

products use.

The INFORMIXDIR environment variable indicates the location where the IBM

Informix products are installed. You can use the rgetmsg() and rgetlmsg()

functions to obtain IBM Informix product messages. For more information on

these functions, see the IBM Informix ESQL/C Programmer’s Manual.

Handling Locale-Specific Data

Each IBM Informix SQL API product contains a processor to process an Informix

ESQL/C source file that has embedded SQL and preprocessor statements. The

Informix ESQL/C processor, esql, processes C source files.

The processors for Informix ESQL/C products use operating-system files in the

following situations:

v They write language-specific source files (.c) when they process an Informix

ESQL/C source file.

The Informix ESQL/C processors use the client code set (that the client locale

specifies) to generate the filenames for these language-specific files.

v They read Informix ESQL/C source files (.ec) that the user creates.

The Informix ESQL/C processors use the client code set to interpret the contents

of these Informix ESQL/C source files.

Use the CLIENT_LOCALE environment variable to specify the client locale.

Processing Characters

A GLS locale supports a specific code set, which can contain single-byte characters

and multibyte characters. When your application processes only single-byte

characters, if can perform string-processing tasks based on the assumption that the

number of bytes in a buffer equals the number of characters that the buffer can

hold. For single-byte code sets, you can rely on the built-in scaling for array

allocation and access that the C compiler provides.

If your application processes multibyte characters, however, it can no longer

assume that the number of bytes in a buffer equals the number of characters in the

buffer. Because of the potential of varying number of bytes for each character, you

can no longer rely on the C compiler to perform character-processing tasks such as

traversing a multibyte-character string and allocating sufficient space in memory

for a multibyte-character string.

5-6 IBM Informix GLS User’s Guide

You can use functions from the IBM Informix GLS library to communicate to your

application how to perform internationalization on character-processing tasks.

Character-processing tasks include the following:

v String traversal

v String processing

v Character classification

v Case conversion

v Character comparison and sorting

Formatting Data

When you internationalize an application, consider how to handle the format of

locale-specific data. The format in which numeric, monetary, and date and time

data appears to the end user is locale specific. The GLS locale file defines

locale-specific formats for each of these types of data, as the following table shows.

 Type of Data Locale-File Category

Numeric NUMERIC

Monetary MONETARY

Date and Time TIME

The IBM Informix GLS library provides functions that allow you to perform the

following tasks on locale-specific data:

v Conversion changes a string that contains locale-specific format to the internal

representation of its value

You usually perform conversion on a locale-specific string to prepare it for

storage in a program variable or a database column.

v Formatting changes the internal representation of a value to locale-specific string.

You usually perform formatting of a locale-specific string to prepare the internal

representation of a value for display to the end user.

Avoiding Partial Characters

When you use a locale that supports a multibyte code set, make sure that you

define buffers large enough to avoid the generation of partial characters. Possible

areas for consideration are as follows:

v When you copy data from one buffer to another

v When you have character data that might undergo code-set conversion

For more detailed examples of partial characters, see “Partial Characters in Column

Substrings” on page 3-16.

Copying Character Data

When you copy data, you must ensure that the buffers are an adequate size to

hold the data. If the destination buffer is not large enough for the multibyte data in

the source buffer, the data might be truncated during the copy.

For example, the following Informix ESQL/C code fragment copies the multibyte

data A1A2A3B1B2B3 from buf1 to buf2:

Chapter 5. General SQL API Features (ESQL/C) 5-7

char buf1[20], buf2[5];

...

stcopy("A1A2A3B1B2B3", buf1);

...

stcopy(buf1, buf2);

Because buf2 is not large enough to hold the multibyte string, the copy truncates

the string to A1A2A3B1B2. To prevent this situation, ensure that the multibyte

string fits into a buffer before the Informix ESQL/C program performs the copy.

Using Code-Set Conversion

If you have a character buffer to hold character data from a database, you must

ensure that this buffer is large enough to accommodate any expansion that might

occur if the application uses code-set conversion. If the client and database locales

are different and convertible, the application might need to expand this value. For

more information, see “Performing Code-Set Conversion” on page 1-27.

For example, if the fname column is defined as CHAR(8), the following Informix

ESQL/C code fragment selects an 8-byte character value into the 10-byte buf1 host

variable:

char buf1[10];

...

EXEC SQL select fname into :buf1 from tab1

 where cust_num = 29;

You might expect a 10-byte buffer to be adequate to hold an 8-byte character value

from the database. If the client application expands this value to 12 bytes, however,

the value no longer fits in the buf1 buffer. The fname value is truncated to fit in

buf1, possibly creating partial characters if fname contains multibyte characters.

For more information, see “Partial Characters in Column Substrings” on page 3-16.

To avoid this situation, define buffers to handle the maximum character-expansion

possible, 4 bytes, in the conversion between your client and database code sets.

5-8 IBM Informix GLS User’s Guide

Chapter 6. IBM Informix ESQL/C Features (ESQL/C)

In This Chapter . 6-1

Handling Non-ASCII Characters . 6-2

Using Non-ASCII Characters in Host Variables . 6-2

Generating Non-ASCII Filenames . 6-3

Using Non-ASCII Characters in ESQL/C Source Files . 6-4

Filtering Non-ASCII Characters . 6-4

Invoking the ESQL/C Filter . 6-5

Defining Variables for Locale-Sensitive Data . 6-6

Using Enhanced ESQL/C Library Functions . 6-7

DATE-Format Functions . 6-7

GL_DATE Support . 6-7

DBDATE Extensions . 6-8

Extended DATE-Format Strings . 6-8

Precedence for Date End-User Formats . 6-9

DATETIME-Format Functions . 6-9

GL_DATETIME Support . 6-10

DBTIME Support . 6-10

Extended DATETIME-Format Strings . 6-10

Precedence for DATETIME End-User Formats . 6-10

Numeric-Format Functions . 6-11

Support for Multibyte Characters . 6-11

Locale-Specific Numeric Formatting . 6-11

Currency-Symbol Formatting . 6-12

DBMONEY Extensions . 6-14

String Functions . 6-14

GLS-Specific Error Messages . 6-14

Handling Code-Set Conversion . 6-15

Writing TEXT Values . 6-15

Using the DESCRIBE Statement . 6-16

The sqldata Field . 6-16

The sqlname Field . 6-17

Using the TRIM Function . 6-17

In This Chapter

This chapter explains how the GLS feature affects Informix ESQL/C, an SQL

application programming interface (API). It includes the following sections:

v “Handling Non-ASCII Characters” on page 6-2

v “Defining Variables for Locale-Sensitive Data” on page 6-6

v “Using Enhanced ESQL/C Library Functions” on page 6-7

v “Handling Code-Set Conversion” on page 6-15

v “Using the TRIM Function” on page 6-17

This chapter covers GLS information that is specific to Informix ESQL/C. For

additional GLS information for Informix ESQL/C, see Chapter 5, “General SQL

API Features (ESQL/C),” on page 5-1

Tip: For features that are not unique to the GLS feature, see the IBM Informix

ESQL/C Programmer’s Manual. For information about the DataBlade API, a C

language API that is provided with Dynamic Server, see the IBM Informix

DataBlade API Programmer’s Guide.

© Copyright IBM Corp. 1996, 2008 6-1

Handling Non-ASCII Characters

The Informix ESQL/C processors obtain the code set for use in Informix ESQL/C

source files from the client locale. Within an Informix ESQL/C source file, you can

use non-ASCII characters for the following program objects:

v Informix ESQL/C comments

v Names of SQL identifiers such as databases, tables, columns, views, constraints,

prepared statements, and cursors

For more information, see “Naming Database Objects” on page 3-2.

v Informix ESQL/C host variable and indicator variable names

For example, in an Informix ESQL/C program, this use of multibyte characters

is valid:

char A1A2[20], B1B2[20];

...

EXEC SQL select col1, col2 into :A1A2 :B1B2;

For more information on Informix ESQL/C host variables, see “Using

Non-ASCII Characters in Host Variables” on page 6-2.

v Literal strings

For example, in an Informix ESQL/C program, the following use of multibyte

characters is valid:

EXEC SQL insert into tbl1 (nchr1) values ’A1A2B1B2’;

Dynamic Server

v Filenames and pathnames, if your operating system supports multibyte

characters in filenames and pathnames.

End of Dynamic Server

Tip: Some C-language compilers support multibyte characters in literals or

comments only. For such compilers, you might need to set the ESQLMF and

CC8BITLEVEL environment variables so that the Informix ESQL/C processor

calls a multibyte filter. For more information, see “Generating Non-ASCII

Filenames” on page 6-3.

To use non-ASCII characters in your Informix ESQL/C source file, the client locale

must support them. For information about the use of non-ASCII characters, see

“Non-ASCII Characters in Identifiers” on page 3-3.

Using Non-ASCII Characters in Host Variables

Informix ESQL/C allows the use of non-ASCII characters in host variables when

the following conditions are true:

v The client locale supports a code set with the non-ASCII characters that the

host-variable name contains. You must set the client locale correctly before you

preprocess and compile an Informix ESQL/C program. For more information,

see “Setting a GLS Locale” on page 1-14.

v Your C compiler supports compilation of the same non-ASCII characters as the

source code.

You must ensure that the C compiler supports use of non-ASCII characters in C

source code. For information about how to indicate the support that your C

compiler provides for non-ASCII characters, see “Invoking the ESQL/C Filter”

on page 6-5.

6-2 IBM Informix GLS User’s Guide

Informix ESQL/C applications can also support non-ASCII characters in comments

and SQL identifiers. For more information, see “Non-ASCII Characters in

Identifiers” on page 3-3.

The following code fragment declares an integer host-variable that contains a

non-ASCII character in the host-variable name and then selects a serial value into

this variable:

/*

 This code fragment declares an integer host variable

 "hôte_ent", which contains a non-ASCII character in the

 name, and selects a serial value (code number in the

 "numéro" column of the "abonnés" table) into it.

*/

EXEC SQL BEGIN DECLARE SECTION;

 int hôte_ent;

...

EXEC SQL END DECLARE SECTION;

...

EXEC SQL select numéro into :hôte_ent from abonnés

 where nom = ’Ötker’;

If the client locale supports the non-ASCII characters, you can use these characters

to define indicator variables, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;

 char hôtevar[30];

 short ind_de_hôtevar;

EXEC SQL END DECLARE SECTION;

You can then access indicator variables with these non-ASCII names, as the

following example shows:

:hôtevar INDICATOR :hôtevarind

:hôtevar :hôtevar ind

$hôtevar $hôtevar ind

Generating Non-ASCII Filenames

When an Informix ESQL/C source file is processed, the Informix ESQL/C

processor generates a corresponding intermediate file for the source file. If you use

non-ASCII characters (8-bit and multibyte character) in these source filenames, the

following restrictions affect the ability of the Informix ESQL/C processor to

generate filenames that contain non-ASCII characters:

v The Informix ESQL/C processor must know whether the operating system is

8-bit clean.

For more information, see “GLS8BITFSYS” on page 2-9.

v The code set of the client locale (the client code set) must support the non-ASCII

characters that are used in the Informix ESQL/C source filename.

v Your C compiler supports the non-ASCII characters that the filename of the

Informix ESQL/C source file uses.

If your C compiler does not support non-ASCII characters, you can use the

CC8BITLEVEL environment variable as a workaround when your source file

contains multibyte characters. For more information, see “Generating Non-ASCII

Filenames” on page 6-3.

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-3

Using Non-ASCII Characters in ESQL/C Source Files

The Informix ESQL/C processor, esql, accepts C source programs that are written

in the client code set (the code set of the client locale). The Informix ESQL/C

preprocessor, esqlc, can accept non-ASCII characters (8-bit and multibyte) in the

Informix ESQL/C source code as long as the client code set defines them.

The capabilities of your C compiler, however, might limit your ability to use

non-ASCII characters within an Informix ESQL/C source file. If the C compiler

does not fully support non-ASCII characters, it might not successfully compile an

Informix ESQL/C program that contains these characters. To provide support for

common non-ASCII limitations of C compilers, Informix ESQL/C provides an

Informix ESQL/C filter that is called esqlmf.

This section provides the following information about the Informix ESQL/C filter:

v How the Informix ESQL/C filter processes non-ASCII characters

v How you invoke the Informix ESQL/C filter

Filtering Non-ASCII Characters

As part of the compilation process of an Informix ESQL/C source program, the

Informix ESQL/C processor calls the C compiler. When you develop Informix

ESQL/C source code that contains non-ASCII characters, the way that the C

compiler handles such characters can affect the success of the compilation process.

In particular, the following situations might affect compilation of your Informix

ESQL/C program:

v Multibyte characters might contain C-language tokens.

A component of a multibyte character might be indistinguishable from some

single-byte characters such as percent (%), comma (,), backslash (\), and

double quote (″) characters. If such characters are included in a quoted string,

the C compiler might interpret them as C-language tokens, which can cause

compilation errors or even lost characters.

v The C compiler might not be 8-bit clean.

If a code set contains non-ASCII characters (with code values that are greater

than 127), the C compiler must be 8-bit clean to interpret the characters. To be

8-bit clean, a compiler must read the eighth bit as part of the code value; it must

not ignore or put its own interpretation on the meaning of this eighth bit.

To filter a non-ASCII character, the Informix ESQL/C filter converts each byte of

the character to its octal equivalent. For example, suppose the multibyte character

A1A2A3 has an octal representation of \160\042\244 and appears in the stcopy()

call.

stcopy("A1A2A3", dest);

After esqlmf filters the Informix ESQL/C source file, the C compiler sees this line

as follows:

stcopy("\160\042\244", dest); /* correct interpretation */

To handle the C-language-token situation, the filter prevents the C compiler from

interpreting the A2 byte (octal \042) as an ASCII double quote and incorrectly

parsing the line as follows:

stcopy("A1"A3, dest); /* incorrect interpretation of A2 */

The C compiler would generate an error for the preceding line because the line has

terminated the string argument incorrectly. The esqlmf utility also handles the

6-4 IBM Informix GLS User’s Guide

8-bit-clean situation because it prevents the C compiler from ignoring the eighth bit

of the A3 byte. If the compiler ignores the eighth bit, it incorrectly interprets A3

(octal \244) as octal \044.

Invoking the ESQL/C Filter

Figure 6-1 shows how an Informix ESQL/C program that contains non-ASCII

characters becomes an executable program.

The esql command can automatically call the Informix ESQL/C filter, esqlmf, to

process non-ASCII characters. When you set the following environment variables,

you tell esql how to invoke esqlmf:

v The ESQLMF environment variable indicates whether esql automatically calls

the Informix ESQL/C filter.

When you set ESQLMF to 1, esql automatically calls esqlmf after the Informix

ESQL/C preprocessor and before the C compiler.

v The CC8BITLEVEL environment variable indicates the non-ASCII characters in

the Informix ESQL/C source file that esqlmf filters.

Set CC8BITLEVEL to indicate the ability of your C compiler to process

non-ASCII characters.

How esqlmf filters an Informix ESQL/C source file depends on the value of the

CC8BITLEVEL environment variable. For each value of CC8BITLEVEL, the

following table shows the esqlmf command that the Informix ESQL/C processor

invokes on a Informix ESQL/C source file.

 CC8BITLEVEL esqlmf Action

0 Converts all non-ASCII characters, in literal strings and comments, to

octal constants.

1 Converts non-ASCII characters in literal strings, but not in comments,

to octal constants.

2 Converts non-ASCII characters in literal strings to octal constants to

ensure that all the bytes in the non-ASCII characters have the eighth

bit set.

3 Does not invoke esqlmf.

Figure 6-1. Creating an ESQL/C Executable Program from a Non-ASCII Source Program

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-5

Important: To invoke the esqlmf commands that CC8BITLEVEL can specify, you

must set the ESQLMF environment variable to 1.

