
IBM Informix

IBM Informix Guide to SQL: Tutorial

Version 11.50

SC23-9432-01

���

IBM Informix

IBM Informix Guide to SQL: Tutorial

Version 11.50

SC23-9432-01

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page B-1.

This edition replaces SC23-9432-00.

This publication contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . ix

In This Introduction . ix

About This Publication . ix

Types of Users . ix

Software Dependencies . x

Assumptions About Your Locale . x

Demonstration Database . x

What's New in IBM Informix Guide to SQL: Tutorial . xi

Documentation Conventions . xi

Typographical Conventions . xi

Feature, Product, and Platform Markup . xii

Example Code Conventions . xii

Additional Documentation . xii

Compliance with Industry Standards . xiii

How to Provide Documentation Feedback . xiii

Chapter 1. Database Concepts . 1-1

In This Chapter . 1-1

Illustration of a Data Model . 1-1

Storing Data . 1-2

Querying Data . 1-3

Modifying Data . 1-4

Concurrent Use and Security . 1-4

Controlling Database Use . 1-5

Centralized Management . 1-7

Important Database Terms . 1-7

The Relational Database Model . 1-7

Tables . 1-8

Columns . 1-8

Rows . 1-8

Views . 1-9

Sequences . 1-9

Operations on Tables . 1-9

The Object-Relational Model (IDS) . 1-10

Structured Query Language . 1-10

Standard SQL . 1-11

Informix SQL and ANSI SQL . 1-11

Interactive SQL . 1-12

General Programming . 1-12

ANSI-Compliant Databases . 1-12

Global Language Support (GLS) . 1-12

Summary . 1-12

Chapter 2. Composing SELECT Statements 2-1

In This Chapter . 2-2

Introducing the SELECT Statement . 2-2

Output from SELECT Statements . 2-3

Some Basic Concepts . 2-3

Single-Table SELECT Statements . 2-7

Using the Asterisk Symbol (*) . 2-7

Using the ORDER BY Clause to Sort the Rows . 2-8

Selecting Specific Columns . 2-11

Using the WHERE Clause . 2-18

Creating a Comparison Condition . 2-18

Using a FIRST Clause to Select Specific Rows . 2-30

© Copyright IBM Corp. 1996, 2008 iii

Expressions and Derived Values . 2-33

Using Rowid Values In SELECT Statements . 2-39

Multiple-Table SELECT Statements . 2-40

Creating a Cartesian Product . 2-40

Creating a Join . 2-41

Some Query Shortcuts . 2-47

Summary . 2-50

Chapter 3. Selecting Data from Complex Types (IDS) 3-1

In This Chapter . 3-1

Selecting Row-Type Data . 3-1

Selecting Columns of a Typed Table . 3-2

Selecting Columns That Contain Row-Type Data . 3-3

Selecting from a Collection . 3-6

Selecting Nested Collections . 3-7

Using the IN Keyword to Search for Elements in a Collection 3-8

Selecting Rows Within a Table Hierarchy . 3-9

Selecting Rows of the Supertable without the ONLY Keyword 3-10

Selecting Rows from a Supertable with the ONLY Keyword 3-10

Using an Alias for a Supertable . 3-11

Summary . 3-11

Chapter 4. Using Functions in SELECT Statements 4-1

In This Chapter . 4-1

Using Functions in SELECT Statements . 4-2

Aggregate Functions . 4-2

Time Functions . 4-6

Date-Conversion Functions (IDS) . 4-11

Cardinality Function (IDS) . 4-13

Smart-Large-Object Functions (IDS) . 4-14

String-Manipulation Functions (IDS) . 4-15

Other Functions . 4-21

Using SPL Routines in SELECT Statements . 4-27

Using Data Encryption Functions (IDS) . 4-28

Summary . 4-30

Chapter 5. Composing Advanced SELECT Statements 5-1

In This Chapter . 5-1

Using the GROUP BY and HAVING Clauses . 5-2

Using the GROUP BY Clause . 5-2

Using the HAVING Clause . 5-5

Creating Advanced Joins . 5-7

Self-Joins . 5-7

Outer Joins . 5-10

Subqueries in SELECT Statements . 5-17

Correlated Subqueries . 5-18

Subqueries in SELECT Statements . 5-18

Subqueries in a Projection Clause . 5-19

Subqueries in the FROM Clause . 5-19

Subqueries in WHERE Clauses . 5-20

Subqueries in DELETE and UPDATE Statements . 5-27

Handling Collections in SELECT Statements (IDS) . 5-27

Collection Subqueries . 5-28

Collection-Derived Tables . 5-30

ISO-Compliant Syntax for Collection Derived Tables . 5-31

Set Operations . 5-32

Union . 5-32

Intersection . 5-38

Difference . 5-39

Summary . 5-40

iv IBM Informix Guide to SQL: Tutorial

||

Chapter 6. Modifying Data . 6-1

In This Chapter . 6-2

Modifying Your Database . 6-2

Deleting Rows . 6-3

Deleting All Rows of a Table . 6-3

Deleting All Rows using TRUNCATE . 6-3

Deleting Specified Rows . 6-4

Deleting Selected Rows . 6-4

Deleting Rows That Contain Row Types (IDS) . 6-5

Deleting Rows That Contain Collection Types (IDS) . 6-5

Deleting Rows from a Supertable (IDS) . 6-5

Complicated Delete Conditions . 6-5

Using a Delete Join (XPS) . 6-6

Inserting Rows . 6-6

Single Rows . 6-6

Inserting Rows into Typed Tables (IDS) . 6-8

Inserting into Row-Type Columns (IDS) . 6-9

Inserting Rows into Supertables (IDS) . 6-10

Inserting Collection Values into Columns (IDS) . 6-11

Inserting Smart Large Objects (IDS) . 6-12

Multiple Rows and Expressions . 6-12

Restrictions on the Insert Selection . 6-13

Updating Rows . 6-14

Selecting Rows to Update . 6-14

Updating with Uniform Values . 6-15

Restrictions on Updates . 6-16

Updating with Selected Values . 6-16

Updating Row Types (IDS) . 6-17

Updating Collection Types (IDS) . 6-18

Updating Rows of a Supertable (IDS) . 6-18

Using a CASE Expression to Update a Column . 6-19

Using SQL Functions to Update Smart Large Objects (IDS) 6-19

Using a Join to Update a Column . 6-20

Privileges on a Database and on its Objects . 6-20

Database-Level Privileges . 6-20

Table-Level Privileges . 6-21

Displaying Table Privileges . 6-21

Granting Privileges to Roles . 6-22

Data Integrity . 6-22

Entity Integrity . 6-23

Semantic Integrity . 6-23

Referential Integrity . 6-24

Object Modes and Violation Detection . 6-26

Interrupted Modifications . 6-32

Transactions . 6-33

Transaction Logging . 6-33

Specifying Transactions . 6-35

Backups and Logs with Informix Database Servers . 6-35

Concurrency and Locks . 6-36

IBM Informix Data Replication (IDS) . 6-37

Summary . 6-38

Chapter 7. Accessing and Modifying Data in an External Database 7-1

In This Chapter . 7-1

Accessing Other Database Servers . 7-1

Accessing ANSI Databases . 7-1

Creating Joins Between External Database Servers . 7-2

Accessing External Routines (IDS) . 7-2

Restrictions for Remote Database Access . 7-2

SQL Statements and Logging Modes . 7-2

Accessing External Database Objects . 7-3

Contents v

Chapter 8. Programming with SQL . 8-1

In This Chapter . 8-1

SQL in Programs . 8-2

SQL in SQL APIs . 8-2

SQL in Application Languages . 8-3

Static Embedding . 8-3

Dynamic Statements . 8-3

Program Variables and Host Variables . 8-3

Calling the Database Server . 8-4

SQL Communications Area . 8-5

SQLCODE Field . 8-5

SQLERRD Array . 8-6

SQLWARN Array . 8-7

SQLERRM Character String . 8-8

SQLSTATE Value . 8-8

Retrieving Single Rows . 8-9

Data Type Conversion . 8-10

Working with NULL Data . 8-10

Dealing with Errors . 8-11

Retrieving Multiple Rows . 8-12

Declaring a Cursor . 8-13

Opening a Cursor . 8-13

Fetching Rows . 8-13

Cursor Input Modes . 8-14

Active Set of a Cursor . 8-15

Using a Cursor: A Parts Explosion . 8-17

Dynamic SQL . 8-19

Preparing a Statement . 8-19

Executing Prepared SQL . 8-20

Dynamic Host Variables . 8-20

Freeing Prepared Statements . 8-21

Quick Execution . 8-21

Embedding Data-Definition Statements . 8-21

Granting and Revoking Privileges in Applications . 8-22

Assigning Roles . 8-23

Summary . 8-24

Chapter 9. Modifying Data Through SQL Programs 9-1

In This Chapter . 9-1

Using DELETE . 9-1

Direct Deletions . 9-2

Deleting with a Cursor . 9-3

Using INSERT . 9-5

Using an Insert Cursor . 9-5

Rows of Constants . 9-7

An Insert Example . 9-7

Using UPDATE . 9-9

Using an Update Cursor . 9-9

Cleaning Up a Table . 9-10

Summary . 9-11

Chapter 10. Programming for a Multiuser Environment 10-1

In This Chapter . 10-1

Concurrency and Performance . 10-2

Locking and Integrity . 10-2

Locking and Performance . 10-2

Concurrency Issues . 10-2

How Locks Work . 10-3

Kinds of Locks . 10-3

Lock Scope . 10-4

vi IBM Informix Guide to SQL: Tutorial

Duration of a Lock . 10-9

Locks While Modifying . 10-10

Locking with the SELECT Statement . 10-10

Setting the Isolation Level . 10-10

Update Cursors . 10-14

Retaining Update Locks . 10-15

Locks Placed with INSERT, UPDATE, and DELETE . 10-16

Understanding the Behavior of the Lock Types . 10-16

Controlling Data Modification with Access Modes . 10-17

Setting the Lock Mode . 10-17

Waiting for Locks . 10-18

Not Waiting for Locks . 10-18

Waiting a Limited Time . 10-18

Handling a Deadlock . 10-18

Handling External Deadlock . 10-19

Simple Concurrency . 10-19

Hold Cursors . 10-19

Using the SQL Statement Cache . 10-20

Summary . 10-21

Chapter 11. Creating and Using SPL Routines 11-1

In This Chapter . 11-2

Introduction to SPL Routines . 11-3

What You Can Do with SPL Routines . 11-3

SPL Routine Behavior for Extended Parallel Server . 11-4

Writing SPL Routines . 11-4

Using the CREATE PROCEDURE or CREATE FUNCTION Statement 11-4

Example of a Complete Routine . 11-13

Creating an SPL Routine in a Program . 11-13

Routines in Distributed Operation . 11-14

Defining and Using Variables . 11-15

Declaring Local Variables . 11-15

Declaring Global Variables . 11-22

Assigning Values to Variables . 11-23

Expressions in SPL Routines . 11-25

Writing the Statement Block . 11-25

Implicit and Explicit Statement Blocks . 11-25

Using Cursors . 11-26

Using the FOREACH Loop to Define Cursors . 11-26

Using an IF - ELIF - ELSE Structure . 11-28

Adding WHILE and FOR Loops . 11-30

Exiting a Loop . 11-32

Returning Values from an SPL Function . 11-33

Returning a Single Value . 11-33

Returning Multiple Values . 11-34

Handling Row-Type Data (IDS) . 11-36

Precedence of Dot Notation . 11-36

Updating a Row-Type Expression . 11-36

Handling Collections (IDS) . 11-37

Using Collection Data Types . 11-37

Preparing for Collection Data Types (IDS) . 11-38

Inserting Elements into a Collection Variable . 11-39

Selecting Elements from a Collection . 11-42

Deleting a Collection Element . 11-44

Updating a Collection Element . 11-47

Updating the Entire Collection . 11-48

Inserting into a Collection . 11-51

Executing Routines . 11-55

Using the EXECUTE Statements . 11-56

Using the CALL Statement . 11-57

Executing Routines in Expressions . 11-58

Contents vii

Executing an External Function with the RETURN Statement 11-58

Executing Cursor Functions from an SPL Routine . 11-59

Dynamic Routine-Name Specification . 11-59

Privileges on Routines . 11-61

Privileges for Registering a Routine . 11-61

Privileges for Executing a Routine . 11-61

Privileges on Objects Associated with a Routine . 11-63

DBA Privileges for Executing a Routine . 11-63

Finding Errors in an SPL Routine . 11-65

Looking at Compile-Time Warnings . 11-65

Generating the Text of the Routine . 11-65

Debugging an SPL Routine . 11-66

Exception Handling . 11-68

Trapping an Error and Recovering . 11-68

Scope of Control of an ON EXCEPTION Statement . 11-69

User-Generated Exceptions . 11-69

Checking the Number of Rows Processed in an SPL Routine 11-71

Summary . 11-71

Chapter 12. Creating and Using Triggers . 12-1

In This Chapter . 12-1

When to Use Triggers . 12-2

How to Create a Trigger . 12-2

Declaring a Trigger Name . 12-3

Specifying the Trigger Event . 12-3

Defining the Triggered Actions . 12-4

A Complete CREATE TRIGGER Statement . 12-4

Using Triggered Actions . 12-4

Using BEFORE and AFTER Triggered Actions . 12-4

Using FOR EACH ROW Triggered Actions . 12-5

Using SPL Routines as Triggered Actions . 12-7

Trigger Routines . 12-8

Triggers in a Table Hierarchy (IDS) . 12-8

Using Select Triggers (IDS) . 12-9

SELECT Statements That Execute Triggered Actions . 12-9

Restrictions on Execution of Select Triggers . 12-10

Select Triggers on Tables in a Table Hierarchy . 12-10

Re-Entrant Triggers . 12-10

INSTEAD OF Triggers on Views (IDS) . 12-11

Using an INSTEAD OF Trigger to Update on a View 12-11

Tracing Triggered Actions . 12-12

Example of TRACE Statements in an SPL Routine . 12-12

Example of TRACE Output . 12-12

Generating Error Messages . 12-13

Applying a Fixed Error Message . 12-13

Generating a Variable Error Message . 12-14

Summary . 12-15

Appendix. Accessibility . A-1

Accessibility features for IBM Informix Dynamic Server . A-1

Accessibility Features . A-1

Keyboard Navigation . A-1

Related Accessibility Information . A-1

IBM and Accessibility . A-1

Notices . B-1

Trademarks . B-3

Index . X-1

viii IBM Informix Guide to SQL: Tutorial

Introduction

In This Introduction . ix

About This Publication . ix

Types of Users . ix

Software Dependencies . x

Assumptions About Your Locale . x

Demonstration Database . x

What's New in IBM Informix Guide to SQL: Tutorial . xi

Documentation Conventions . xi

Typographical Conventions . xi

Feature, Product, and Platform Markup . xii

Example Code Conventions . xii

Additional Documentation . xii

Compliance with Industry Standards . xiii