When you set CC8BITLEVEL to 0, 1, or 2, the Informix ESQL/C processor

performs the following steps:

1. Converts the embedded-language statements (source.ec) to C-language source

code (source.c) with the Informix ESQL/C preprocessor

2. Filters non-ASCII characters in the preprocessed file (source.c) with the

Informix ESQL/C filter, esqlmf (if the ESQLMF environment variable is 1)

Before esqlmf begins filtering, it creates a copy of the C source file (source.c)

that has the .c_ file extension (source.c_).

3. Compiles the filtered C source file (source.c) with the C compiler to create an

object file (source.o)

4. Links the object file with the Informix ESQL/C libraries and your own libraries

to create an executable program

When you set CC8BITLEVEL to 3, the Informix ESQL/C processor omits step 2 in

the preceding list.

If you do not set CC8BITLEVEL, then esql converts non-ASCII characters in literal

strings and comments. You can modify the value of CC8BITLEVEL to reflect the

capabilities of your C compiler.

Defining Variables for Locale-Sensitive Data

The SQL data types NCHAR and NVARCHAR support locale-specific data, in the

sense that the database server uses localized collation (if the locale defines

localized collation), rather than code set order, for sorting data strings of these

types. For more information about NCHAR and NVARCHAR data types, see

“Using Character Data Types” on page 3-8.

Informix ESQL/C supports the predefined data types string, fixchar, and varchar

for host variables that contain character data. In addition, you can use the C char

data type for host variables. You can use these four host-variable data types for

NCHAR and NVARCHAR data.

Your Informix ESQL/C program can access columns of data types NCHAR and

NVARCHAR when it selects into or reads from character host variables. The

following code fragment declares a char host variable, hôte, and then selects

NCHAR data into the hôte variable:

/*

 This code fragment declares a char host variable "hôte",

 which contains a non-ASCII character in the name, and

 selects NCHAR data (non-ASCII names in the "nom" column

 of the "abonnés" table) into it.

*/

EXEC SQL BEGIN DECLARE SECTION;

 char hôte[10];

...

EXEC SQL END DECLARE SECTION;

...

EXEC SQL select nom into :hôte from abonnés

 where numéro > 13601;

6-6 IBM Informix GLS User’s Guide

When you declare Informix ESQL/C host variables for the NCHAR and

NVARCHAR data types, note the relationship between the declared size of the

variable and the amount of character data that it can hold, as follows:

v If your locale supports a single-byte code set, the size of the NCHAR and

NVARCHAR variable determines the number of characters that it can hold.

v If your locale supports a multibyte code set, you can no longer assume a

one-byte-per-character relationship.

In this case, you must ensure that you declare an Informix ESQL/C host

variable large enough to accommodate the number of characters that you expect

to receive from the database.

For more information, see “The NCHAR Data Type” on page 3-8 and “The

NVARCHAR Data Type” on page 3-9.

You can insert a value that a character host variable (char, fixchar, string, or

varchar) holds in columns of the NCHAR or NVARCHAR data types.

Using Enhanced ESQL/C Library Functions

IBM Informix SQL API products support locale-specific enhancements to the

Informix ESQL/C library functions. These Informix ESQL/C library functions fall

into the following categories:

v DATE-format functions

v DATETIME-format functions

v Numeric-format functions

v String functions

In addition, this section describes the GLS-related error messages that these

Informix ESQL/C functions might produce.

DATE-Format Functions

The Informix ESQL/C DATE-format functions are as follows:

v rdatestr()

v rstrdate()

v rdefmtdate()

v rfmtdate()

These functions support extensions to format era-based DATE values:

v Support for the GL_DATE environment variable

v Era-based date formats of the DBDATE environment variable

v Extensions to the date-format strings for Informix ESQL/C DATE-format

functions

v Support for a precedence of date end-user formats

This section describes locale-specific behavior of the Informix ESQL/C

DATE-format functions. For details, see the IBM Informix ESQL/C Programmer’s

Manual.

GL_DATE Support

The GL_DATE setting les can affect the results that these Informix ESQL/C

DATE-format functions generate. The end-user format that GL_DATE specifies

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-7

overrides date end-user formats that the client locale defines. For more

information, see “Precedence for Date End-User Formats” on page 6-9.

DBDATE Extensions

The Informix ESQL/C DATE-format functions that support the extended era-based

date syntax for the DBDATE environment variable are as follows:

v rdatestr()

v rstrdate()

When you set DBDATE to one of the era-based formats, these functions use

era-based dates to convert between date strings and internal DATE values. The

following Informix ESQL/C example shows a call to the rdatestr() library function:

char str[100];

long jdate;

...

rdatestr(jdate, str);

printf("%s\n", str);

If you set DBDATE to GY2MD/ and CLIENT_LOCALE to the Japanese SJIS locale

(ja_jp.sjis), the preceding code prints this value for the date 08/18/1990:

H02/08/18

Important: IBM Informix products treat any undefined characters in the alphabetic

era specification as an error.

If you set DBDATE to a era-based date format (which is specific to a Chinese or

Japanese locale), make sure to set the CLIENT_LOCALE environment variable to a

locale that supports era-based dates.

Extended DATE-Format Strings

The Informix ESQL/C DATE-format functions that support the extended-DATE

format strings are as follows:

v rdefmtdate()

v rfmtdate()

The following table shows the extended-format strings that these Informix ESQL/C

functions support for use with GLS locales. These extended-format strings format

eras with 2-digit year offsets.

 Era Year Format Era Used

Full era year: full name of the base year

(period) followed by a 2-digit year offset.

Same as GL_DATE end-user format of

″%EC%02.2Ey″

eyy The era that the client locale

(which CLIENT_LOCALE

indicates) defines

Abbreviated era year: abbreviated name of

the base year (period) followed by a 2-digit

year offset. Same as GL_DATE end-user

format of ″%Eg%02.2Ey″

gyy The era that the client locale

(which CLIENT_LOCALE

indicates) defines

The following table shows some extended-format strings for era-based dates. These

examples assume that the client locale is Japanese SJIS (ja_jp.sjis).

6-8 IBM Informix GLS User’s Guide

Description Example Format October 5, 1990 prints as:

Abbreviated era year gyymmdd

gyy.mm.dd

H021005

H02.10.05

Full era year eyymmdd

eyy-mm-dd

eyyB1B2mmB1B2ddB1B2

A1A2021005

A1A202-10-05

A1A202B1B210B1B205B1B2

The following Informix ESQL/C code fragment contains a call to the rdefmtdate()

library function:

char fmt_str[100];

char in_str[100];

long jdate;

...

rdatestr("10/05/95", &jdate);

stcopy("gyy/mm/dd", fmt_str);

rdefmtdate(&jdate, fmt_str, in_str);

printf("Abbreviated Era Year: %s\n", in_str);

stcopy("eyymmdd", fmt_str);

rdefmtdate(&jdate, fmt_str, in_str);

printf("Full Era Year: %s\n", in_str);

When the CLIENT_LOCALE specifies the Japanese SJIS (ja_jp.sjis) locale, the code

fragment displays the following output:

Abbreviated Era Year: H07/10/05

Full Era Year: H021005

Precedence for Date End-User Formats

The Informix ESQL/C DATE-format functions use the following precedence to

determine the end-user format for values in DATE columns:

1. The end-user format that DBDATE specifies (if DBDATE is set)

2. The end-user format that GL_DATE specifies (if GL_DATE is set)

3. The end-user date format that the client locale specifies (if CLIENT_LOCALE is

set)

4. The end-user date format from the default locale: %m %d %iY

For more information on the precedence of DBDATE, GL_DATE, and

CLIENT_LOCALE, refer to “Date and Time Precedence” on page 1-31.

Tip: IBM Informix products support DBDATE for compatibility with earlier

products. It is recommended that you use the GL_DATE environment

variable for new client applications.

DATETIME-Format Functions

The Informix ESQL/C DATETIME-format functions are as follows:

v dtcvfmtasc()

v dttofmtasc()

These functions support extensions to format era-based DATETIME values:

v Support for the GL_DATETIME environment variable

v Support for era-based date and times of the DBTIME environment variable

v Extensions to the date and time format strings for Informix ESQL/C

DATETIME-format functions

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-9

v Support for a precedence of DATETIME end-user formats

This section describes locale-specific behavior of the Informix ESQL/C

DATETIME-format functions. For general information about the Informix ESQL/C

DATETIME-format functions, see the IBM Informix ESQL/C Programmer’s Manual.

GL_DATETIME Support

The GL_DATETIME setting can affect results that these Informix ESQL/C

DATETIME-format functions generate. The end-user format that GL_DATETIME

specifies overrides date and time formats that the client locale defines. For more

information, see “Precedence for DATETIME End-User Formats” on page 6-10.

DBTIME Support

The Informix ESQL/C DATETIME-format functions support the extended

era-based date and time format strings for the DBTIME environment variable.

When you set DBTIME to an era-based format, these functions can convert

between literal DATETIME strings and internal DATETIME values.

Tip: IBM Informix products support DBTIME for compatibility with earlier

products. It is recommended that you use the GL_DATETIME environment

variable for new applications.

If you set DBTIME to a era-based DATETIME format (which is specific to a

Chinese or Japanese locale), make sure to set the CLIENT_LOCALE environment

variable to a locale that supports era-based dates and times.

Extended DATETIME-Format Strings

The following table shows the extended-format strings that the Informix ESQL/C

DATETIME-format functions support.

 Format Description December 27, 1991 Printed

%y %m %dc1 Taiwanese Ming Guo date 80 12 27

%Y %m %dc1 Taiwanese Ming Guo date 0080 12 27

%y %m %dj1 Japanese era with abbreviated era symbols H03 12 27

%Y %m %dj1 Japanese era with abbreviated era symbols H0003 12 27

%y %m %dj2 Japanese era with full era symbols A1A2B1B203 12 27

%Y %m %dj2 Japanese era with full era symbols A1A2B1B20003 12 27

In addition to the formats in the preceding table, these Informix ESQL/C

DATETIME-format functions support the GLS date and time specifiers. For a list of

these specifiers, see “GL_DATE” on page 2-11 and “GL_DATETIME” on page 2-16.

Precedence for DATETIME End-User Formats

The Informix ESQL/C DATETIME-format functions use the following precedence

to determine the end-user format of values in DATETIME columns:

1. The end-user format that DBTIME specifies (if DBTIME is set)

2. The end-user format that GL_DATETIME specifies (if GL_DATETIME is set)

3. The date and time end-user formats that the client locale specifies (if

CLIENT_LOCALE is set)

4. The date and time end-user format from the default locale: %iY-%m-%d

%H:%M:%S

6-10 IBM Informix GLS User’s Guide

For more information on the precedence of DBDATE, GL_DATE, and

CLIENT_LOCALE, refer to “Date and Time Precedence” on page 1-31.

Numeric-Format Functions

The Informix ESQL/C numeric-format functions are as follows:

v rfmtdec()

v rfmtdouble()

v rfmtlong()

These functions support the following extensions to format numeric values:

v Support for multibyte characters in format strings

v Locale-specific formats for numeric values

v Formatting characters for currency symbols

v Support for the DBMONEY environment variable

This section describes locale-specific behavior of the Informix ESQL/C

numeric-format functions. For general information about the Informix ESQL/C

numeric-format functions, see the IBM Informix ESQL/C Programmer’s Manual.

Tip: For a list of errors that these Informix ESQL/C numeric-format functions

might return, see “GLS-Specific Error Messages” on page 6-14.

Support for Multibyte Characters

The Informix ESQL/C numeric-format functions support multibyte characters in

their format strings if your client locale supports a multibyte code set that defines

these characters. These Informix ESQL/C functions and routines, however,

interpret multibyte characters as literal characters. You cannot use multibyte

equivalents of the ASCII formatting characters.

For example, the following Informix ESQL/C code fragment shows a call to the

rfmtlong() function with the multibyte character A1A2 in the format string:

stcopy("A1A2***,***", fmtbuf);

rfmtlong(78941, fmtbuf, outbuf);

printf("Formatted value: %s\n", outbuf);

This code fragment generates the following output (if the client code set contains

the A1A2 character):

Formatting value: A1A2*78,941

Locale-Specific Numeric Formatting

The Informix ESQL/C numeric-format functions require a format string as an

argument. This format string determines how the numeric-format function formats

the numeric value. A format string consists of a series of formatting characters and

the following currency notation.

 Formatting Character Function

Dollar sign ($) Currency symbol

Comma (,) Thousands separator

Period (.) Decimal separator

Regardless of the client locale that you use, you must use the preceding ASCII

symbols in the format string to identify where to place the currency symbol,

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-11

decimal separator, and thousands separator. The numeric-format function uses the

following precedence to translate these symbols to their locale-specific equivalents:

1. The symbols that DBMONEY indicates (if DBMONEY is set)

For information about the locale-specific behavior of DBMONEY, see

“DBMONEY Extensions” on page 6-14.

2. The symbols that the appropriate locale category of the client locale (if

CLIENT_LOCALE is set) specifies

If the format string contains either a $ or @ formatting character, a

numeric-format function assumes that the value is a monetary value and refers

to the MONETARY category of the client locale. If these two symbols are not in

the format string, a numeric-format function refers to the NUMERIC category

of the client locale.

For more information on the use of the $ and @ formatting characters, see

“Currency-Symbol Formatting” on page 6-12. For more information on the

MONETARY and NUMERIC locale categories, see “Locale Categories” on page

A-2.

3. The actual symbol that appears in the format string ($, comma, or period)

These numeric-format functions replace the dollar sign in the format string with

the currency symbol that DBMONEY specifies (if it is set) or with the currency

symbol that the client locale specifies (if DBMONEY is not set).

The same is true for the decimal separator and thousands separator. For example,

the following Informix ESQL/C code fragment shows a call to the rfmtlong()

function:

stcopy("$***,***.&&", fmtbuf);

rfmtlong(78941, fmtbuf, outbuf);

printf("Formatted value: %s\n", outbuf);

In the default, German, and Spanish locales, this code fragment produces the

following results for the logical MONEY value of 78941.00 (if DBMONEY is not

set).

 Format String Client Locale Formatted Value

$***,***.&& Default locale (en_us.8859-1) $*78,941.00

German locale (de_de.8859-1) DM*78.941,00

Spanish locale (es_es.8859-1) Pts*78.941,00

Currency-Symbol Formatting

The Informix ESQL/C numeric-format functions support all formatting characters

that the IBM Informix ESQL/C Programmer’s Manual describes. In addition, you can

use the following formatting characters to indicate the placement of a currency

symbol in the formatted output.

6-12 IBM Informix GLS User’s Guide

Formatting

Character Function

$ This character is replaced by the front currency symbol if the locale defines

one. The MONETARY category of the locale defines the front currency

symbol, which is the symbol that appears before a monetary value. When

you group several dollar signs in a row, a single currency symbol floats to

the right-most position that it can occupy without interfering with the

number.

@ This character is replaced by the back currency symbol if the locale defines

one. The MONETARY category of the locale defines the back currency

symbol, the symbol that appears after a monetary value.

For more information, see “The MONETARY Category” on page A-4.

You can include both formatting characters in a format string. The locale defines

whether the currency symbol appears before or after the monetary value, as

follows:

v If the locale formats monetary values with a currency symbol before the value,

the locale sets the currency symbol to the front currency symbol and sets the back

currency symbol to a blank character.

v If the locale formats monetary values with a currency symbol after the value, the

locale sets the currency symbol to the back currency symbol and sets the front

currency symbol to a blank character.

The default locale defines the currency symbol as the front currency symbol, which

appears as a dollar sign ($). In the default locale, the back currency symbol appears

as a blank space. In the default, British, and French locales, the numeric-format

functions produce the following results for the internal MONEY value of 1.00.