How to Provide Documentation Feedback . xiii

In This Introduction

This introduction provides an overview of the information in this publication and

describes the conventions it uses.

About This Publication

This publication shows how to use basic and advanced structured query language

(SQL) to access and manipulate the data in your databases. It discusses the data

manipulation language (DML) statements as well as triggers and stored procedure

language (SPL) routines, which DML statements often use.

This publication is one of a series of publications that discusses the Informix®

implementation of SQL. The IBM Informix Guide to SQL: Syntax contains all the

syntax descriptions for SQL and SPL. The IBM Informix Guide to SQL: Reference

provides reference information for aspects of SQL other than the language

statements. The IBM Informix Database Design and Implementation Guide shows how

to use SQL to implement and manage your databases.

Types of Users

This publication is written for the following users:

v Database users

v Database administrators

v Database-application programmers

This publication assumes that you have the following background:

v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides

v Some experience working with relational databases or exposure to database

concepts

v Some experience with computer programming

If you have limited experience with relational databases, SQL, or your operating

system, refer to the IBM Informix Dynamic Server Getting Started Guide for your

database server for a list of supplementary titles.

© Copyright IBM Corp. 1996, 2008 ix

Software Dependencies

This publication is written with the assumption that you are using one of the

following database servers:

v IBM Informix Extended Parallel Server, Version 8.51

v IBM Informix Dynamic Server (IDS), Version 11.50

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All

the information related to character set, collation, and representation of numeric

data, currency, date, and time is brought together in a single environment, called a

Global Language Support (GLS) locale.

The examples in this publication are written with the assumption that you are

using the default locale, en_us.8859-1. This locale supports U.S. English format

conventions for date, time, and currency. In addition, this locale supports the ISO

8859-1 code set, which includes the ASCII code set plus many 8-bit characters such

as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if

you want to conform to the nondefault collation rules of character data, you need

to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other

considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration Database

The DB–Access utility, which is provided with the database server products,

includes one or more of the following demonstration databases:

v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM

Informix publications are based on the stores_demo database.

Extended Parallel Server

v The sales_demo database illustrates a dimensional schema for data-

warehousing applications. For conceptual information about dimensional data

modeling, see the IBM Informix Database Design and Implementation Guide.

End of Extended Parallel Server

Dynamic Server

v The superstores_demo database illustrates an object-relational schema. The

superstores_demo database contains examples of extended data types, type and

table inheritance, and user-defined routines.

End of Dynamic Server

For information about how to create and populate the demonstration databases,

see the IBM Informix DB–Access User’s Guide. For descriptions of the databases and

their contents, see the IBM Informix Guide to SQL: Reference.

x IBM Informix Guide to SQL: Tutorial

The scripts that you use to install the demonstration databases reside in the

$INFORMIXDIR/bin directory on UNIX® platforms and in the

%INFORMIXDIR%\bin directory in Windows environments.

What's New in IBM Informix Guide to SQL: Tutorial

For a comprehensive list of new features for this release, see the IBM Informix

Dynamic Server Getting Started Guide. This topic lists new features relevant to this

publication.

 Table 1. What’s New in IBM Informix Guide to SQL: Tutorial

Overview Reference

Support in the WHERE clause of UPDATE and DELETE

statements for uncorrelated subqueries whose FROM clause

specifies the same table object that the FROM clause of the

DELETE statement or the Table Options clause of the

UPDATE statement specifies.

Subqueries of the same tables on which an outer INSERT or

SELECT statement operates are unchanged from their

behavior in earlier Dynamic Server versions.

“Subqueries in DELETE and UPDATE Statements” on

page 5-27

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM® Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Introduction xi

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement. If you are using DB–Access, you must delimit multiple

statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

xii IBM Informix Guide to SQL: Tutorial

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/
pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

the feedback link at the bottom of the page, fill out the form, and submit your

feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xiii

http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

xiv IBM Informix Guide to SQL: Tutorial

Chapter 1. Database Concepts

In This Chapter . 1-1

Illustration of a Data Model . 1-1

Storing Data . 1-2

Querying Data . 1-3

Modifying Data . 1-4

Concurrent Use and Security . 1-4

Controlling Database Use . 1-5

Access-Management Strategies . 1-5

Centralized Management . 1-7

Important Database Terms . 1-7

The Relational Database Model . 1-7

Tables . 1-8

Columns . 1-8

Rows . 1-8

Views . 1-9

Sequences . 1-9

Operations on Tables . 1-9

The Object-Relational Model (IDS) . 1-10

Structured Query Language . 1-10

Standard SQL . 1-11

Informix SQL and ANSI SQL . 1-11

Interactive SQL . 1-12

General Programming . 1-12

ANSI-Compliant Databases . 1-12

Global Language Support (GLS) . 1-12

Summary . 1-12

In This Chapter

This chapter describes fundamental database concepts and focuses on the

following topics:

v Data models

v Multiple users

v Database terminology

v SQL (Structured Query Language)

Your real use of a database begins with the SELECT statement, which Chapter 2,

“Composing SELECT Statements,” on page 2-1, describes.

Illustration of a Data Model

The principal difference between information collected in a database versus

information collected in a file is the way the data is organized. A flat file is

organized physically; certain items precede or follow other items. But the contents

of a database are organized according to a data model. A data model is a plan, or

map, that defines the units of data and specifies how each unit relates to the

others.

For example, a number can appear in either a file or a database. In a file, it is

simply a number that occurs at a certain point in the file. A number in a database,

however, has a role that the data model assigns to it. The role might be a price that

is associated with a product that was sold as one item of an order that a customer

© Copyright IBM Corp. 1996, 2008 1-1

placed. Each of these components, price, product, item, order, and customer, also

has a role that the data model specifies. For an illustration of a data model, see

Figure 1-1.

You design the data model when you create the database. You then insert units of

data according to the plan that the model lays out. Some books use the term

schema instead of data model.

Storing Data

Another difference between a database and a file is that the organization of the

database is stored with the database.

A file can have a complex inner structure, but the definition of that structure is not

within the file; it is in the programs that create or use the file. For example, a

document file that a word-processing program stores might contain detailed

structures that describe the format of the document. However, only the

word-processing program can decipher the contents of the file, because the

structure is defined within the program, not within the file.

A data model, however, is contained in the database it describes. It travels with the

database and is available to any program that uses the database. The model

defines not only the names of the data items but also their data types, so a

program can adapt itself to the database. For example, a program can find out that,

1015 06/27/98 1 case baseball gloves $450.00

1014 06/25/98 1 case footballs $960.00

1013 06/22/98 1 each tennis racquet $19.80

1012 06/18/98 1 case volleyballs $840.00

1011 06/18/98 5 each tennis racquet $99.00

1010 06/17/98 1 case tennis balls $36.00

ORDERS

order
1011

06/18/98

order
1003

05/22/98

order
1001

05/20/98

customer
Anthony
Higgins

item
2

volleyball
nets

item
1 case
tennis
balls

order
1013

06/22/98

item
tennis

racquet
$19.80

Figure 1-1. The Advantage of Using a Data Model

1-2 IBM Informix Guide to SQL: Tutorial

in the current database, a price item is a decimal number with eight digits, two to

the right of the decimal point; then it can allocate storage for a number of that

type. How programs work with databases is the subject of Chapter 8,

“Programming with SQL,” on page 8-1, and Chapter 9, “Modifying Data Through

SQL Programs,” on page 9-1.

Querying Data

Another difference between a database and a file is the way you can access them.

You can search a file sequentially, looking for particular values at particular

physical locations in each line or record. That is, you might ask, “What records

have the number 1013 in the first field?” Figure 1-2 shows this type of search.

In contrast, when you query a database, you use the terms that the model defines.

You can query the database with questions such as, “What orders have been placed

for products made by the Shimara Corporation, by customers in New Jersey, with

ship dates in the third quarter?” Figure 1-3 shows this type of query.

ORDERS

1015 06/27/98 1 case baseball gloves $450.00
1013 06/22/98 1 each tennis racquet $19.80

06/22/98 1 case tennis balls $36.00
06/22/98 1 case tennis balls $48.00

1012 06/18/98 1 case volleyballs $840.00

1011 06/18/98 5 each tennis racquet $99.00

1010 06/17/98 1 case tennis balls $36.00

Figure 1-2. Searching a File Sequentially

Chapter 1. Database Concepts 1-3

In other words, when you access data that is stored in a file, you must state your

question in terms of the physical layout of the file. When you query a database,

you can ignore the arcane details of computer storage and state your query in

terms that reflect the real world, at least to the extent that the data model reflects

the real world.

Chapter 2, “Composing SELECT Statements,” on page 2-1, and Chapter 5,

“Composing Advanced SELECT Statements,” on page 5-1, discuss the language

you use to make queries.

For information about how to build and implement your data model, see the IBM

Informix Database Design and Implementation Guide.

Modifying Data

The data model also makes it possible to modify the contents of the database with

less chance for error. You can query the database with statements such as, “Find

every stock item with a manufacturer of Presta or Schraeder, and increase its price by

13 percent.” You state changes in terms that reflect the meaning of the data. You do

not have to waste time and effort thinking about details of fields within records in

a file, so the chances for error are fewer.

The statements you use to modify stored data are covered in Chapter 6,

“Modifying Data,” on page 6-1.

Concurrent Use and Security

A database can be a common resource for many users. Multiple users can query

and modify a database simultaneously. The database server (the program that

manages the contents of all databases) ensures that the queries and modifications

are done in sequence and without conflict.

order
1016

06/29/98

order
1023

07/24/98

manufacturer
Shimara

Run: Next Restart Exit
Display the next page of query results

--------stores-----------Press CTRL-W for Help------

1019 Bob Shorter SHM swim cap 07/16/98

order
1019

07/16/98

customer
Cathy

O’Brian

state
New Jersey

customer
Bob

Shorter

Figure 1-3. Querying a Database

1-4 IBM Informix Guide to SQL: Tutorial

Having concurrent users on a database provides great advantages but also

introduces new problems of security and privacy. Some databases are private;

individuals set them up for their own use. Other databases contain confidential

material that must be shared, but only among a restricted group; still other

databases provide public access.

Controlling Database Use

Informix database software provides the means to control database use. When you

design a database, you can perform any of the following functions:

v Keep the database completely private

v Open its entire contents to all users or to selected users

v Restrict the selection of data that some users can view (different selections of

data to different groups of users)

v Allow specified users to view certain items, but not modify them

v Allow specified users to add new data, but not modify old data

v Allow specified users to modify all, or specified items of, existing data

v Ensure that added or modified data conforms to the data model

Access-Management Strategies

Dynamic Server supports two access-management systems:

v Discretionary Access Control (DAC)

v Label-Based Access Control (LBAC)

Label-Based Access Control is an implementation of Mandatory Access Control,

which is typically used in databases that store highly sensitive data, such as

systems maintained by armed forces or security services. The primary

documentation of Dynamic Server features relating to LBAC is the IBM Informix

Security Guide. IBM Informix Guide to SQL: Syntax describes how LBAC security

objects are created and maintained by the Database Security Administrator

(DBSECADM). Only the Database Server Administrator (DBSA) can grant the

DBSECADM role.

Discretionary Access Control is a simpler system that involves less overhead than

LBAC. Based on access privileges and roles, DAC is enabled in all Dynamic Server

databases, including those that implement LBAC.

To support DAC, the database administrator (DBA) can define roles and assign

them to users to standardize the access privileges of groups of users who need

access to the same database objects. When the DBA assigns privileges to that role,

every user who is granted role holds those privileges when that role is activated.

In order to activate a specific role, a user must issue the SET ROLE statement. The

SQL statements used for defining and manipulating roles include: CREATE ROLE,

DROP ROLE, GRANT, REVOKE, and SET ROLE.