 Format String Client Locale Formatted Result

$***,*** Default locale (en_us.8859-1)

British locale (en_gb.8859-1)

French locale (fr_fr.8859-15)

$******1

£******1

s******1

$***,***@ Default locale (en_us.8859-1)

British locale (en_gb.8859-1)

French locale (fr_fr.8859-15)

$******1s

£******1s

s******1€

$$,$$$.$$ Default locale (en_us.8859-1)

British locale (en_gb.8859-1)

French locale (fr_fr.8859-15)

ssss$1.00

ssss£1.00

sssss1,00

,@ Default locale (en_us.8859-1)

British locale (en_gb.8859-1)

French locale (fr_fr.8859-15)

******1s

******1s

******1€

@***,*** Default locale (en_us.8859-1)

British locale (en_gb.8859-1)

French locale (fr_fr.8859-15)

s******1

s******1

€******1

In the preceding table, the character s represents a blank or space, € is the currency

symbol for Euros, and £ is the British currency symbol for pounds Sterling.

The DBMONEY environment variable can also set the precede-currency symbol

and the succeed-currency symbol. The syntax diagram in “DBMONEY” on page

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-13

2-6 refers to these symbols as front and back, respectively. The DBMONEY setting,

if one is specified, takes precedence over the symbols that the MONETARY

category of the locale defines.

DBMONEY Extensions

You can specify the currency symbol and decimal-separator symbol with the

DBMONEY environment variable. These settings override any currency notation

that the client locale specifies.

You can use multibyte characters for these symbols if your client code set supports

them. For example, the following table shows how multibyte characters appear in

examples of output.

Format String

Number to

Format DBMONEY Output

″$$,$$$.$$″ 1234 ’$’. $1,234.00

″$$,$$$.$$″ 1234 DM, DM1.234,00

″$$,$$$.$$″ 1234 A1A2. A1A21,234.00

″$$,$$$.$$″ 1234 .A1A2 s1,234.00

″&&,&&&.&&@″ 1234 .A1A2 s1,234.00A1A2

″$&&,&&&.&&@″ 1234 A1A2. A1A2s1,234.00

″$&&,&&&.&&@″ 1234 .A1A2 s1,234.00A1A2

″@&&,&&&.&&″ 1234 .A1A2 A1A2s1,234.00

In the preceding table, the character s represents a blank or space.

String Functions

The following Informix ESQL/C string functions support locale-specific shifted

characters:

v rdownshift()

v rupshift ()

These string functions use the information in the CTYPE category of the client

locale to determine the shifted code points. If the client locale specifies a multibyte

code set, these functions can operate on multibyte strings.

Important: With multibyte character strings, a shifted string might occupy more

memory after a shift operation than before. You must ensure that the

buffer you pass to these Informix ESQL/C shift functions is large

enough to accommodate this expansion.

GLS-Specific Error Messages

The following Informix ESQL/C functions might generate GLS-specific error

messages:

v DATE-format functions

v DATETIME-format functions

v Numeric-format functions

For more information on GLS-specific error messages, use the finderr utility on

UNIX or the Informix Error Messages utility on Windows.

6-14 IBM Informix GLS User’s Guide

Handling Code-Set Conversion

When the client and database code sets differ, the Informix ESQL/C client

application performs code-set conversion on character data. For more information,

see “Performing Code-Set Conversion” on page 1-27. If your Informix ESQL/C

application executes in an environment in which code-set conversion might occur,

check that the application correctly handles the following situations:

v When the application writes simple large objects (TEXT or BYTE data) to the

database, it must set the loc_type field in the locator structure loc_t to indicate

the type of simple large object that it needs to write.

Dynamic Server

v When the application writes smart large objects (CLOB or BLOB data) to the

database, it uses various large-object file descriptors.

End of Dynamic Server

v When the application uses the sqlda structure to describe dynamic SQL

statements, it must account for possible size differences in character data.

v When the application has character data that might undergo code-set conversion,

you must declare character buffers that can hold the data.

For more information, see “Avoiding Partial Characters” on page 5-7.

Writing TEXT Values

Informix ESQL/C uses the loc_t locator structure to read simple large objects from

and write simple large objects to the database server. The loc_type field of this

structure indicates the data type of the simple large object that the structure

describes. When the client and database code sets are the same (no code-set

conversion), the client application does not need to set the loc_type field explicitly

because the database server can determine the simple large object data type

implicitly. The database server assumes character data in the TEXT data type and

noncharacter data in the BYTE data type.

If the client and database code sets are different and convertible, however, the

client application must know the data type of the simple large object in order to

determine whether to perform code-set conversion on the data.

Before an Informix ESQL/C client application inserts a simple large object in the

database, it must explicitly set the loc_type field of the simple large object:

v For a TEXT value, the Informix ESQL/C client application must set the loc_type

field to SQLTEXT before the INSERT statement. The client performs code-set

conversion on TEXT data before it sends this data to the database for insertion.

v For a BYTE value, the Informix ESQL/C client application must set the loc_type

field to SQLBYTES before the INSERT statement. The client does not perform

code-set conversion on BYTE data before it sends this data to the database for

insertion.

Important: The sqltypes.h header file defines the data type constants SQLTEXT

and SQLBYTES. To use these constants, you must include this header

file in your Informix ESQL/C source file.

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-15

Your Informix ESQL/C source code does not need to set loc_type before it reads

simple-large-object data from a database. The database server obtains the data type

of the simple large object from the database and sends this data type to the client

with the data.

If you set loc_bufsize to -1, Informix ESQL/C allocates memory to hold a single

simple large object. It stores the address of this memory buffer in the loc_buffer

field of the loc_t structure. If the client application performs code-set conversion on

TEXT data that the database server retrieves, Informix ESQL/C handles any

possible data expansion as follows:

1. Frees the existing memory that the loc_buffer field references

2. Reallocates a memory buffer that is large enough to store the expanded TEXT

data

3. Assigns the address of this new buffer to the loc_buffer field

4. Assigns the size of the new memory buffer to the loc_bufsize field

If this reallocation occurs, Informix ESQL/C changes the memory address at which

it stores the TEXT data. If your Informix ESQL/C program references this address,

the program must account for the address change.

Informix ESQL/C does not need to reallocate memory for the TEXT data if

code-set conversion does not expand the TEXT data or if it condenses the data. In

either of these cases, the loc_buffer field remains unchanged, and the loc_bufsize

field contains the size of the buffer that the loc_buffer field references.

Using the DESCRIBE Statement

The sqlda structure is a dynamic-management structure that contains information

about columns in dynamic SQL statements. The DESCRIBE...INTO statement uses

the sqlda structure to return information about the columns in the select list of the

Projection clause of a SELECT statement. It sets the sqlvar field of an sqlda

structure to point to a sequence of partially filled sqlvar_struct structures. Each

structure describes a single select-list column.

Each sqlvar_struct structure contains character data for the column name and the

column data. When the Informix ESQL/C client application fills this structure, the

column name and the column data are in the client code set. When the database

server fills this structure and executes a DESCRIBE...INTO statement, this character

data is in the database code set.

When the client application performs code-set conversion between the client and

database code sets, the number of bytes that is required to store the column name

and column data in the client code set might not equal the number that is required

to store this same information in the database code set. Therefore, the size of the

character data in sqlvar_struct might increase or decrease during code-set

conversion. To handle this possible difference in size, the client application must

ensure that it correctly handles the character data in the sqlvar_struct structure.

The sqldata Field

To hold the column data, the client application must allocate a buffer and set

sqldata to point to this buffer. If your client application might perform code-set

conversion, it must allocate sufficient storage to handle the increase in the size of

the column data that might occur.

When the DESCRIBE ... INTO statement sets the sqllen field, the sqllen value

indicates the length of the column data in the database code set. Therefore, if you

6-16 IBM Informix GLS User’s Guide

use the value of sqllen that the DESCRIBE ... INTO statement retrieves, you might

not allocate a buffer that is sufficiently large for the data values when they are in

the client code set.

For example, the following code fragment allocates an sqldata buffer with the

malloc() system call:

EXEC SQL include sqlda;

...

struct sqlda *q_desc;

...

EXEC SQL describe sqlstmt_id into q_desc;

...

q_desc->sqlvar[0].sqldata =

 (char *)malloc(q_desc->sqlvar[0].sqllen);

In the preceding code fragment, the client application might truncate characters

that it converts because the client application uses the sqllen value to determine

the buffer size. Instead, increase the buffer to four times its original size when you

allocate a buffer, as the following code fragment shows:

EXEC SQL include sqlda;

EXEC SQL define BUFSIZE_FACT 4;

...

struct sqlda *q_desc;

...

q_desc->sqlvar[0].sqllen =

 q_desc->sqlvar[0].sqllen * BUFSIZE_FACT + 1;

q_desc->sqlvar[0].sqldata =

 (char *)malloc(q_desc->sqlvar[0].sqllen);

A buffer-size factor (BUFSIZE_FACT) of 4 is suggested because a multibyte

character has a maximum size of 4 bytes.

The sqlname Field

The sqlname field contains the name of the column. When the client application

performs code-set conversion, this column name might also undergo expansion

when the application converts it from the database code set to the client code set.

Because the Informix ESQL/C application stores the buffer for sqlname data in its

internal work area, your Informix ESQL/C source code does not have to handle

possible buffer-size increases. Your code processes the contents of sqlname in the

client code set.

Using the TRIM Function

When you dynamically execute a SELECT statement, the DESCRIBE statement can

return information about the columns in the select list of the Projection clause at

runtime. DESCRIBE returns the data type of a select-list column in the appropriate

field of the dynamic-management structure that you use.

When you use the DESCRIBE statement on a prepared SELECT statement with the

TRIM function in its select list, the data type of the trimmed column that

DESCRIBE returns depends on the database server that you use and the data type

of the column to be trimmed (the source character-value expression). For more

information on the source character-value expression, see the description of the

TRIM function in the IBM Informix Guide to SQL: Syntax.

Chapter 6. IBM Informix ESQL/C Features (ESQL/C) 6-17

The data type that the DESCRIBE statement returns depends on the data type of

the source character-value expression, as identified in the following table:

 Table 6-1. The TRIM Function

Sequence

Number Operand Type Result Type Result Length

1 (N)CHAR(1-255) (N)VARCHAR Up to 255

2 (N)CHAR(>255) LVARCHAR Up to 32739

3 (N)VARCHAR (N)VARCHAR Up to 255

4 LVARCHAR LVARCHAR Up to 32739

The following SELECT statement contains the manu_code column, which is

defined as a CHAR data type, and the cat_advert column, which is defined as a

VARCHAR column. When you describe the following SELECT statement and use

the TRIM function, DESCRIBE returns a data type of SQLVCHAR for both

trimmed columns:

SELECT TRIM(manu_code), TRIM(cat_advert) FROM catalog;

If the manu_code column is defined as NCHAR instead, DESCRIBE returns a data

type of SQLNVCHAR for this trimmed column.

Important: The sqltypes.h header file defines the data type constants SQLCHAR,

SQLVCHAR, and SQLNVCHAR. To use these constants, include this

header file in your Informix ESQL/C source file.

6-18 IBM Informix GLS User’s Guide

Appendix A. Managing GLS Files

This appendix describes the files provided for GLS, which are executable only. The

following sections describe how to manage GLS files:

v Accessing GLS Files

v GLS Locale Files

v Other GLS Files

v Removing Unused Files

UNIX Only

v The glfiles Utility (UNIX)

End of UNIX Only

Accessing GLS Files

IBM Informix products access the following GLS files to obtain locale-related

information. For an overview of what type of information these files provide, see

“Understanding a GLS Locale” on page 1-7.

 GLS Files Reference

GLS locale files page A-2

Code-set-conversion files page A-7

Code-set files page A-9

The registry file page A-10

In general, you do not need to examine the GLS files. You might, however, wish to

look at these files to determine the following locale-specific information.

 Locale-Specific Information GLS File to Examine Reference

Collation order:

Exact localized order Source locale file (*.lc):

COLLATION category

page A-3

Exact code-set collation order Source code-set file (*.cm) page A-9

Character mappings:

Locale-specific mapping between

uppercase and lowercase characters

Source locale file (*.lc): CTYPE

category

page A-3

Locale-specific classification of

characters

Source locale file (*.lc): CTYPE

category

page A-3

Code-set-specific character mappings Source code-set file (*.cm) page A-9

Mappings between characters of the

source and target code sets

Source code-set-conversion file

(*.cv)

page A-7

Method for character mismatches

during code-set conversion

Source code-set-conversion file

(*.cv)

page A-7

Code points for characters Source code-set file (*.cm) page A-9

© Copyright IBM Corp. 1996, 2008 A-1

Locale-Specific Information GLS File to Examine Reference

End-user formats:

Numeric (nonmonetary) data Source locale file (*.lc): NUMERIC

category

page A-4

Monetary data Source locale file (*.lc):

MONETARY category

page A-4

Date data Source locale file (*.lc): TIME

category

page A-5

Time data Source locale file (*.lc): TIME

category

page A-5

GLS Locale Files

The locale file defines a GLS locale. It describes the basic language and cultural

conventions that are relevant to the processing of data for a given language and

territory. This section describes the locale categories and the locations of the locale

files.

Locale Categories

A locale file specifies behaviors for the locale categories. The CTYPE and

COLLATION categories primarily affect how the database server stores and

retrieves character data in a database. The NUMERIC, MONETARY, and TIME

categories affect how a client application formats the internal values of the

associated SQL data types. For more information about end-user formats, see

“End-User Formats” on page 1-11 and “Customizing End-User Formats” on page

1-30. The following table describes the locale categories and the behaviors for the

default locale, U.S. English.

 Locale Category Description In Default Locale (U.S. English)

CTYPE Controls the behavior

of character

classification and case

conversion.

The default code set classifies characters. On

UNIX, the default code set is ISO8859-1. On

Windows, the default code set is Windows

Code Page 1252.

COLLATION Controls the behavior

of string comparisons.

The default locale does not define a localized

order. Therefore, the database server collates

NCHAR and NVARCHAR data in code-set

order (unless SET COLLATION has specified

some localized order).

NUMERIC Controls the behavior

of non-monetary

numeric end-user

formats.

The following numeric notation for use in

numeric end-user formats:

v Thousands separator: comma (,)

v Decimal separator: period (.)

v Number of digits between thousands

separators: 3

v Symbol for positive number: plus (+)

v Symbol for negative number: minus (-)

v No alternative digits for era-based dates

A-2 IBM Informix GLS User’s Guide

Locale Category Description In Default Locale (U.S. English)

MONETARY Controls the behavior

of currency end-user

formats.

The following currency notation for use in

monetary end-user formats:

v Currency symbol: dollar sign ($) appears

as the front symbol before the currency

value

v No back currency symbol is defined.

v Thousands separator: comma (,)

v Decimal separator: period (.)

v Number of digits between thousands

separators: 3

v Symbol for positive number: plus (+)

v Symbol for negative number: minus (-)

Default scale for MONEY columns: 2

TIME Controls the behavior

of date and time

end-user formats.

The following date and time end-user

formats:

v DATE values: %m/%d/%iy

v DATETIME values: %iY-%m-%d

%H:%M:%S

No definitions for era-based dates.

MESSAGES Controls the

definitions of

affirmative and

negative responses to

messages.

None

The CTYPE Category

The CTYPE category defines how to classify the characters of the code set that the

locale supports. This category includes specifications for which characters the

locale classifies as spaces, blanks, control characters, digits, uppercase letters,

lowercase letters, and punctuation symbols.

This category might also include mappings between uppercase and lowercase

letters. IBM Informix products access this category when they need to determine

the validity of an identifier name, to shift the letter case of a character, or to

compare characters.

The COLLATION Category

The COLLATION category can define a localized order. When an IBM Informix

product needs to compare two strings, it first breaks up the strings into a series of

collation elements. The database server compares each pair of collation elements

according to the collation weights of each element. The COLLATION category

supports the following capabilities:

v Multicharacter collation elements define sets of characters that the database

server should collate as a single unit. For example, the localized collating order

might treat the Spanish double-L (ll) as a single collation element instead of as a

pair of l’s.

v Equivalence classes assign the same collation weight to different elements. For

example, the localized order might specify that a and A are an equivalence class

(a and A are equivalent characters).