 To create and grant a role:

1. Use the CREATE ROLE statement to create a new role in the current database.

2. Use the GRANT statement to grant access privileges to that role

3. Use the GRANT statement to grant the role to a user or to PUBLIC (all users).

4. The user must issue the SET ROLE statement to enable that role.

For more information on the SQL syntax statements for defining and manipulating

roles, see the IBM Informix Guide to SQL: Syntax.

Chapter 1. Database Concepts 1-5

The DBA can also define a default role to assign to individual users or to the

PUBLIC group for a specific database. The role is automatically activated when the

user establishes a connection with that database, without the requiring the user to

issue a SET ROLE statement. At connection time, each user who holds a default

role has whatever access privileges are granted to the user individually, as well as

the privileges of the default role.

Only one role that the CREATE ROLE statement defines can be in effect for a given

user at a given time. If a user who holds both a default role and one or more other

roles uses the SET ROLE statement to make a nondefault role the active role, then

any access privileges that were granted only to the default role (and not to the user

individually, nor to PUBLIC, nor to the new active role) are no longer in effect for

that user. The same user can issue the SET ROLE DEFAULT statement to reactivate

the default role, but this action disables any privileges that the user held only

through the previously enabled nondefault role.

Note: If different default roles are assigned to the user and to PUBLIC, the default

role of the user takes precedence.

 To define and grant privileges for a default role:

1. Use the CREATE ROLE statement to create a new role in the current database.

2. Use the GRANT statement to grant privileges to the role.

3. Grant the role to a user and set the role as the default user or PUBLIC role

using the following syntax:

GRANT DEFAULT ROLE rolename TO username;

or

GRANT DEFAULT ROLE rolename TO PUBLIC;

4. Use the REVOKE DEFAULT ROLE statement to disassociate a default role from

a user.

Only the DBA or the database owner can remove the default role.

5. Use the SET ROLE DEFAULT statement to reset the current role back to the

default role.

For security reasons, Dynamic Server supports certain built-in roles that are in

effect for any user who is granted the role and is connected to the database,

regardless of whether any other role is also active.

For example, in a database in which the IFX_EXTEND_ROLE configuration

parameter is set to ON, only the Database Server Administrator (DBSA) or users to

whom the DBSA has granted the built-in EXTEND role can create or drop UDRs

that are defined with the EXTERNAL keyword.

Similarly, in a database that implements LBAC security policies, the DBSA can

grant the built-in DBSECADM role. The grantee of this role becomes the Database

Security Administrator, who can define and implement LBAC security policies and

can assign security labels to data and to users.

Unlike user-defined roles, built-in roles cannot be destroyed by the DROP ROLE

statement. The SET ROLE statement has no effect on a built-in role, because it is

always active while users are connected to a database in which they have been

granted the built-in role.

1-6 IBM Informix Guide to SQL: Tutorial

For more information on the External Routine Reference segment or SQL

statements for defining and manipulating roles, see the IBM Informix Guide to SQL:

Syntax.

For more information on the DBSECADM role or SQL statements for defining and

manipulating LBAC security objects, see the IBM Informix Security Guide.

For more information on default roles, see the IBM Informix Administrator’s Guide.

For more information about how to grant and limit access to your database, see

the IBM Informix Database Design and Implementation Guide.

Centralized Management

Databases that many people use are valuable and must be protected as important

business assets. You create a significant problem when you compile a store of

valuable data and simultaneously allow many employees to access it. You handle

this problem by protecting data while maintaining performance. The database

server lets you centralize these tasks.

Databases must be guarded against loss or damage. The hazards are many: failures

in software and hardware, and the risks of fire, flood, and other natural disasters.

Losing an important database creates a huge potential for damage. The damage

could include not only the expense and difficulty of re-creating the lost data, but

also the loss of productive time by the database users as well as the loss of

business and goodwill while users cannot work. A plan for regular backups helps

avoid or mitigate these potential disasters.

A large database that many people use must be maintained and tuned. Someone

must monitor its use of system resources, chart its growth, anticipate bottlenecks,

and plan for expansion. Users will report problems in the application programs;

someone must diagnose these problems and correct them. If rapid response is

important, someone must analyze the performance of the system and find the

causes of slow responses.

Important Database Terms

You should know a number of terms before you begin the next chapter. Depending

on the database server you use, a different set of terms can describe the database

and the data model that apply.

The Relational Database Model

The databases you create with an Informix database server are object-relational

databases. In practical terms this means that all data is presented in the form of

tables with rows and columns where the following simple corresponding

relationships apply.

Relationship Description

table = entity A table represents all that the database knows

about one subject or kind of thing.

column = attribute A column represents one feature, characteristic, or

fact that is true of the table subject.

row = instance A row represents one individual instance of the

table subject.

Chapter 1. Database Concepts 1-7

Some rules apply about how you choose entities and attributes, but they are

important only when you are designing a new database. (For more information

about database design, see the IBM Informix Database Design and Implementation

Guide.) The data model in an existing database is already set. To use the database,

you need to know only the names of the tables and columns and how they

correspond to the real world.

Tables

A database is a collection of information that is grouped into one or more tables. A

table is an array of data items organized into rows and columns. A demonstration

database is distributed with every Informix database server product. A partial table

from the demonstration database follows.

 stock_num manu_code description unit_price unit unit_descr

...
...

...
...

...
...

1 HRO baseball gloves 250.00 case 10 gloves/case

1 HSK baseball gloves 800.00 case 10 gloves/case

1 SMT baseball gloves 450.00 case 10 gloves/case

2 HRO baseball 126.00 case 24/case

3 HSK baseball bat 240.00 case 12/case

4 HSK football 960.00 case 24/case

4 HRO football 480.00 case 24/case

5 NRG tennis racquet 28.00 each each

...
...

...
...

...
...

313 ANZ swim cap 60.00 case 12/box

A table represents all that the database administrator (DBA) wants to store about

one entity, one type of thing that the database describes. The example table, stock,

represents all that the DBA wants to store about the merchandise that a sporting

goods store stocks. Other tables in the demonstration database represent such

entities as customer and orders.

Think of a database as a collection of tables. To create a database is to create a set

of tables. The right to query or modify tables can be controlled on a table-by-table

basis, so that some users can view or modify some tables but not others.

Columns

Each column of a table contains one attribute, which is one characteristic, feature,

or fact that describes the subject of the table. The stock table has columns for the

following facts about items of merchandise: stock numbers, manufacturer codes,

descriptions, prices, and units of measure.

Rows

Each row of a table is one instance of the subject of the table, which is one

particular example of that entity. Each row of the stock table stands for one item of

merchandise that the sporting goods store sells.

1-8 IBM Informix Guide to SQL: Tutorial

Views

A view is a virtual table based on a specified SELECT statement. A view is a

dynamically controlled picture of the contents in a database and allows a

programmer to determine what information the user sees and manipulates.