Appendix A. Managing GLS Files A-3

The difference in collation order is the only distinction between the CHAR and

NCHAR data types and the VARCHAR and NVARCHAR data types. For more

information, see “Using Character Data Types” on page 3-8.

If a locale does not contain a COLLATION category, IBM Informix products use

code-set order for collation of all character data types:

v CHAR

Dynamic Server

v LVARCHAR

End of Dynamic Server

v NCHAR

v NVARCHAR

v TEXT

v VARCHAR

Dynamic Server

The SET COLLATION statement can specify a localized collation that is different

from the COLLATION setting of the locale that DB_LOCALE specifies. The scope

of the collating order that SET COLLATION specifies is the current session, but

database objects that can sort strings, such as constraints, indexes, UDRs, and

triggers, always use the collating order from the time of their creation when they

sort NCHAR or NVARCHAR values.

End of Dynamic Server

The NUMERIC Category

The NUMERIC category defines the following numeric notation for end-user

formats of nonmonetary numeric values:

v The numeric decimal separator

v The numeric thousands separator

v The number of digits to group together before inserting a thousands separator

v The characters that indicate positive and negative numbers

This numeric notation applies to the end-user formats of data for numeric

(DECIMAL, INTEGER, SMALLINT, FLOAT, SMALLFLOAT) columns within a

client application.

Important: Information in the NUMERIC category does not affect the internal

format of the numeric data types in the database.

The NUMERIC category also defines alternative digits for use in era-based dates

and times. For information about alternative digits, see “Alternative Date Formats”

on page 2-13 and “Alternative Time Formats” on page 2-18.

The MONETARY Category

The MONETARY category defines the following currency notation for end-user

formats of monetary values:

v The currency symbol, and whether it appears before or after a monetary value

v The monetary decimal separator

A-4 IBM Informix GLS User’s Guide

v The monetary thousands separator

v The number of digits to group between each appearance of a monetary

thousands separator

v The characters that indicate positive and negative monetary values and the

position of these characters (before or after)

v The scale (the number of fractional digits to the right of the decimal point) to

display

This currency notation applies to the end-user formats of data from MONEY

columns within a client application.

Important: Information in the MONETARY category does not affect the internal

format of the MONEY data type in the database.

The MONETARY category also defines the default scale for a MONEY column. For

the default locale (U.S. English), the database server stores values of the data type

MONEY(precision) in the same internal format as the data type

DECIMAL(precision,2). A nondefault locale can define a different default scale. For

more information on default scales, see “Specifying Values for the Scale Parameter”

on page 3-33.

The TIME Category

The TIME category lists characters and symbols that format date and time values.

This information includes the names and abbreviations for days of the week and

months of the year. It also includes special representations for dates, time (12-hour

and 24-hour), and DATETIME values.

These representations can include the names of eras (as in the Japanese Imperial

era system) and non-Gregorian calendars (such as the Arabic lunar calendar). The

locale specifies the calendar (Gregorian, Hebrew, Arabic, Japanese Imperial, and so

on) for reading or printing a month, day, or year.

If the locale supports era-based dates and times, the TIME category defines the full

and abbreviated era names and special date and time representations. For more

information, see “Alternative Date Formats” on page 2-13 and “Alternative Time

Formats” on page 2-18.

This date and time information applies to the end-user formats of data in DATE

and DATETIME columns within a client application.

Important: Information in the TIME category does not affect the internal format of

the DATE and DATETIME data types in the database.

The MESSAGES Category

The MESSAGES category defines the format for affirmative and negative

responses. This category is optional. IBM Informix products do not use the strings

that the MESSAGES category defines.

To obtain the locale name for the MESSAGES category of the client locale, a client

application uses the locale that CLIENT_LOCALE indicates. If CLIENT_LOCALE

is not set, the client sets the category to the default locale.

Location of Locale Files

When an IBM Informix product needs to obtain locale-specific information, it

accesses one of the GLS locale files in the following table.

Appendix A. Managing GLS Files A-5

Platform Locale File

UNIX $INFORMIXDIR/gls/lcX/lg_tr/codemodf.lco

Windows %INFORMIXDIR%\gls\lcX\lg_tr\codemodf.lco

In these paths, INFORMIXDIR is the environment variable that specifies the

directory in which you install the IBM Informix product, and gls is the

subdirectory that contains the GLS files. This rest of this section describes the

remaining elements in the pathname of GLS locale files.

Locale-File Subdirectories

The subdirectories of the lcX subdirectory, where X represents the version number

for the locale object-file format, contain the GLS locale files. These subdirectories

have names of the form lg_tr, where lg is the 2-character language name and tr is

the 2-character territory name that the locale supports.

The next table shows some languages and territories that IBM Informix products

can support, and their associated locale-file subdirectory names.

 Language Territory Locale-File Subdirectory

English Australia

United States

Great Britain

en_au

en_us

en_gb

German Germany

Austria

Switzerland

de_de

de_at

de_ch

French Belgium

Canada

Switzerland

France

fr_be

fr_ca

fr_ch

fr_fr

Locale Source and Object Files

Each locale file has the following two forms:

v A locale source file is an ASCII file that defines the locale categories for the

locale.

This file has the .lc file extension and serves as documentation for the

corresponding object file.

v A locale object file is a compiled form of the locale information.

IBM Informix products use the object file to obtain locale information quickly.

Locale object files have the .lco file extension.

The header of the locale source file (.lc) lists the language, territory, code set, and

any optional locale modifier of the locale. A section of the locale source file

supports each of the locale categories, unless that category is empty, as the next

table shows.

 Locale Category Reference Locale Category Reference

CTYPE page A-3 MONETARY page A-4

COLLATION page A-3 TIME page A-5

NUMERIC page A-4 MESSAGES page A-5

A-6 IBM Informix GLS User’s Guide

Locale Filenames

To conform to the 8.3 filename.ext restriction on the maximum number of characters

in valid filenames and file extensions on DOS systems, a GLS locale file uses a

condensed form of the code-set name, codemodf, in its filenames. The 4-character

code name of each locale file is the hexadecimal representation of the code-set

number for the code set that the locale supports. The 4-character modf name is the

optional locale modifier.

For example, the ISO8859-1 code set has an IBM CCSID number of 819 in decimal

and 0333 in hexadecimal. Therefore, the 4-character name of a locale source file

that supports the ISO8859-1 code set is 0333.lc.

The next table shows some code sets and locale modifiers that IBM Informix

products can support, along with their associated locale source filenames.

 Code Set Locale Modifier Locale Source File

ISO8859-1 (IBM CCSID 819) None

Dictionary

0333.lc

0333dict.lc

Windows Code Page 1252 (West Europe) None

Dictionary

04e4.lc

04e4dict.lc

IBM CCSID 850 None

Dictionary

0352.lc

0352dict.lc

A French locale that supports the ISO8859-1 code set has a GLS locale that is called

0333.lc file in the fr_fr locale-file subdirectory. The default locale, U.S. English, also

uses the ISO8859-1 code set (on UNIX platforms); a locale file that is called 0333.lc

is also in the en_us locale-file subdirectory. Because both the French and U.S.

English locales support the Windows Code Page 1252, both the fr_fr and en_us

locale-file subdirectories contain a 04e4.lc locale file as well.

Other GLS Files

In addition to GLS locale files, IBM Informix products might also use the following

GLS files:

v Code-set-conversion files map one code set to another.

v Code-set files define code-point values for code sets.

Windows Only

v The registry file converts locale aliases to valid locale filenames.

End of Windows Only

Code-Set-Conversion Files

The code-set-conversion file describes how to map each character in a particular

source code set to the characters of a particular target code set. IBM Informix

products can perform a given code-set conversion if code-set-conversion files exist

to describe the mapping between the two code sets.

Important: A client application checks the code sets that the client and database

locales support when it begins execution. If code sets are different, and

Appendix A. Managing GLS Files A-7

no code-set-conversion files exist, the client application generates an

error. For information, see “Establishing a Database Connection” on

page 1-22.

When an IBM Informix product needs to obtain code-set-conversion information, it

accesses one of the GLS code-set-conversion files in the following table.

 Platform Code-Set-Conversion File

UNIX $INFORMIXDIR/gls/cvY/code1code2.cvo

Windows %INFORMIXDIR%\gls\cvY\code1code2.cvo

In these paths, INFORMIXDIR is the environment variable that specifies the

directory in which you install the IBM Informix product, gls is the subdirectory

that contains the GLS files, and Y represents the version number for the

code-set-conversion object-file format.

This rest of this section describes the remaining elements in the pathname of GLS

code-set-conversion files.

Code-Set-Conversion Source and Object Files

Each code-set-conversion file has the following two forms:

v The code-set-conversion source file is an ASCII file that describes the mapping to

use for one direction of the code-set conversion.

This file has a .cv extension and serves as documentation for the corresponding

object file.

v The code-set-conversion object file is a compiled form of the code-set-conversion

information.

IBM Informix products use the object file to obtain code-set-conversion

information quickly. Object code-set-conversion files have a .cvo file extension.

The header of the code-set-conversion source file (.cv) lists the two code sets that it

converts and the direction of the conversion.

Code-Set-Conversion Filenames

To conform to DOS 8.3 naming conventions, GLS code-set-conversion files use a

condensed form of the code-set names, code1code2, in their filenames. The

8-character name of each code-set-conversion file is derived from the hexadecimal

representation of the code-set numbers of the source code set (code1) and the target

code set (code2).

For example, the ISO8859-1 code set has an IBM CCSID number of 819 in decimal

and 0333 in hexadecimal. The IBM CCSID 437 code set, a common IBM UNIX code

set, has a hexadecimal value of 01b5. Therefore, the 033301b5.cv

code-set-conversion file describes the conversion from the CCSID 819 code set to

the CCSID 437 code set.

Required for Code-Set Conversion

IBM Informix products use the Code-Set Name-Mapping file to translate between

code-set names and the more compact code-set numbers. You can use the registry

file to find the hexadecimal values that correspond to code-set names or code-set

numbers.

Most code-set conversion requires two code-set-conversion files. One file supports

conversion of characters in code set A to their counterparts in code set B. Another

A-8 IBM Informix GLS User’s Guide

supports the conversion in the return direction (from B to A). Such conversions are

called two-way code-set conversions. For example, the code-set conversion between

the CCSID 437 code set (hexadecimal 01b5 code number) and the CCSID 819 code

set (or ISO8859-1 with a hexademical 0333 code number) requires the following

two code-set-conversion files:

v The 01b50333.cv file describes the mappings to use when IBM Informix products

convert characters in the CCSID 437 code set to those in the ISO8859-1 code set.

v The 033301b5.cv file describes the mappings to use when IBM Informix products

convert characters in the ISO8859-1 code set to those in the CCSID 437 code set.

To be able to convert between these two code sets, an IBM Informix product must

be able to locate both these code-set-conversion object files. Performing the

conversion on only one direction would result in mismatched characters. For more

information on mismatched characters, see “Performing Code-Set Conversion” on

page 1-27.

The following table shows some of the code-set conversions that IBM Informix

products can support, along with their associated code-set-conversion source

filenames.

Source Code Set Target Code Set

Code-Set-Conversion

Source File

ISO8859-1 Windows Code Page 1252 033304e4.cvo

Windows Code Page 1252 ISO8859-1 04e40333.cvo

ISO8859-1 IBM CCSID 850 03330352.cvo

IBM CCSID 850 ISO8859-1 03520333.cvo

Windows Code Page 1252 IBM CCSID 850 04e40352.cvo

IBM CCSID 850 Windows Code Page 1252 035204e4.cvo

Code-Set Files

A code-set file (also called a character-mapping or charmap file) defines a code set

for subsequent use by locale and code-set-conversion files. A GLS locale includes

the appropriate code-set file for the code set that it supports. In addition, IBM

Informix products can perform code-set conversion between the code sets that

have code-set files.

When an IBM Informix product needs to obtain code-set information, it accesses

one of the GLS code-set files in the following table.

 Platform Code-Set File

UNIX $INFORMIXDIR/gls/cmZ/code.cmo

Windows %INFORMIXDIR%\gls\cmZ\code.cmo

In these paths, INFORMIXDIR is the environment variable that specifies the

directory in which you install the IBM Informix product, gls is the subdirectory

that contains the GLS files, and Z represents the version number for the code-set

object-file format.

Each code-set file has the following two forms:

v The code-set source file is an ASCII file that describes the characters of a

character set.

Appendix A. Managing GLS Files A-9

This file has a .cm extension and serves as documentation for the corresponding

object file.

v The code-set object file is a compiled form of the code-set information.

The object file is used to create locale object files. Object code-set files have a

.cmo file extension.

The Informix registry File (Windows)

The Code-Set Name-Mapping file, which is called registry, is an ASCII file that

associates code-set names and aliases with their code-set numbers. A code-set

number is based on the IBM CCSID numbering scheme. IBM Informix products

use code-set numbers to determine the filenames of locale and code-set-conversion

files.

For example, you can specify the French locale that supports the ISO8859-1 code

set with any of the following locale names as locale aliases:

v The full code-set name

fr_fr.8859-1

v The decimal value of the IBM CCSID number

fr_fr.819

v The hexadecimal value of the IBM CCSID number

fr_fr.0333

When you specify a locale name with either of the first two forms, IBM Informix

products use the Code-Set Name-Mapping file to translate between code-set names

(8859-1) or code-set number (819) to the condensed code-set name (0333). For

information about the file format and search algorithm that IBM Informix products

use to convert code-set names to code-set numbers, refer to the comments at the

top of the registry file.

When an IBM Informix product needs to obtain information about locale aliases, it

accesses the GLS code-set files in the following path:

%INFORMIXDIR%\gls\cmZ\registry

In these paths, INFORMIXDIR is the environment variable that specifies the

directory in which you install the IBM Informix product, gls is the subdirectory

that contains the GLS files, and Z represents the version number for the code-set

object-file format.

Warning: Do not remove the Code-Set Name-Mapping file, registry, from the

Informix directory. Do not modify this file. IBM Informix products use

this file for the language processing of all locales.

Removing Unused Files

An IBM Informix product contains the following GLS files:

v Locale files: source (*.lc) and object (*.lco)

v Code-set-conversion files: source (*.cv) and object (*.cvo)

v Code-set files: source only (*.cm)

A-10 IBM Informix GLS User’s Guide

Removing Locale and Code-Set-Conversion Files

To save disk space, you might want to keep only those files that you intend to use.

This section describes which of these files you can safely remove from your

Informix installation. You can safely remove the following GLS files from your

Informix installation:

v For those locales that you do not intend to use, you can remove locale source and

object files (.lc and .lco) from the subdirectories of the lcX subdirectory in your

Informix installation.

For more information on the lcX pathname, see “Locale-File Subdirectories” on

page A-6.

v For those code-set conversions that you do not intend to use, you can remove

code-set-conversion source and object files (.cv and .cvo) from the subdirectories

of the cvY subdirectory in your Informix installation.

For more information on the cvY pathname, see “Code-Set-Conversion

Filenames” on page A-8.

Warning: Do not remove the locale object file for the U.S. 8859-1 English locale,

0333.lco in the en_us locale-file subdirectory. In addition, do not remove

the Code-Set Name-Mapping file, registry. IBM Informix products use

these files for the language processing of all locales.

Because IBM Informix products do not access source versions of locale and

code-set conversion files, you can safely remove them. These files, however,

provide useful online documentation for the supported locales and code-set

conversions. If you have enough disk space, it is recommended that you keep

these source files for the GLS locales (*.lc) and code-set conversions (*.cv) that your

Informix installation supports.

Removing Code-Set Files

The source version of code-set files (.cm) are provided as online documentation for

the locales and code-set conversions that use them. Because IBM Informix products

do not access source code-set files, you can safely remove them. However, if you

have enough disk space, it is recommended that you keep these source files for the

GLS locales and code-set conversions that your Informix installation supports.