Different users can be given different views of the contents of a database, and their

access to those contents can be restricted in several ways.

Sequences

A sequence is a database object that generates a sequence of whole numbers within

a defined range. The sequence of numbers can run in either ascending or

descending order, and is monotonic. For more information about sequences, see the

IBM Informix Guide to SQL: Syntax.

Operations on Tables

Because a database is really a collection of tables, database operations are

operations on tables. The object-relational model supports three fundamental

operations: selection, projection, and joining. Figure 1-4 shows the selection and

projection operations. (All three operations are defined in detail, with many

examples, in the following chapters.)

When you select data from a table, you are choosing certain rows and ignoring

others. For example, you can query the stock table by asking the database

management system to, “Select all rows in which the manufacturer code is HSK

and the unit price is between 200.00 and 300.00.”

When you project from a table, you are choosing certain columns and ignoring

others. For example, you can query the stock table by asking the database

management system to “project the stock_num, unit_descr, and unit_price

columns.”

A table contains information about only one entity; when you want information

about multiple entities, you must join their tables. You can join tables in many

ways. For more information about join operations, refer to Chapter 5, “Composing

Advanced SELECT Statements,” on page 5-1.

SELECTION

stock table

P R O J E C T I O N

stock_num manu_code description unit_price unit unit_descr

1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/case
3 HSK baseball bat 240.00 case 12/case
4 HSK football 960.00 case 24/case
4 HRO football 480.00 case 24/case
5 NRG tennis racquet 28.00 each each

313 ANZ swim cap 60.00 case 12/box

Figure 1-4. Illustration of Selection and Projection

Chapter 1. Database Concepts 1-9

The Object-Relational Model (IDS)

Dynamic Server allows you to build object-relational databases. In addition to

supporting alphanumeric data such as character strings, integers, date, and

decimal, an object-relational database extends the features of a relational model

with the following object-oriented capabilities:

v Extensibility. You can extend the capability of the database server by defining

new data types (and the access methods and functions to support them) and

user-defined routines (UDRs) that allow you to store and manage images, audio,

video, large text documents, and so forth.

IBM, as well as third-party vendors, packages some data types and access

methods into DataBlade® modules, or shared class libraries, that you can add on

to the database server, if it suits your needs. DataBlade modules enable you to

store non-traditional data types such as two-dimensional spatial objects (lines,

polygons, ellipses, and circles) and to access them through R-tree indexes. A

DataBlade module might also provide new types of access to large text

documents, including phrase matching, fuzzy searches, and synonym matching.

You can also extend the database server on your own by using the features of

Dynamic Server that enable you to add data types and access methods. For

more information, see IBM Informix User-Defined Routines and Data Types

Developer’s Guide.

You can create UDRs in SPL and the C programming language to encapsulate

application logic or to enhance the functionality of the Dynamic Server. For more

information, see Chapter 11, “Creating and Using SPL Routines,” on page 11-1.

v Complex Types. You can define new data types that combine one or more

existing data types. Complex types enable greater flexibility in organizing data

at the level of columns and tables. For example, with complex types, you can

define columns that contain collections of values of a single type and columns

that contain multiple component types.

v Inheritance. You can define objects (types and tables) that acquire the properties

of other objects and add new properties that are specific to the object that you

define.

Dynamic Server provides object-oriented capabilities beyond those of the relational

model but represents all data in the form of tables with rows and columns. Although

the object-relational model extends the capabilities of the relational model, you can

implement your data model as a traditional relational database if you choose.

Some rules apply about how you choose entities and attributes, but they are

important only when you are designing a new database. For more information

about object-relational database design, see the IBM Informix Database Design and

Implementation Guide.

Structured Query Language

Most computer software has not yet reached a point where you can literally ask a

database, “What orders have been placed by customers in New Jersey with ship

dates in the third quarter?” You must still phrase questions in a restricted syntax

that the software can easily parse. You can pose the same question to the

demonstration database in the following terms:

SELECT * FROM customer, orders

 WHERE customer.customer_num = orders.customer_num

 AND customer.state = ’NJ’

 AND orders.ship_date

 BETWEEN DATE(’7/1/98’) AND DATE(’9/30/98’);

1-10 IBM Informix Guide to SQL: Tutorial

This question is a sample of Structured Query Language (SQL). It is the language

that you use to direct all operations on the database. SQL is composed of

statements, each of which begins with one or two keywords that specify a

function. The Informix implementation of SQL includes a large number of SQL

statements, from ALLOCATE DESCRIPTOR to WHENEVER.

You will use most of the statements only when you set up or tune your database.

You will use three or four statements regularly to query or update your database.

For details on SQL statements, see the IBM Informix Guide to SQL: Syntax.

One statement, SELECT, is in almost constant use. SELECT is the only statement

that you can use to retrieve data from the database. It is also the most complicated

statement, and the next two chapters of this book explore its many uses.

Standard SQL

SQL and the relational model were invented and developed at IBM in the early

and middle 1970s. Once IBM proved that it was possible to implement practical

relational databases and that SQL was a usable language for manipulating them,

other implementations of SQL were developed.

For reasons of performance or competitive advantage, or to take advantage of local

hardware or software features, each SQL implementation differed in small ways

from the others and from the IBM version of the language. To ensure that the

differences remained small, a standards committee was formed in the early 1980s.

Committee X3H2, sponsored by the American National Standards Institute (ANSI),

issued the SQL1 standard in 1986. This standard defines a core set of SQL features

and the syntax of statements such as SELECT.

Informix SQL and ANSI SQL

The Informix implementation of SQL is compatible with standard SQL. Informix

SQL is also compatible with the IBM version of the language. However, Informix

SQL contains extensions to the standard; that is, extra options or features for certain

statements, and looser rules for others. Most of the differences occur in the

statements that are not in everyday use. For example, few differences occur in the

SELECT statement, which accounts for 90 percent of SQL use.

However, the Informix SQL extensions do exist and create conflicts. Thousands of

customers have embedded Informix-style SQL in programs and stored routines.

Now that Informix products are part of the IBM Data Management product suite,

users rely on IBM to keep the Informix-style SQL language the same. Other

customers require the ability to use databases in a way that conforms exactly to the

ANSI standard, and they rely on IBM to change its language to conform.

IBM resolves the conflict with the following compromise:

v The Informix-style version of SQL, with its extensions to the standard, is

available by default.

v You can ask any Informix-style SQL language processor to check your use of

SQL and post a warning flag whenever you use an Informix-style extension.

When a difference exists between Informix and ANSI standard, the IBM Informix

Guide to SQL: Syntax identifies the Informix syntax as an extension to the ANSI

standard for SQL.

Chapter 1. Database Concepts 1-11

Interactive SQL

To carry out the examples in this book and to experiment with SQL and database

design, you need a program that lets you execute SQL statements interactively.