The glfiles Utility (UNIX)

To comply with MS-DOS 8.3 legacy format for filenames, IBM Informix products

use condensed filenames to store GLS locales and code-set-conversion files. These

filenames do not match the names of the locales and code sets that the end user

uses. You can use the glfiles utility to generate a list of the following GLS-related

files:

v The GLS locales that are available on your system

v The IBM Informix code-set-conversion files that are available on your system

v The IBM Informix code-set files that are available on your system

Before you run glfiles, take the following steps:

v Set the INFORMIXDIR environment variable to the directory in which you

install your IBM Informix product.

If you do not set INFORMIXDIR, glfiles checks the /usr/informix directory for

the GLS files.

v Change to the directory where you want the files that glfiles generates to reside.

Appendix A. Managing GLS Files A-11

The utility creates the GLS file listings in the current directory.

The following diagram shows the syntax of the glfiles utility.

��

�

-lc

glfiles

-cv

-cm

��

Element Purpose

-cv The glfiles utility creates a file that lists the available

code-set-conversion files.

-lc The glfiles utility creates a file that lists the available GLS locales.

-cm The glfiles utility creates a file that lists the available character

mapping (charmap) files.

Listing Code-Set-Conversion Files

When you specify the -cv command-line option, the glfiles utility creates a file that

lists the available code-set-conversion files. For each cvY subdirectory in

$INFORMIXDIR/gls, glfiles creates a file in your current directory that is called

cvY.txt, where Y is the version number of the code-set-conversion object-file

format. The cvY.txt file lists the code-set conversions in alphabetical order, sorted

on the name of the object code-set-conversion file.

For two-way code-set conversions, the $INFORMIXDIR/gls/cvY directory contains

two code-set-conversion files. One file supports conversion from the characters in

code set A to their mappings in code set B, and another supports the conversion in

the return direction (from code set B to code set A). For more information on

two-way code-set conversion, see page A-7.

Figure A-1 shows a file, cv9.txt, that lists available code-set conversions.

Filenames: cv9/002501b5.cvo and cv9/01b50025.cvo

Between Code Set: Greek

 and Code Set: IBM CCSID 437

Filenames: cv9/00250333.cvo and cv9/03330025.cvo

Between Code Set: Greek

 and Code Set: ISO8859-1

Filenames: cv9/033304e4.cvo and cv9/004e40333.cvo

Between Code Set: 8859-1

 and Code Set: 1252

Examine the cvY.txt file to determine the code-set conversions that the

$INFORMIXDIR/gls/cvY directory on your system supports.

Listing GLS Locale Files

The glfiles utility can create a file that lists the available GLS locales in the

following ways:

v When you specify the -lc command-line option

Figure A-1. Sample glfiles File for Informix Code-Set-Conversion Files

A-12 IBM Informix GLS User’s Guide

v When you omit all command-line options

For each lcX subdirectory in the gls directory specified in INFORMIXDIR, glfiles

creates a file in the current directory that is called lcX.txt, where X is the version

number of the locale object-file format. The lcX.txt file lists the locales in

alphabetical order, sorted on the name of the GLS locale object file.

Figure A-2 shows a sample file, lc11.txt, that contains the available GLS locales.

Examine the lcX.txt files to determine the GLS locales that the

$INFORMIXDIR/gls/lcX directory on your system supports.

Windows Only

To find out which GLS locales are available on your Windows system, you must

look in the GLS system directories. A GLS locale resides in this file:

%INFORMIXDIR%\gls\lcX\lg_tr\codemodf.lco

Filename: lc11/ar_ae/0441.lco

Language: Arabic

Territory: United Arabic Emirates

Modifier: greg

Code Set: 8859-6

Locale Name: ar_ae.8859-6

Filename: lc11/ar_ae/0441greg.lco

Language: Arabic

Territory: United Arabic Emirates

Modifier: greg

Code Set: 8859-6

Locale Name: ar_ae.8859-6

. . .

Filename: lc11/en_us/0333.lco

Language: English

Territory: United States

Code Set: 8859-1

Locale Name: en_us.8859-1

Filename: lc11/en_us/0333dict.lco

Language: English

Territory: United States

Modifier: dict

Code Set: 8859-1

Locale Name: en_us.8859-1

Filename: lc11/en_us/0352.lco

Language: English

Territory: United States

Code Set: PC-Latin-1

Locale Name: en_us.PC-Latin-1

Filename: lc11/en_us/04e4.lco

Language: English

Territory: United States

Code Set: CP1252

Locale Name: en_us.CP1252

. . .

Figure A-2. Sample glfiles File for GLS Locales

Appendix A. Managing GLS Files A-13

In this path, INFORMIXDIR is the environment variable that specifies the

directory in which you install the IBM Informix product, gls is the subdirectory

that contains the GLS system files, X represents the version number of the locale

file format, lg is the two-character language name, tr is the two-character territory

name that the locale supports, and codemodf is the condensed locale name.

End of Windows Only

Listing Character-Mapping Files

When you specify the -cm command-line option, the glfiles utility creates a file

that lists the available character mapping (charmap) files. For each cmZ

subdirectory in $INFORMIXDIR/gls, glfiles creates a file in the current directory

that is called cmZ.txt, where Z is the version number of the charmap object-file

format. The cmZ.txt file lists the character mappings in alphabetical order, sorted

on the name of the GLS object charmap file.

Figure A-3 shows a sample file, cm3.txt, that contains the available character

mappings.

Filename: cm3/032d.cm

Code Set: 8859-7

Filename: cm3/0333.cm

Code Set: 8859-1

Filename: cm3/0352.cm

Code Set: PC-Latin-1

Filename: cm3/04e4.cm

Code Set: CP1252

Examine the cmZ.txt file to determine the character mappings that the

$INFORMIXDIR/ gls/cmZ directory on your system supports.

Figure A-3. Sample glfiles File for Informix Character-Mapping Files

A-14 IBM Informix GLS User’s Guide

Appendix B. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft Windows navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our manuals are available in dotted decimal format. For more

information about the dotted decimal format, go to “Dotted Decimal Syntax

Diagrams.”

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

Dotted Decimal Syntax Diagrams

The syntax diagrams in our publications are available in dotted decimal format,

which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two

or more syntax elements are always present together (or always absent together),

the elements can appear on the same line, because they can be considered as a

single compound syntax element.

© Copyright IBM Corp. 1996, 2008 B-1

http://www.ibm.com/able

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To

hear these numbers correctly, make sure that your screen reader is set to read

punctuation. All syntax elements that have the same dotted decimal number (for

example, all syntax elements that have the number 3.1) are mutually exclusive

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can

include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a

syntax element with dotted decimal number 3 is followed by a series of syntax

elements with dotted decimal number 3.1, all the syntax elements numbered 3.1

are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add

information about the syntax elements. Occasionally, these words and symbols

might occur at the beginning of the element itself. For ease of identification, if the

word or symbol is a part of the syntax element, the word or symbol is preceded by

the backslash (\) character. The * symbol can be used next to a dotted decimal

number to indicate that the syntax element repeats. For example, syntax element

*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE

indicates that syntax element FILE repeats. Format 3* * FILE indicates that

syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax

elements, are shown in the syntax just before the items they separate. These

characters can appear on the same line as each item, or on a separate line with the

same dotted decimal number as the relevant items. The line can also show another

symbol that provides information about the syntax elements. For example, the lines

5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the

LASTRUN and DELETE syntax elements, the elements must be separated by a comma.

If no separator is given, assume that you use a blank to separate each syntax

element.

If a syntax element is preceded by the % symbol, this identifies a reference that is

defined elsewhere. The string following the % symbol is the name of a syntax

fragment rather than a literal. For example, the line 2.1 %OP1 means that you

should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed

by the ? symbol indicates that all the syntax elements with a

corresponding dotted decimal number, and any subordinate syntax

elements, are optional. If there is only one syntax element with a dotted

decimal number, the ? symbol is displayed on the same line as the syntax

element (for example, 5? NOTIFY). If there is more than one syntax element

with a dotted decimal number, the ? symbol is displayed on a line by

itself, followed by the syntax elements that are optional. For example, if

you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax

elements NOTIFY and UPDATE are optional; that is, you can choose one or

none of them. The ? symbol is equivalent to a bypass line in a railroad

diagram.

! Specifies a default syntax element. A dotted decimal number followed by

the ! symbol and a syntax element indicates that the syntax element is the

default option for all syntax elements that share the same dotted decimal

number. Only one of the syntax elements that share the same dotted

decimal number can specify a ! symbol. For example, if you hear the lines

B-2 IBM Informix GLS User’s Guide

2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

default option for the FILE keyword. In this example, if you include the

FILE keyword but do not specify an option, default option KEEP is applied.

A default option also applies to the next higher dotted decimal number. In

this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1

(DELETE), the default option KEEP only applies to the next higher dotted

decimal number, 2.1 (which does not have an associated keyword), and

does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A

dotted decimal number followed by the * symbol indicates that this syntax

element can be used zero or more times; that is, it is optional and can be

repeated. For example, if you hear the line 5.1* data-area, you know that

you can include more than one data area or you can include none. If you

hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include

HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is

only one item with that dotted decimal number, you can repeat that

same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items

have that dotted decimal number, you can use more than one item

from the list, but you cannot use the items more than once each. In the

previous example, you could write HOST STATE, but you could not write

HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax

diagram.

+ Specifies a syntax element that must be included one or more times. A

dotted decimal number followed by the + symbol indicates that this syntax

element must be included one or more times. For example, if you hear the

line 6.1+ data-area, you must include at least one data area. If you hear

the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,

STATE, or both. As for the * symbol, you can only repeat a particular item if

it is the only item with that dotted decimal number. The + symbol, like the

* symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix B. Accessibility B-3

B-4 IBM Informix GLS User’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 C-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

C-2 IBM Informix GLS User’s Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices C-3

http://www.ibm.com/legal/copytrade.shtml

C-4 IBM Informix GLS User’s Guide

Index

Special characters
_ (underscore), wildcard of LIKE operator 3-28

- (minus sign), wildcard in MATCHES clause 3-28

? (question mark), wildcard of MATCHES operator 3-28

.c file extension 5-6, 6-6

.c_ file extension 6-6

.cm file extension A-10, A-11

.cmo file extension A-10

.cv file extension 1-28, A-8, A-11

.cvo file extension A-8, A-11

.ec file extension 5-6, 6-6

.iem file extension 2-5

.lc file extension A-6, A-8, A-11

.lco file extension A-6, A-11

.o file extension 6-6

* (asterisk), wildcard of MATCHES operator 3-28

[] (brackets)
ranges with MATCHES operator 3-26, 3-28

substring operator 3-15

@ (at sign)
as formatting character 6-13

% (percent)
formatting directive 2-12, A-3

in parameter markers 4-14

in trace messages 4-15, 4-16

wildcard of LIKE operator 3-28

^ (caret), wildcard in MATCHES clause 3-28

Numerics
1-based counts 1-24

8-bit clean 1-8, 2-9, 6-3

A
Abbreviations 1-13

Accessibility B-1

dotted decimal format of syntax diagrams B-1

keyboard B-1

shortcut keys B-1

syntax diagrams, reading in a screen reader B-1

Alias 1-7, 3-4

Alpha class 3-7

Alphabetic characters 1-9, 3-7

ALTER TABLE statement 3-33

Alternative formats
date 2-13, 6-8

time 2-18

ANSI compliance
comment indicators 3-14

owner naming 3-5

quotation marks 3-6

ASCII code set 1-8, 1-20

ASCII letters (a - z, A - Z) 3-7

Asian language support (ALS) 1-4

Asterisk (*) symbol, with MATCHES operator 3-28

Authorization identifier 3-5

B
Basic Multilingual Plane (BMP) 1-29

BETWEEN conditions 3-24

BLOB data type, searching in 3-35

Bracket ([]) symbols
ranges for MATCHES operator 3-26

substring operator 3-15

BYTE data type
code-set conversion 5-3, 6-15

partial characters 3-18

C
C compiler

8-bit clean 4-7, 6-4

limitations 4-7, 6-3, 6-4

multibyte characters 4-7, 6-4

non-ASCII filenames 6-3

non-ASCII source code 4-7, 6-4

Casts 3-4

CC8BITLEVEL environment variable 1-3, 2-2, 6-3, 6-5

CHAR data type
and GLS 1-5

code-set conversion 5-3

collation order 1-11

conversion to NCHAR 2-7, 2-8

difference from NCHAR 3-9

GLS aspects 3-12

CHAR_LENGTH function 3-32

Character
7-bit 1-8

8-bit 1-8

ASCII 1-8

mismatched 1-28, A-9

nonprintable 3-9, 3-11

partial 3-16, 5-7

shifting lettercase 6-14

single-byte 1-8, 3-15

Character data
avoiding corruption of 5-3

collation of 1-25, 3-19, A-3

converting 1-27, 5-3

data types 3-8

equivalent characters 1-10, 3-22, 3-25, A-3

ESQL functions 6-14

interpreting 1-17, 1-25

mapping A-1

processing with locales 1-4

Character set 1-7, A-9

CHARACTER_LENGTH function 3-28

Character-mapping files A-14

Chinese locale 1-22

chkenv utility 4-5

Chunks 3-3

Client application
checking a connection 1-23, 1-26, 5-2

code-set conversion 5-1, 5-2

definition of 1-4

end-user formats 1-11

establishing a connection 5-1

© Copyright IBM Corp. 1996, 2008 X-1

Client application (continued)
opening another database 1-26, 5-2

requesting a connection 1-18, 1-22

sending client locale to server 1-22, 1-26

setting a locale 1-7, 1-17, 1-21

support for locales 1-4, 1-6

uses of client locale 1-16

verifying locales 5-2

Client code set 1-27, 5-1, 5-2

Client computer
client code set 1-27

code-set-conversion files 5-2

setting CLIENT_LOCALE 1-21

setting DB_LOCALE 1-21

Client locale
code set 1-27, 5-1

COLLATION category 1-17

CTYPE category 1-17

customizing 1-30

definition of 1-16

determining 1-17

ESQL/C source files 6-2

MESSAGES category A-5

MONETARY category 1-17

NUMERIC category 1-17

sample 1-16

sending to database server 1-22

setting 1-21

TIME category 1-17

CLIENT_LOCALE environment variable 1-3

default value 1-21

ESQL filenames 5-6

ESQL source code 5-6

example of locale name 2-3

interpreting command-line arguments 4-4

location of message files 2-5

precedence of 1-17, 1-27, 1-31, 1-32, 2-5, 6-9, 6-10, 6-12

role in code-set conversion 4-3, 5-2

role in exception messages 4-12

sending to database server 1-23

setting 1-21

syntax 2-3

with TEXT data 3-9, 3-10, 3-12, 3-13

with utilities 4-4

Client/server environment
client locale 1-16, 1-22

code-set conversion 1-27, 1-29

database locale 1-17

locales of 1-7, 1-14

server locale 1-19

server-processing locale 1-24

setting environment variables 1-21

cmZ.txt file A-14

Code points 1-7, 1-9, 3-11

Code sets
1252 1-7

8859-1 1-7, 1-20, A-7

affecting filenames 2-10

ASCII 1-8, 1-20

character classes 1-9

client code set 1-27

code points 1-7, 3-11

compatible 1-4

condensed name 1-18, 1-20, 1-30, A-7

convertible 1-21, 5-2, 5-3

database code set 1-27

default 1-9, 1-20, 1-22

Code sets (continued)
definition of 1-7

determining 1-22, 1-27

for client applications 1-27, 5-1

for database 1-27, 5-1

for database server 1-27, 5-1

GB18030-2000 1-8

in locale name 1-20, 1-23, 2-5, 2-21

incompatible 5-2

multibyte 1-8, 3-15, 3-16, 3-30, 5-7

server code set 1-27

single-byte 1-8, 3-15, 3-17, 3-29

source 1-27, 1-28

target 1-27, 1-28

UTF-8 1-11

wide-character form 4-8

Code-set conversion
by client application 5-1

by database server 4-2

by DataBlade API 4-9

character mismatches 1-28, A-9

data converted 5-3

definition of 1-27

for column names 5-3

for cursor names 5-3

for error message text 5-3

for LVARCHAR 5-3

for opaque types 4-9

for simple-large-object data 5-3, 6-15

for SQL data types 5-3

for SQL statements 5-3

for statement IDs 5-3

for table names 5-3

handling mismatched characters 1-28

in ESQL/C program 6-15

internationalized error messages and 4-12

limitations 1-27

lossy error 1-28

performing 1-28, 4-3, 5-3

registry file A-10, A-11

role of CLIENT_LOCALE 4-3, 5-2

role of DB_LOCALE 4-3, 5-2

role of SERVER_LOCALE 4-3

two-way A-8

Code-set file
description of 1-7, A-9

listing A-14

location of A-9, A-10

object A-10

removing A-11

source A-9

Code-set-conversion file
description of 1-7, A-7

listing 5-2, A-12

location of A-8

object A-8, A-11

removing unused A-11

source 1-28, A-8, A-11

Collation
definition of 1-9

equivalence classes 1-10, 3-22, 3-25, 3-26, 3-27, A-3

of character data 3-19

of NCHAR 3-9

of NVARCHAR 3-10

Unicode collation 1-11

weights A-3

X-2 IBM Informix GLS User’s Guide

COLLATION locale category
description of A-2, A-3

in client locale 1-17

in locale source file A-6

in server-processing locale 1-26

Collation order
code-set 1-9, 1-11, 3-11

localized 1-4, 1-10, 1-11, 1-25, 2-3, 2-6, 2-21, 3-11

tasks affected by 1-9

types of 1-9

Column (database)
expressions 3-15

in code-set conversion 5-3

naming 1-4, 1-5, 3-4, 4-7, 6-2

substrings 3-15, 3-18

Command-line
arguments 4-4

Comment indicators 3-14

Comments 2-2, 2-3, 3-14, 6-2

Conditions
BETWEEN 3-24

IN 3-25

LIKE 3-27

MATCHES 3-26

relational operator 3-23

Configuration parameters 4-2

CONNECT statement 3-4

Constraints 3-4, 4-7, 6-2

Conversion functions 5-7

Conversion modifier 1-31, 2-13, 2-18

Converting data types
CHAR and NCHAR 2-7

VARCHAR and NVARCHAR 2-7

CREATE CAST statement 3-4

CREATE DATABASE statement 3-4, 3-7

CREATE DISTINCT TYPE statement 3-4

CREATE EXTERNAL TABLE statement 3-38

CREATE FUNCTION statement 3-4

CREATE INDEX statement 3-2, 3-4, 3-19, 3-20

CREATE OPAQUE TYPE statement 3-4

CREATE OPCLASS statement 3-4

CREATE PROCEDURE statement 3-4, 3-5

CREATE ROLE statement 3-4

CREATE ROW TYPE statement 3-4

CREATE SEQUENCE statement 3-5

CREATE SYNONYM statement 3-5

CREATE TABLE statement 3-7

column name in 3-4

constraint name in 3-4

MONEY columns 3-33

names of database objects 3-2

table name in 3-5

CREATE TRIGGER statement 3-5

CREATE VIEW statement 3-5, 3-7

CTYPE locale category
character case 6-14

description of A-2, A-3

in client locale 1-17

in locale source file A-6

in server-processing locale 1-26

white-space characters 2-11, 2-16

Currency notation 1-13, 1-31, 2-7

Currency symbol 1-13, 1-21, 3-34, 6-11, A-4

Current processing locale 4-6, 4-14

Cursor 1-4, 1-5, 3-4, 4-7, 5-3, 6-2

cvY.txt file A-12

Cyrillic alphabet 3-7

D
Data

character 3-8

converting 5-3

corruption 1-16, 1-17

transferring 1-24

Data definition language (DDL) 3-2

Data types
BLOB 3-35

BYTE 5-3

CHAR 3-12, 5-3

character 3-8

CLOB 3-35

code-set conversion of 5-3

collation order of 1-11

complex 3-35

DATE A-5

DATETIME A-5

DECIMAL A-4

distinct 3-35

FLOAT A-4

INTEGER A-4

internal format 1-11

locale-sensitive 1-17, 1-25, 3-8, 3-33, 6-7

locator structure 6-15

LVARCHAR 3-13, 4-17

NCHAR 1-5, 3-8, 5-3, 6-7

numeric A-4

NVARCHAR 1-5, 3-9, 5-3, 6-7

opaque 3-34, 4-9, 4-17

SMALLFLOAT A-4

SMALLINT A-4

TEXT 3-13, 5-3

VARCHAR 3-12, 5-3

Database code set 1-27, 5-1, 5-2

Database locale
code set 1-27, 5-1

definition of 1-17

for UDR trace messages 4-14

in system catalog 1-18, 1-23

incompatible 1-23

setting 1-21

verifying 1-18, 1-23, 1-26

Database objects
and DB-Access 1-4

naming 3-2

Database server connection
client-locale information 1-22

establishing 1-22, 5-1

example 1-18

naming 3-4

sample 1-16

server-processing locale 1-16

verifying 1-22, 1-23, 1-26, 5-1

warnings 1-23

Database servers
chunk name 3-3

code-set conversion 1-29, 4-2

collation 1-11

determining server-processing locale 1-22, 1-24

diagnostic files 4-1

end-user formats 1-12

identifiers 3-3

internal formats 1-11

interpreting character data 1-17

log filename 3-3

message log file 4-2

Index X-3

Database servers (continued)
multibyte characters 4-4

multibyte filenames 3-3

operating-system files 4-1

sample connection 1-14

setting a locale 1-7, 1-21

support for locales 1-4, 1-6

uses of client locale 1-22, 1-23

uses of server locale 1-19, 4-1

using DB_LOCALE 1-18

utilities 1-4, 4-4

verifying a connection 1-22, 5-1

verifying database locale 1-23, 1-26

Databases
loading 3-37

naming 3-4, 4-7, 6-2

saving locale information 1-18

unloading 3-37

DataBlade Developers Kit (DBDK) 4-10

Date data
alternative formats 2-13

customizing format of 1-30

end-user format 1-20, 1-26, 1-30, A-5

format of A-5

locale-specific 1-4, 1-12

precedence of environment variables 1-31, 6-9

setting GL_DATE 2-11

DATE data type
end-user format 1-20, 1-30, 2-4, 2-11, A-5

era-based dates 1-31

ESQL library functions 6-7

extended-format strings 6-8

internal format 1-11, 1-13

precedence of environment variables 1-31, 6-9

DATETIME data type
end-user format 1-20, 1-30, 2-8, 2-16, A-5

era-based dates 1-31

ESQL library functions 6-9

extended-format strings 6-10

formatting directives for 2-17

internal format 1-13

precedence of environment variables 1-31, 6-10

DB_LOCALE environment variable 1-3

default value 1-21

example of locale name 2-6

information it determines 1-17, 1-19

precedence of 1-25

role in code-set conversion 4-3, 5-2

role in exception messages 4-12

setting 1-21

syntax 2-5

verifying database locale 1-23

with utilities 4-4

DB-Access utility 1-4, 4-6

DBCENTURY environment variable 2-13

DBDATE environment variable
era-based dates 1-31, 3-36

ESQL library functions 6-8

precedence of 1-17, 1-26, 1-31, 6-9

setting 1-30

syntax 2-4

dbexport utility 1-5, 2-9, 4-5

dbimport utility 4-5

DBLANG environment variable 1-3, 5-6

precedence of 2-5

setting 1-30

syntax 2-4

dbload utility 4-5

DBMONEY environment variable 1-3

defining currency symbols 6-13

ESQL library functions 6-12, 6-14

precedence of 1-17, 1-26, 1-32, 6-12

sending to database server 1-23

setting 1-31

syntax 2-6

DBNLS environment variable 2-7, 3-9, 5-2

dbschema utility 4-5

dbspaces
Unicode 1-11

DBTIME environment variable 1-3

era-based dates 3-36

ESQL library functions 6-10

precedence of 1-17, 1-26, 1-31, 6-10

setting 1-30

syntax 2-8

DECIMAL data type 1-32, A-4

Decimal separator 1-13, 1-20, 3-34, 6-11, A-2, A-4

DECLARE statement 3-4

Default locale
default code set 1-20, 1-22, A-7

for client application 1-21

for database server 1-21

locale name 1-20

required A-11

DELETE statements
era-based dates 3-36

GLS considerations 3-35

WHERE clause conditions 3-36

DELIMIDENT environment variable 3-6, 3-14

Delimiter, in BYTE and TEXT data 3-39

DESCRIBE statement 6-16

Diagnostic file 1-19, 4-1

Disabilities, visual
reading syntax diagrams B-1

Disability B-1

Distinct data types 3-4

Dollar ($) sign
as formatting character 6-13

currency symbol A-3

in identifiers 3-2

Dotted decimal format of syntax diagrams B-1

Double (″) quotes 3-6

dtcvfmasc() library function 6-9

dttofmtasc() library function 6-9

DUMP* configuration parameters 4-2

E
Embedded special characters 3-38

End-user format
conversion modifier 2-13, 2-18

customizing 1-30

date data 1-13, 1-20, 1-30, 2-11, 2-16, 4-10, A-5

date format qualifiers 2-14

default 1-20

definition of 1-11, 1-31, 1-32

environment variables 1-12

extended DATE-format strings 6-8

extended DATETIME format strings 6-10

formatting data 4-10, 5-7

locale categories 1-12

monetary data 1-13, 1-20, 1-31, 2-6, 4-10, A-5

numeric data 1-13, 1-20, 4-10, A-4

printing 1-13, 2-15, 2-18

X-4 IBM Informix GLS User’s Guide

End-user format (continued)
scanning 1-13, 2-18

sending to database server 1-23, 1-26

time data 1-13, 1-20, 1-30, 2-16, A-5

time format qualifiers 2-18

English locale 1-22, A-6

Environment variables
CC8BITLEVEL 2-2, 6-5

CLIENT_LOCALE 1-21, 2-3

DB_LOCALE 1-21, 2-5

DBCENTURY 2-13

DBDATE 2-4

DBLANG 2-4, 5-6

DBMONEY 2-6

DBNLS 2-7, 5-2

DBTIME 2-8

DELIMIDENT 3-6, 3-14

ESQLMF 2-8, 6-6

for end-user formats 1-12

GL_DATE 2-11

GL_DATETIME 2-16

GL_PATH 2-2

GL_USEGLU 2-20

GLS-related 2-2

GLS8BITFSYS 2-9

INFORMIXDIR 5-6

locale 4-4

locale-related 1-21

precedence for client locale 1-17

precedence for DATE data 1-31, 6-9

precedence for DATETIME data 1-31, 6-10

precedence for monetary data 1-32, 6-11

precedence for server-processing locale 1-25, 1-26

SERVER_LOCALE 1-21, 2-21

Era-based dates
DATE-format functions 6-7

DATETIME-format functions 6-9

DBDATE formats 6-8

DBTIME formats 6-10

defined in locale A-5

definition of 1-13

extended-format strings 6-8, 6-10

GL_DATE formats 1-31, 2-13

GL_DATETIME formats 1-31

in DELETE statement 3-36

in INSERT statement 3-36

in SQL statements 3-36

in UPDATE statement 3-36

sample 1-13

Error message files 5-5

Error messages
DATE-format 6-14

DATETIME-format 6-14

GLS-specific 6-14

in code-set conversion 5-3

internationalizing 4-11

numeric-format 6-14

Escape character 3-28, 3-38

ESQL library functions
currency notation in 6-11, 6-12

DATE-format functions 6-7

DATETIME-format functions 6-9

GLS enhancements 6-7

numeric-format functions 6-11

string functions 6-14

ESQL/C data types 1-6, 5-3, 6-6

ESQL/C filter
description of 6-4

invoking 6-5

non-ASCII characters 6-4

with CC8BITLEVEL 6-5

with CC8BITLEVEL environment variable 2-2

with ESQLMF 2-9, 6-5

ESQL/C function library
dtcvfmtasc() 6-9

dttofmtasc() 6-9

GLS error messages 6-14

precedence for DATE data 6-9

precedence for DATETIME data 6-10

precedence for MONEY data 6-11