DB–Access is such a program. It helps you compose SQL statements and then

passes your SQL statements to the database server for execution and displays the

results to you.

General Programming

You can write programs that incorporate SQL statements and exchange data with

the database server. That is, you can write a program to retrieve data from the

database and format it however you choose. You can also write programs that take

data from any source in any format, prepare it, and insert it into the database.

You can also write programs called stored routines to work with database data and

objects. The stored routines that you write are stored directly in a database in

tables. You can then execute a stored routine from DB–Access or an SQL

Application Programming Interface (API) such as IBM Informix ESQL/C.

Chapter 8, “Programming with SQL,” on page 8-1, and Chapter 9, “Modifying Data

Through SQL Programs,” on page 9-1, present an overview of how SQL is used in

programs.

ANSI-Compliant Databases

Use the MODE ANSI keywords when you create a database to designate it as

ANSI compliant. Within such a database, certain characteristics of the ANSI/ISO

standard apply. For example, all actions that modify data take place within a

transaction automatically, which means that the changes are made in their entirety

or not at all. Differences in the behavior of ANSI-compliant databases are noted,

where appropriate, in the statement descriptions in the IBM Informix Guide to SQL:

Syntax. For a detailed discussion of ANSI-compliant databases, see the IBM

Informix Database Design and Implementation Guide.

Global Language Support (GLS)

Informix database server products provide the Global Language Support (GLS)

feature. In addition to U.S. ASCII English, GLS allows you to work in other locales

and use non-ASCII characters in SQL data and identifiers. You can use the GLS

feature to conform to the customs of a specific locale. The locale files contain

culture-specific information, such as money and date formats and collation orders.

For more GLS information, see the IBM Informix GLS User’s Guide.

Summary

A database contains a collection of related information but differs in a fundamental

way from other methods of storing data. The database contains not only the data,

but also a data model that defines each data item and specifies its meaning with

respect to the other items and to the real world.

More than one user can access and modify a database at the same time. Each user

has a different view of the contents of a database, and each user’s access to those

contents can be restricted in several ways.

A relational database consists of tables, and the tables consist of columns and rows.

The relational model supports three fundamental operations on tables: selections,

projections, and joins.

1-12 IBM Informix Guide to SQL: Tutorial

An object-relational database extends the features of a relational database. You can

define new data types to store and manage audio, video, large text documents, and

so forth. You can define complex types that combine one or more existing data

types to provide greater flexibility in how you organize your data in columns and

tables. You can define types and tables that inherit the properties of other database

objects and add new properties that are specific to the object that you define.

To manipulate and query a database, use SQL. IBM pioneered SQL and ANSI

standardized it. Informix extensions that you can use to your advantage add to the

ANSI-defined language. IBM Informix tools also make it possible to maintain strict

compliance with ANSI standards.

Two layers of software mediate all your work with databases. The bottom layer is

always a database server that executes SQL statements and manages the data on

disk and in computer memory. The top layer is one of many applications, some

from IBM and some written by you, by other vendors, or your colleagues.

Middleware is the component that links the database server to the application, and

is provided by the database vendor to bind the client programs with the database

server. IBM Informix Stored Procedure Language (SPL) is an example of such a

tool.

Chapter 1. Database Concepts 1-13

1-14 IBM Informix Guide to SQL: Tutorial

Chapter 2. Composing SELECT Statements

In This Chapter . 2-2

Introducing the SELECT Statement . 2-2

Output from SELECT Statements . 2-3

Output from Large Object Data Types . 2-3

Output from User-Defined Data Types . 2-3

Output in Non-Default Code Sets . 2-3

Some Basic Concepts . 2-3

Privileges . 2-4

Relational Operations . 2-4

Selection and Projection . 2-4

Joining . 2-6

Single-Table SELECT Statements . 2-7

Using the Asterisk Symbol (*) . 2-7

Reordering the Columns . 2-8

Using the ORDER BY Clause to Sort the Rows . 2-8

Ascending Order . 2-9

Descending Order . 2-9

Sorting on Multiple Columns . 2-10

Selecting Specific Columns . 2-11

Selecting Substrings . 2-15

ORDER BY and Non-English Data . 2-16

Using the WHERE Clause . 2-18

Creating a Comparison Condition . 2-18

Including Rows . 2-19

Excluding Rows . 2-19

Specifying A Range of Rows . 2-20

Excluding a Range of Rows . 2-21

Using a WHERE Clause to Find a Subset of Values 2-21

Identifying NULL Values . 2-23

Forming Compound Conditions . 2-23

Using Exact-Text Comparisons . 2-24

Using Variable-Text Searches . 2-25

Using a Single-Character Wildcard . 2-25

MATCHES and Non-Default Locales . 2-28

Protecting Special Characters . 2-29

Using Subscripting in a WHERE Clause . 2-29

Using a FIRST Clause to Select Specific Rows . 2-30

FIRST Clause Without an ORDER BY Clause . 2-31

FIRST Clause with an ORDER BY Clause . 2-31

Expressions and Derived Values . 2-33

Arithmetic Expressions . 2-33

CASE Expressions . 2-36

Sorting on Derived Columns . 2-38

Using Rowid Values In SELECT Statements . 2-39

Multiple-Table SELECT Statements . 2-40

Creating a Cartesian Product . 2-40

Creating a Join . 2-41

Cross Join (IDS) . 2-41

Equi-Join . 2-42

Natural Join . 2-44

Multiple-Table Join . 2-46

Some Query Shortcuts . 2-47

Using Aliases . 2-47

The INTO TEMP Clause . 2-49

© Copyright IBM Corp. 1996, 2008 2-1

Summary . 2-50

In This Chapter

SELECT is the most important and the most complex SQL statement. You can use

it and the SQL statements INSERT, UPDATE, and DELETE to manipulate data. You

can use the SELECT statement to retrieve data from a database, as part of an

INSERT statement to produce new rows, or as part of an UPDATE statement to

update information.

The SELECT statement is the primary way to query information in a database. It is

your key to retrieving data in a program, report, form, or spreadsheet. You can use

SELECT statements with a query tool such as DB–Access or embed SELECT

statements in an application.

This chapter introduces the basic methods for using the SELECT statement to

query and retrieve data from relational databases. It discusses how to tailor your

statements to select columns or rows of information from one or more tables, how

to include expressions and functions in SELECT statements, and how to create

various join conditions between database tables. The syntax and usage for the

SELECT statement are described in detail in the IBM Informix Guide to SQL: Syntax.

Most examples in this publication come from the tables in the stores_demo

database, which is included with the software for your IBM Informix SQL API or

database utility. In the interest of brevity, the examples show only part of the data

that is retrieved for each SELECT statement. For information on the structure and

contents of the demonstration database, see the IBM Informix Guide to SQL:

Reference. For emphasis, keywords are shown in uppercase letters in the examples,

although SQL is not case sensitive.