rdatestr() 6-7, 6-8

rdefmtdate() 6-7, 6-8

rdownshift() 6-14

rfmtdate() 6-7, 6-8

rfmtdec() 6-11

rfmtdouble() 6-11

rfmtlong() 6-11, 6-12

rstrdate() 6-7, 6-8

rupshift() 6-14

ESQL/C preprocessor 1-16, 6-4

ESQL/C processor
definition of 5-6

invoking ESQL/C filter 2-3, 6-5

multibyte characters 2-9, 6-3

non-ASCII filenames 2-9, 6-3

non-ASCII source code 6-5

operating-system files 5-6

with CC8BITLEVEL 2-3

with ESQLMF 2-9, 6-5

ESQL/C program
accessing NCHAR data 6-6

accessing NVARCHAR data 6-6

checking database connection 1-23

comments 2-2, 2-3, 6-2

compiling 6-5, 6-6

data type constants 6-15

filenames 6-2

handling code-set conversion 6-15

host variables 1-16, 6-2

indicator variables 6-2

literal strings 1-11, 1-16, 2-2, 2-3, 6-2

writing simple large objects to database 6-15

ESQLMF environment variable 1-3, 2-8, 6-5

Explain file 1-19

External representation of opaque data 4-17

External tables 3-38

F
FETCH statement 3-4

File extensions
.c 5-6, 6-6

.c_ 6-6

.cm A-10, A-11

.cmo A-10

.cv 1-28, A-8, A-11

.cvo A-8, A-11

.ec 5-6, 6-6

.iem 2-5

.lc A-6, A-8, A-11

.lco A-6, A-11

.o 6-6

Index X-5

Filename
7-bit clean 2-9

8-bit clean 1-8

generating 2-10, 6-3

illegal characters in 2-9

non-ASCII 2-10, 3-3, 3-4, 4-7, 6-2, 6-3

validating 4-3

Files
cmZ.txt A-14

cvY.txt A-12

diagnostic 1-19, 4-1

Informix-proprietary 1-19

lcX.txt A-13

LOAD FROM 3-37

locale object file A-6

locale source file A-6

log 1-19, 4-2

message 1-19, 1-29, 1-30, 2-4

registry 1-7, A-10, A-11

sqexplain.out 1-19

text 3-36

UNLOAD TO 3-37

finderr utility 6-14

FLOAT data type 1-32, A-4

Formatting 5-7

Formatting directive
conversion modifiers 1-31, 2-14

field precision 2-15, 2-19

field specification 2-14, 2-15, 2-19

field width 2-15, 2-19

white space 2-12

with GL_DATE 2-12

with GL_DATETIME 2-17

French locale 1-12, 1-13, 1-22, 1-26, 2-3, 2-6, 2-21, 3-7, 5-2, A-6

Functions, case-sensitive 3-19

G
GB18030-2000 code set 1-8, 1-29

Gengo year format 1-14

German locale 1-16, 1-18, 1-22, A-6

GL_DATE environment variable 1-3

era-based dates 1-31, 3-36

ESQL library functions 6-7

formatting directives 2-11

precedence of 1-17, 1-27, 1-31, 6-9

sending to database server 1-23

setting 1-30

syntax 2-11

GL_DATETIME environment variable 1-3

era-based dates 3-36

era-based dates and times 1-31

ESQL library functions 6-10

formatting directives 2-16

precedence of 1-17, 1-27, 1-31, 6-10

sending to database server 1-23

setting 1-30

syntax 2-16

gl_dprintf() function 4-14

GL_DPRINTF() tracing function 4-15

GL_PATH environment variable 2-2

gl_tprintf() function 4-14

gl_tprintf() tracing function 4-15

GL_USEGLU environment variable 2-20

gl_wchar_t data type 4-8

glfiles utility
-cm option A-14

glfiles utility (continued)
-cv option A-12

-lc option A-12

charmap files A-14

code-set files A-14

code-set-conversion files 5-2, A-12

locale files 2-3, 2-6, 2-21, A-12

sample output A-12, A-13, A-14

syntax A-11

Global Language Support (GLS) 2-7

GLS feature
available locales 2-3, 2-6, 2-21

CHAR data type 3-12

character data types for host variables 6-7

client/server environment 1-7, 1-14

description of 1-1

environment variables 2-2

ESQL library functions 6-7

for DataBlade modules 1-5

for SQL 3-2

functionality listed 1-3

fundamentals 1-2

GLS files A-6, A-8, A-9, A-10

GLS library 1-2

managing GLS files A-1

NCHAR data type 3-8

NVARCHAR data type 3-9

TEXT data type 3-13

using character data types 3-8

VARCHAR data type 3-12

GLS locale file 1-7

GLS_COLLATE tabname 1-18

GLS_CTYPE tabname 1-18

GLS8BITFSYS environment variable 1-3, 2-9

Graphical-replacement conversion 1-28

Greek alphabet 3-7

Gregorian calendar 1-13

H
Heisei era 1-14

Hex encoding 3-38

Hexadecimal digits 3-38

High-Performance Loader 3-37

HKEY_LOCAL_MACHINE registry setting 2-21, 4-4

Host variable
end-user formats 1-11

ESQL/C example 6-2, 6-3

naming 1-5, 3-4, 6-2

I
IBM CCSID code set

437 1-28, A-8

819 A-7, A-8, A-10

definition of 1-29

IBM Informix Client Software Development Kit 5-1

IBM Informix Dynamic Server, pathnames 3-3

IBM Informix Extended Parallel Server
high-performance loading 3-37

pathnames 3-3

IBM Informix GLS API 1-5, 4-8

Identifier
delimited 3-3

Non-ASCII characters 3-3

IN conditions 3-25

X-6 IBM Informix GLS User’s Guide

Index 3-4

Index keys
Unicode 1-11

Indicator variable 1-5, 6-2, 6-3

INFORMIXDIR environment variable 5-6

location of charmap files A-14

location of code-set files A-9, A-14

location of code-set-conversion files A-8, A-12

location of locale files 1-14, A-6, A-13

location of message files 2-4, 2-5

location of registry file A-10

with glfiles A-11

INITCAP function 3-14, 3-19

INSERT statements
embedded SELECT 3-36

end-user formats 1-12

era-based dates 3-36

GLS considerations 3-35

specifying quoted strings 3-14

VALUES clause 3-36

INTEGER data type A-4

International Components for Unicode (ICU) 1-7

International Language Supplement 1-6

International Language Supplement (ILS) 1-6

Internationalization
C UDRs and 4-6

definition of 5-4

formatting data 4-10, 5-7

of error messages 4-11

of trace messages 4-14

processing characters 4-8, 5-6

UDRs and 4-6

J
ja_jp.sjis locale 6-8

Japanese Imperial dates 1-13, 1-14, 1-31

Japanese locale 1-21, 1-22, 1-26, 5-3

Japanese UJIS locale 3-7

Join condition 3-23

K
Kanji characters 3-7

Korean locale 1-22

L
LANG environment variable

precedence of 2-5

Language
code sets 1-29

default 1-20

for client application 1-16

for database 1-17

for database server 1-19

in locale name 1-23, 2-5, 2-21, A-6

lcX.txt file A-13

Left-to-right writing direction 1-17

LENGTH function 3-29

LIBMI applications 1-5

LIKE relational operator 1-9, 3-27

Literal matches 3-26, 3-27

Literal string 1-11, 2-2, 2-3, 4-7, 6-2

Llternative formats
time 6-10

Load file 3-37

LOAD statement 3-4, 3-35, 3-37

Loader, support for non-ASCII characters 3-37

loc_buffer field 6-16

loc_t data type 6-15

loc_type field 6-15

Locale environment variables 4-4

Locale file
description of 1-7, 1-14, A-2

listing 2-3, 2-6, 2-21, A-11, A-12

location of 1-14, A-6

object A-6, A-11

removing unused A-11

required A-11

source A-6, A-11

Locale modifier 1-23, 2-3, 2-6, 2-21, A-7

Locale name
code-set name 1-20, 1-23, 2-3, 2-5, 2-21

example 2-3, 2-6, 2-21

language name 1-23, 2-3, 2-5, 2-21, A-6

locale modifier name 1-23, 2-3, 2-6, 2-21, A-7

territory name 1-23, 2-3, 2-6, 2-21, A-6

Locale-sensitive data types 1-24

Locales
alpha class 3-7

character classes 1-9

choosing 5-5

current 5-5

current processing 4-6, 4-14

definition of 1-7

environment variables 1-21

filename A-5, A-7

for database server connections 1-22

in custom messages 4-14

in trace messages 4-17

listing 2-3, 2-6, 2-21, A-11

locale categories 1-12, A-2

non-ASCII characters 1-22

setting 1-14, 1-21

verifying 1-23, 1-26

Localization 5-4

Locator structure 6-15

Log filename, non-ASCII characters in 3-3

Log files 1-19, 4-2

Lossy error 1-28

Lower class 1-9

LOWER function 3-14, 3-19

LVARCHAR data type
code-set conversion 5-3

collation order 1-11

GLS aspects 3-13

representing opaque data types 4-17

M
malloc() system call 6-17

MATCHES relational operator 1-9, 3-26

Message file
compiled 2-5

language-specific 2-4

localized 1-30

locating at runtime 2-5

requirements 5-5

specifying location of 1-30, 2-4

Message log
and code-set conversion 1-29

non-ASCII characters in 2-10

Index X-7

MESSAGES locale category
description of A-3, A-5

in locale source file A-6

in server-processing locale 1-27

mi_convert_from_codeset() DataBlade API function 4-9

mi_convert_to_codeset() DataBlade API function 4-9

mi_date_to_string() DataBlade API function 4-10

mi_datetime_to_string() function 4-10

mi_db_error_raise() function 4-11, 4-12

mi_decimal_to_string() DataBlade API function 4-10

mi_exec_prepared_statement() function 4-7

mi_exec() function 4-7, 4-12

mi_get_string() DataBlade API function 4-10

mi_interval_to_string() function 4-10

MI_LIST_END tracing constant 4-16

mi_money_to_string() DataBlade API function 4-10

mi_prepare() function 4-7

mi_put_string() DataBlade API function 4-10

mi_string_to_date() DataBlade API function 4-11

mi_string_to_datetime() function 4-11

mi_string_to_decimal() DataBlade API function 4-11

mi_string_to_interval() function 4-11

mi_string_to_money() DataBlade API function 4-11

mi_wchar data type 4-8

Ming Guo year format 1-13, 1-31

Minus (-) sign
unary operator A-3

Monetary data
currency notation 1-12, 3-34, A-4

currency symbol 1-13, 1-21, 3-34, 6-11, A-4

decimal separator 1-13, 1-20, 3-34, 6-11, A-4

default scale 3-33

end-user format 1-20, 1-26, 1-31, A-5

format of A-4

locale-specific 1-4

negative 1-13, 1-21, A-5

positive 1-13, 1-21, A-5

precedence of environment variables 1-32, 6-11

thousands separator 1-13, 1-20, 3-34, 6-11, A-5

MONETARY locale category
currency symbol 6-13

description of A-3, A-4

end-user formats A-4

in client locale 1-17

in locale source file A-6

in server-processing locale 1-27

numeric-formatting functions 6-12

MONEY data type
defining 3-33

end-user format 2-6

internal format 1-13, 1-32, 3-34

precedence of environment variables 1-32, 6-11

MSGPATH configuration parameter 2-10, 4-2

Multibyte characters 4-8

column substrings 3-15

definition of 1-8

filtering 6-4

in cast names 3-4

in column names 1-4, 1-5, 3-4, 4-7, 6-2

in comments 2-2, 2-3, 6-2

in connection names 3-4

in constraint names 3-4, 4-7, 6-2

in cursor names 1-4, 1-5, 3-4, 4-7, 6-2

in data type names 3-4

in database names 3-4, 4-7, 6-2

in database server filenames 3-3

in database server utilities 4-4

Multibyte characters (continued)
in delimited identifiers 3-3

in ESQL filenames 6-3

in filenames 1-22, 2-10, 3-4, 4-7, 6-2

in function names 3-4

in host variables 1-5, 3-4, 6-2

in index names 3-4

in indicator variables 1-5, 6-2

in literal strings 2-2, 2-3, 4-7, 6-2

in LOAD FROM file 3-37

in NCHAR columns 3-9

in numeric formats 6-11

in NVARCHAR columns 3-10

in opaque data type names 3-4

in operator-class names 3-4

in owner names 3-5

in procedure names 3-4

in quoted strings 3-14

in role names 3-4

in routine names 3-4

in ROW data type names 3-4

in sequence names 3-5

in SPL routines 1-4, 1-5, 3-5

in SQL comments 3-15

in statement IDs 1-4, 1-5, 3-5, 4-7, 6-2

in synonym names 3-5

in table aliases 3-4

in table names 1-4, 1-5, 3-5, 4-7, 6-2

in trigger names 3-5

in triggers 3-5

in UNLOAD TO file 3-37

in view names 1-4, 1-5, 3-5, 4-7, 6-2

partial characters 3-16, 5-7

processing 2-2, 5-6, 6-4

shifting case of 6-14

support by C compiler 4-7, 6-4

support for 1-22

with CC8BITLEVEL environment variable 2-2

with GLS8BITFSYS environment variable 2-10

Multicharacter collation elements A-3

N
National language support (NLS) 1-4

NCHAR data type
code-set conversion 1-5, 5-3

collation order 1-11, 3-9

conversion to CHAR 2-8

description of 3-8

difference from CHAR 3-9

in ESQL/C program 6-6

in regular expressions 1-4

inserting into database 6-7

multibyte characters 3-9

nonprintable characters 3-9

with numeric values 3-9

Non-ASCII character
definition of 1-8

examples 1-22

filtering 6-4

in cast names 3-4

in column names 1-4, 1-5, 3-4, 4-7, 6-2

in comments 2-2, 2-3, 6-2

in connection names 3-4

in constraint names 3-4, 4-7, 6-2

in cursor names 1-4, 1-5, 3-4, 4-7, 6-2

in database names 3-4, 4-7, 6-2

X-8 IBM Informix GLS User’s Guide

Non-ASCII character (continued)
in delimited identifiers 3-3

in distinct data type names 3-4

in ESQL filenames 6-3

in filenames 2-10, 3-4, 4-7, 6-2

in host variables 1-5, 3-4, 6-2

in index names 3-4

in indicator variables 1-5, 6-2

in literal strings 2-2, 2-3, 4-7, 6-2

in LOAD FROM file 3-37

in opaque data type names 3-4

in operator-class names 3-4

in owner names 3-5

in quoted strings 3-14

in role names 3-4

in ROW data type names 3-4

in sequence names 3-5

in SPL routines 1-5, 3-5

in SQL comments 3-14

in statement IDs 1-4, 1-5, 3-5, 4-7, 6-2

in synonym names 3-5

in table names 1-4, 1-5, 3-5, 4-7, 6-2

in trigger names 3-5

in triggers 3-5

in UDR source files 4-6

in UNLOAD TO file 3-37

in view names 1-4, 1-5, 3-5, 4-7, 6-2

processing 2-2, 6-4

support for 1-22

with CC8BITLEVEL environment variable 2-2

with GLS8BITFSYS environment variable 2-10

Non-Gregorian calendar 1-13

Non-Roman alphabets 3-7

Nondefault page size and Unicode 1-11

Nonprintable characters 3-38

Numeric data
currency notation in 6-11

decimal separator 1-13, 1-20, 6-11, A-4

end-user format 1-12, 1-20, 1-26, A-4

ESQL functions 6-11

format of A-4

locale-specific 1-4

negative 1-13, 1-21, A-4

positive 1-13, 1-21, A-4

thousands separator 1-13, 1-20, 6-11, A-4

NUMERIC locale category
alternative digits 2-14, 2-18, A-4

description of A-2, A-4

end-user formats A-4

in client locale 1-17

in locale source file A-6

in server-processing locale 1-27

numeric-formatting functions 6-12

Numeric notation 1-13

NVARCHAR data type
code-set conversion 1-5, 5-3

collation order 1-11, 3-10

conversion to VARCHAR 2-8

description of 3-9

difference from VARCHAR 3-10

in ESQL/C program 6-6

in regular expressions 1-4

inserting into database 6-7

multibyte characters 3-10

nonprintable characters 3-11

O
OCTET_LENGTH function 3-30

onaudit utility 4-5

oncheck utility 4-5

ONCONFIG configuration parameters 1-2

onload utility 4-5

onlog utility 4-5

onmode utility 1-5

onpload utility 4-5

onshowaudit utility 4-5

onspaces utility 4-5

onstat utility 4-5

onunload utility 4-5

onutil utility 4-5

Opaque data types 3-4, 3-34, 4-9, 4-17

identifier 3-4

Operating system
8-bit clean 1-8, 2-10

character encoding 1-28

limitations 6-3

need for code-set conversion 1-29

saving disk space A-11

Operator class 3-4

ORDER BY clause (SELECT) 1-9, 3-21

Owner name 3-5

P
Parameter marker 4-14

Partial characters 3-16, 5-7

Pathname 3-3, 3-6

Percent (%) symbol 4-15

PREPARE statement 3-5

Projection clause 3-18

Pseudo-user 3-5

Q
Question (?) mark wildcard 3-28

Quoted string 3-6, 3-14

R
Range matches 3-26

rdatestr() library function 1-12, 6-7, 6-8

rdefmtdate() library function 6-7, 6-8

rdownshift() library function 6-14

receive() function 4-18

registry file 1-7, A-10, A-11

Regular expression 1-4, 1-18

Relational-operator conditions 3-23

RENAME COLUMN statement 3-2

Resource file 5-5

rfmtdate() library function 6-7, 6-8

rfmtdec() library function 6-11

rfmtdouble() library function 6-11

rfmtlong() library function 6-11, 6-12

rgetlmsg() library function 5-6

rgetmsg() library function 5-6

Right-to-left writing direction 1-17

Role 3-4

Round-trip conversion 1-28

ROW data types 3-4

rstrdate() library function 6-7, 6-8

Runtime error, custom message 4-11

Index X-9

rupshift() library function 6-14

S
Schema name 3-5

Screen reader
reading syntax diagrams B-1

Search functions 3-19

SELECT statements
and collation order 1-9

collation of character data 3-19, 3-21

embedded 3-36

LIKE keyword 3-27

MATCHES relational operator 3-26

ORDER BY clause 1-9, 3-21

select-list columns 6-16

specifying literal matches 3-26, 3-27

specifying matches with a range 3-26

specifying quoted strings 3-14

using length functions 3-28

using TRIM 3-19, 6-17

WHERE clause 1-9, 3-23

send() function 4-18

Sequence 3-5

Server code set 1-27

Server computer
server code set 1-27

setting DB_LOCALE 1-21

setting SERVER_LOCALE 1-21

Server locale
code set 1-27

definition of 1-19

in trace messages 4-15

setting 1-21

uses of 4-1

SERVER_LOCALE environment variable 1-3, 2-21

database server filenames 4-2

default value 1-21

example of locale name 2-21

location of message files 2-5

precedence of 2-5

role in code-set conversion 4-3

setting 1-21

syntax 2-21

with utilities 4-4

Server-processing locale
code-set conversion 4-3

COLLATION category 1-26

CTYPE category 1-26

date data 1-26

definition of 1-24

determining 1-24

filename checking 4-3

for exception messages 4-14

initialization of 1-24

localized collation 1-25

MESSAGES category 1-27

MONETARY category 1-27

monetary data 1-26

NUMERIC category 1-27

numeric data 1-26

precedence of environment variables 1-25, 1-26

TIME category 1-27

time data 1-26

UDRs and 4-6

SET COLLATION statement 1-10, 2-6, 3-19, 3-26, A-4

SET EXPLAIN statement 1-19

Shortcut keys
keyboard B-1

Simple large objects 3-38

Single quotes 3-6

Single-byte characters 1-8, 3-15, 3-17

SMALLFLOAT data type A-4

SMALLINT data type A-4

Spanish locale 1-22

SPL routines 1-4, 1-5, 3-5

SQL API products
comments 6-2

ESQL library enhancements 6-7

filenames 6-2

host variables 6-2

literal strings 6-2

SQL identifier names 6-2

using GLS8BITFSYS 2-9

SQL functions for case 3-19

SQL identifier
delimited 3-3

examples 3-7

non-ASCII characters 4-7, 6-2

owner names 3-5

rules for 3-2

SQL length function
CHAR_LENGTH 3-32

classification of 3-28

LENGTH 3-29

OCTET_LENGTH 3-30

using 3-28

SQL segments 3-5

SQL statements
CONNECT 3-4

CREATE CAST 3-4

CREATE DISTINCT TYPE 3-4

CREATE EXTERNAL TABLE 3-38

CREATE FUNCTION 3-4

CREATE INDEX 3-2, 3-4, 3-19, 3-20

CREATE OPAQUE TYPE 3-4

CREATE OPCLASS 3-4

CREATE PROCEDURE 3-4, 3-5

CREATE ROLE 3-4

CREATE ROW TYPE 3-4

CREATE SEQUENCE 3-5

CREATE SYNONYM 3-5

CREATE TRIGGER 3-5

CREATE VIEW 3-5

data manipulation 3-35

DECLARE 3-4

DELETE 3-35

DESCRIBE 6-16

end-user formats in 1-11

FETCH 3-4

in code-set conversion 4-7, 5-3

in UDRs 4-7

LOAD 3-4, 3-35, 3-37

PREPARE 3-5

RENAME COLUMN 3-2

SELECT 3-17

SET COLLATION 3-19, 3-26, A-4

SET EXPLAIN 1-19

UNLOAD 3-35, 3-37

UPDATE 3-36

SQL utilities 4-5

SQLBYTES data type constant 6-15

sqlca structure
connection warnings 1-23

X-10 IBM Informix GLS User’s Guide

sqlca structure (continued)
sqlerrm 5-3

SQLWARN array 1-23, 1-26, 5-2

sqlwarn.sqlwarn7 1-23

warning character 1-23

sqlca.sqlwarn.sqlwarn7 flag 1-23

sqlda structure 6-15, 6-16

sqlda.sqlvar.sqldata field 6-16

sqlda.sqlvar.sqllen field 6-16

sqlda.sqlvar.sqlname field 6-17

SQLSTATE status value 4-11

SQLTEXT data type constant 6-15

sqltypes.h header file 6-15, 6-18

sqlvar_struct structure
description of 6-16

sqldata field 6-16

sqllen field 6-16

sqlname field 6-17

storing column data 6-16, 6-17

SQLWARN warning flag 1-23, 1-26, 5-2

Statement identifier 1-4, 1-5, 3-5, 4-7, 5-3, 6-2

Substitution conversion 1-28

Substring 3-15, 3-18

Synonym 3-5

Syntax diagrams
reading in a screen reader B-1

syserrors system catalog table 4-11, 4-14

systables system catalog table 1-18

System catalogs 1-18

systracemsgs system catalog table 4-14, 4-15, 4-16

T
Table (database)

external 3-38

in code-set conversion 5-3

naming 1-4, 1-5, 3-5, 4-7, 6-2

Taiwanese dates 1-13, 1-31

Territory 1-20, 1-23, 2-3, 2-6, 2-21, A-6

TEXT data type
code-set conversion 5-3

collation order 1-11

GLS aspects 3-13

in code-set conversion 6-15

partial characters 3-18

Thousands separator 1-13, 1-20, 3-34, 6-11, A-4, A-5

Time data
customizing format of 1-30

end-user format 1-20, 1-26, 1-30, A-5

format of A-5

locale-specific 1-4, 1-12

precedence of environment variables 1-31, 6-10

with DBTIME 2-8

with GL_DATE 2-16

TIME locale category
description of A-3, A-5

end-user formats A-5

era information 2-14, 2-18, A-5

in client locale 1-17

in locale source file A-6

in server-processing locale 1-27

Token names 4-15

Top-to-bottom writing direction 1-17

Trace block 4-15

Trace message 4-14

Tracing
GL_DPRINTF macro 4-15

Tracing (continued)
gl_tprintf() function 4-15

trace blocks 4-15

trace message 4-16

Triggers 3-5

TRIM function 3-14, 3-19, 6-17

U
Unicode

Basic Multilingual Plane (BMP) 1-29

Collation Algorithm 1-11

dbspaces 1-11

index keys 1-11

nondefault page size 1-11

UTF-8, UTF-16, and UTF-32 code sets 1-7

Unified Chinese code set (GB18030) 1-8, 1-29

UNIX environment
default locale 1-20

glfiles utility 2-3, 2-6, 2-21

supported code-set conversions 5-2

supported locales 2-3, 2-6, 2-21

Unload file 3-37

UNLOAD statement 3-35, 3-37

Unsigned short 4-8

UPDATE statements
embedded SELECT 3-36

era-based dates 3-36

GLS considerations 3-36

SET clause 3-36

WHERE clause conditions 3-36

UPPER function 3-14, 3-19

User-defined function 3-4

User-defined procedure 3-4

User-defined routine (UDR)
character strings in 4-8, 4-9

code-set conversion in 4-9

current processing locale 4-6

exception messages 4-11

filenames 4-7

IBM Informix GLS API 4-8

internationalized 4-6

literal strings 4-7

locale support 4-6

non-ASCII source code 4-6

SQL identifier names 4-7

trace messages 4-14

User-defined routines 3-4

UTF-8 code set 1-7

Utilities
chkenv 4-5

database server 1-4

database server utilities 4-4

DB-Access 1-4, 4-6

dbexport 1-5, 4-5

dbimport 4-5

dbload 4-5

dbschema 4-5

glfiles 2-3, 2-6, 2-21, 5-2, A-11

onaudit 4-5

oncheck 4-5

onload 4-5

onlog 4-5

onmode 1-5

onpload 4-5

onshowaudit 4-5

onspaces 4-5

Index X-11

Utilities (continued)
onstat utility 4-5

onunload 4-5

onutil 4-5

SQL utilities 4-5

supporting multibyte characters 4-4

V
VARCHAR data type

and GLS 1-5

code-set conversion 5-3

collation order 1-11

conversion to NVARCHAR 2-7, 2-8

difference from NVARCHAR 3-10

GLS aspects 3-12

View 1-4, 1-5, 3-5, 4-7, 6-2

Visual disabilities
reading syntax diagrams B-1

W
W warning character 1-23

Warnings 1-23, 1-26, 5-2

custom 4-11

wchar_t data type 4-8

WHERE clause
and collation order 1-9

BETWEEN condition 3-24

IN condition 3-25

in DELETE statement 3-36

in INSERT statement 3-36

in UNLOAD statement 3-36

in UPDATE statement 3-36

logical predicates 3-23

relational-operator condition 3-23

White space
in formatting directives 2-11, 2-12, 2-16

in locale 2-11, A-3

Wide character 4-8

Wildcard character 3-28

Windows environments
default locale 1-20

supported code-set conversions 5-2

Writing direction 1-17

X
xctl utility 4-5

Y
Year 0000 1-13

Z
Zeros in number values 3-9

X-12 IBM Informix GLS User’s Guide

����

Printed in USA

G229-6373-02

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

ix

Ve
rs

io
n

4.
50

IB
M

In

fo
rm

ix

GL

S
Us

er
’s

Gu

id
e

�
�

�

	Contents
	Introduction
	In This Introduction
	About This publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	Character-Representation Conventions
	Single-Byte Characters
	Multibyte Characters
	Single-Byte and Multibyte Characters in the Same String
	White Space Characters in Strings
	Trailing White Space Characters

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	How to Provide Documentation Feedback

	Chapter 1. GLS Fundamentals
	In This Chapter
	Using the GLS Feature
	GLS Support by IBM Informix Products
	Informix Database Servers
	IBM Informix Client Applications and Utilities
	The IBM Informix GLS Application Programming Interface
	Supported Data Types
	International Language Supplement

	Understanding a GLS Locale
	Code Sets for Character Data
	Character Classes of the Code Set
	Collation Order for Character Data
	Code-Set Order
	Localized Order
	Unicode Collation
	Collation Support

	End-User Formats
	Numeric and Monetary Formats
	Date and Time Formats

	Setting a GLS Locale
	Locales in the Client/Server Environment
	The Client Locale
	The Database Locale
	The Server Locale

	The Default Locale
	The Default Code Set
	Default End-User Formats for Date and Time
	Default End-User Formats for Numeric and Monetary Values

	Setting a Nondefault Locale

	Using GLS Locales with IBM Informix Products
	Supporting Non-ASCII Characters
	Establishing a Database Connection
	Sending the Client Locale
	Verifying the Database Locale
	Checking for Connection Warnings
	Determining the Server-Processing Locale

	Performing Code-Set Conversion
	When Code-Set Conversion Is Performed

	Locating Message Files

	Customizing End-User Formats
	Customizing Date and Time End-User Formats
	Era-Based Date and Time Formats
	Date and Time Precedence

	Customizing Monetary Values

	Chapter 2. GLS Environment Variables
	In This Chapter
	Setting and Retrieving Environment Variables
	GLS-Related Environment Variables
	CC8BITLEVEL
	CLIENT_LOCALE
	DBDATE
	DBLANG
	DB_LOCALE
	DBMONEY
	DBNLS (IDS)
	DBTIME (ESQL/C)
	ESQLMF
	GLS8BITFSYS
	Restrictions on Non-ASCII Filenames

	GL_DATE
	The Year Formatting Directives
	Alternative Date Formats
	Optional Date Format Qualifiers

	GL_DATETIME
	Alternative Time Formats
	Optional Time Format Qualifiers
	Creation-Time Settings
	Using the USE_DTENV Environment Variable

	GL_USEGLU (IDS)
	SERVER_LOCALE

	Chapter 3. SQL Features
	In This Chapter
	Naming Database Objects
	Rules for Identifiers
	Non-ASCII Characters in Identifiers
	Qualifiers of SQL Identifiers
	Owner Names
	Pathnames and Filenames
	Delimited Identifiers

	Valid Characters in Identifiers

	Using Character Data Types
	Localized Collation of Character Data
	The NCHAR Data Type
	The NVARCHAR Data Type
	Performance Considerations

	Other Character Data Types
	The CHAR Data Type
	The VARCHAR Data Type
	The LVARCHAR Data Type (IDS)
	The TEXT Data Type

	Handling Character Data
	Specifying Quoted Strings
	Specifying Comments
	Specifying Column Substrings
	Column Substrings in Single-Byte Code Sets
	Column Substrings in Multibyte Code Sets
	Partial Characters in Column Substrings
	Errors Involving Partial Characters
	Partial Characters in an ORDER BY Clause

	Specifying Arguments to the TRIM Function
	Using Case-Insensitive Search Functions (IDS)
	Collating Character Data
	Collation Order in CREATE INDEX
	Collation Order in SELECT Statements
	Comparisons with MATCHES and LIKE Conditions

	Using SQL Length Functions
	The LENGTH Function
	The OCTET_LENGTH Function
	The CHAR_LENGTH Function

	Using Locale-Sensitive Data Types
	Handling the MONEY Data Type
	Specifying Values for the Scale Parameter
	Format of Currency Notation

	Handling Extended Data Types (IDS)
	Opaque Data Types
	Complex Data Types
	Distinct Data Types

	Handling Smart Large Objects (IDS)

	Using Data Manipulation Statements
	Specifying Conditions in the WHERE Clause
	Specifying Era-Based Dates
	Loading and Unloading Data
	Loading Data into a Database
	Unloading Data from a Database
	Loading with External Tables (XPS)
	Loading Simple Large Objects with External Tables (XPS)

	Chapter 4. Database Server Features
	In This Chapter
	GLS Support by Informix Database Servers
	Database Server Code-Set Conversion
	Data That the Database Server Converts

	Locale-Specific Support for Utilities
	Non-ASCII Characters in Database Server Utilities
	Non-ASCII Characters in SQL Utilities

	Locale Support For C User-Defined Routines (IDS and DB API)
	Current Processing Locale for UDRs
	Non-ASCII Characters in Source Code
	In C-Language Statements
	In SQL Statements

	Copying Character Data
	The IBM Informix GLS Library
	Character Processing with IBM Informix GLS
	Compatibility of Wide-Character Data Types

	Code-Set Conversion and the DataBlade API
	Character Strings in UDRs
	Character Strings in Opaque-Type Support Functions

	Locale-Specific Data Formatting
	Internationalized Exception Messages
	Inserting Customized Exception Messages
	Inserting a Localized Exception Message from a C UDR
	Searching for Customized Messages
	Specifying Parameter Markers

	Internationalized Tracing Messages
	Inserting Messages in the systracemsgs System Catalog Table
	Putting Internationalized Trace Messages into Code
	Searching for Trace Messages

	Locale-Sensitive Data in an Opaque Data Type
	Internationalized Input and Output Support Functions
	Internationalized Send and Receive Support Functions

	Chapter 5. General SQL API Features (ESQL/C)
	In This Chapter
	Supporting GLS in IBM Informix Client Applications
	Client Application Code-Set Conversion
	Data That a Client Application Converts

	Internationalizing Client Applications
	Internationalization
	Localization
	Choosing a GLS Locale
	Translating Messages

	Handling Locale-Specific Data
	Processing Characters
	Formatting Data
	Avoiding Partial Characters
	Copying Character Data
	Using Code-Set Conversion

	Chapter 6. IBM Informix ESQL/C Features (ESQL/C)
	In This Chapter
	Handling Non-ASCII Characters
	Using Non-ASCII Characters in Host Variables
	Generating Non-ASCII Filenames
	Using Non-ASCII Characters in ESQL/C Source Files
	Filtering Non-ASCII Characters
	Invoking the ESQL/C Filter

	Defining Variables for Locale-Sensitive Data
	Using Enhanced ESQL/C Library Functions
	DATE-Format Functions
	GL_DATE Support
	DBDATE Extensions
	Extended DATE-Format Strings
	Precedence for Date End-User Formats

	DATETIME-Format Functions
	GL_DATETIME Support
	DBTIME Support
	Extended DATETIME-Format Strings
	Precedence for DATETIME End-User Formats

	Numeric-Format Functions
	Support for Multibyte Characters
	Locale-Specific Numeric Formatting
	Currency-Symbol Formatting
	DBMONEY Extensions

	String Functions
	GLS-Specific Error Messages

	Handling Code-Set Conversion
	Writing TEXT Values
	Using the DESCRIBE Statement
	The sqldata Field
	The sqlname Field

	Using the TRIM Function

	Appendix A. Managing GLS Files
	Accessing GLS Files
	GLS Locale Files
	Locale Categories
	The CTYPE Category
	The COLLATION Category
	The NUMERIC Category
	The MONETARY Category
	The TIME Category
	The MESSAGES Category

	Location of Locale Files
	Locale-File Subdirectories
	Locale Source and Object Files
	Locale Filenames

	Other GLS Files
	Code-Set-Conversion Files
	Code-Set-Conversion Source and Object Files
	Code-Set-Conversion Filenames
	Required for Code-Set Conversion

	Code-Set Files
	The Informix registry File (Windows)

	Removing Unused Files
	Removing Locale and Code-Set-Conversion Files
	Removing Code-Set Files

	The glfiles Utility (UNIX)
	Listing Code-Set-Conversion Files
	Listing GLS Locale Files
	Listing Character-Mapping Files

	Appendix B. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Dotted Decimal Syntax Diagrams

	Notices
	Trademarks

	Index