Introducing the SELECT Statement

The SELECT statement is constructed of clauses that let you look at data in a

relational database. These clauses let you select columns and rows from one or

more database tables or views, specify one or more conditions, order and

summarize the data, and put the selected data in a temporary table.

This chapter shows how to use five SELECT statement clauses. If you include all

five of these clauses, they must appear in the SELECT statement in the following

order:

1. Projection clause

2. FROM clause

3. WHERE clause

4. ORDER BY clause

5. INTO TEMP clause

Only the Projection clause and FROM clause are required. These two clauses form

the basis for every database query, because they specify the column values to be

retrieved, and the tables that contain those columns. Use one or more of the other

clauses from the following list:

v Add a WHERE clause to select specific rows or create a join condition.

v Add an ORDER BY clause to change the order in which data is produced.

v Add an INTO TEMP clause to save the results as a table for further queries.

2-2 IBM Informix Guide to SQL: Tutorial

Two additional SELECT statement clauses, GROUP BY and HAVING, let you

perform more complex data retrieval. They are introduced in Chapter 5,

“Composing Advanced SELECT Statements,” on page 5-1. Another clause, INTO,

specifies the program or host variable to receive data from a SELECT statement in

an application program. Complete syntax and rules for using the SELECT

statement are in the IBM Informix Guide to SQL: Syntax.

Output from SELECT Statements

Although the syntax remains the same across all IBM Informix products, the

formatting and display of the resulting output depends on the application. The

examples in this chapter and in Chapter 5 display the SELECT statements and their

output as they appear when you use the interactive Query-language option in

DB–Access.

Output from Large Object Data Types

When you issue a SELECT statement that includes a large object, DB–Access

displays the results as follows:

v For a TEXT column or CLOB column, the contents of the column are displayed.

v For a BYTE column, the words <BYTE value> are displayed instead of the actual

value.

v For a BLOB column, the words <SBlob data> are displayed instead of the actual

value.

Output from User-Defined Data Types

DB–Access uses special conventions to display output from columns that contain

complex or opaque data types. For more information about these data types, refer

to the IBM Informix Database Design and Implementation Guide.

Output in Non-Default Code Sets

You can issue a SELECT statement that queries NCHAR columns instead of CHAR

columns or NVARCHAR columns instead of VARCHAR columns.

For more Global Language Support (GLS) information, see the IBM Informix GLS

User’s Guide. For additional information on using NCHAR and NVARCHAR data

types with non-default code sets, see the IBM Informix Database Design and

Implementation Guide and the IBM Informix Guide to SQL: Reference.

Some Basic Concepts

The SELECT statement, unlike INSERT, UPDATE, and DELETE statements, does

not modify the data in a database. It simply queries the data. Whereas only one

user at a time can modify data, multiple users can query or select the data

concurrently. For more information about statements that modify data, see

Chapter 6, “Modifying Data,” on page 6-1. The syntax descriptions of the INSERT,

UPDATE, and DELETE statements appear in the IBM Informix Guide to SQL:

Syntax.

In a relational database, a column is a data element that contains a particular type

of information that occurs in every row in the table. A row is a group of related

items of information about a single entity across all columns in a database table.

You can select columns and rows from a database table; from a system catalog table,

a special table that contains information on the database; or from a view, a virtual

table created to contain a customized set of data. System catalog tables are

Chapter 2. Composing SELECT Statements 2-3

described in the IBM Informix Guide to SQL: Reference. Views are discussed in the

IBM Informix Database Design and Implementation Guide.

Privileges

Before you make a query against data, make sure you have the Connect privilege

on the database and the Select privilege on the table. These privileges are normally

granted to all users. Database access privileges are discussed in the IBM Informix

Database Design and Implementation Guide and in the GRANT and REVOKE

statements in the IBM Informix Guide to SQL: Syntax.

Relational Operations

A relational operation involves manipulating one or more tables, or relations, to result

in another table. The three kinds of relational operations are selection, projection,

and join. This chapter includes examples of selection, projection, and simple

joining.

Selection and Projection

In relational terminology, selection is defined as taking the horizontal subset of rows

of a single table that satisfies a particular condition. This kind of SELECT

statement returns some of the rows and all the columns in a table. Selection is

implemented through the WHERE clause of a SELECT statement, as Figure 2-1

shows.

Figure 2-2 contains the same number of columns as the customer table, but only a

subset of its rows. In this example, DB–Access displays the data from each column

on a separate line.

In relational terminology, projection is defined as taking a vertical subset from the

columns of a single table that retains the unique rows. This kind of SELECT

statement returns some of the columns and all the rows in a table.

SELECT * FROM customer WHERE state = ’NJ’;

Figure 2-1. Query

customer_num 119

fname Bob

lname Shorter

company The Triathletes Club

address1 2405 Kings Highway

address2

city Cherry Hill

state NJ

zipcode 08002

phone 609-663-6079

customer_num 122

fname Cathy

lname O‘Brian

company The Sporting Life

address1 543d Nassau

address2

city Princeton

state NJ

zipcode 08540

phone 609-342-0054

Figure 2-2. Query Result

2-4 IBM Informix Guide to SQL: Tutorial

Projection is implemented through the projection list in the Projection clause of a

SELECT statement, as Figure 2-3 shows.

 Figure 2-4 contains the same number of rows as the customer table, but it projects

only a subset of the columns in the table. Because only a small amount of data is

selected from each row, DB–Access is able to display all of the data from the row

on one line.

The most common kind of SELECT statement uses both selection and projection. A

query of this kind returns some of the rows and some of the columns in a table, as

Figure 2-5 shows.

Figure 2-6 contains a subset of the rows and a subset of the columns in the

customer table.

SELECT city, state, zipcode FROM customer;

Figure 2-3. Query

city state zipcode

Sunnyvale CA 94086

San Francisco CA 94117

Palo Alto CA 94303

Redwood City CA 94026

Los Altos CA 94022

Mountain View CA 94063

Palo Alto CA 94304

Redwood City CA 94063

Sunnyvale CA 94086

Redwood City CA 94062

Sunnyvale CA 94085 ...
Oakland CA 94609

Cherry Hill NJ 08002

Phoenix AZ 85016

Wilmington DE 19898

Princeton NJ 08540

Jacksonville FL 32256

Bartlesville OK 74006

Figure 2-4. Query Result

SELECT UNIQUE city, state, zipcode

 FROM customer

 WHERE state = ’NJ’;

Figure 2-5. Query

city state zipcode

Cherry Hill NJ 08002

Princeton NJ 08540

Figure 2-6. Query Result

Chapter 2. Composing SELECT Statements 2-5

Joining

A join occurs when two or more tables are connected by one or more columns in

common, which creates a new table of results. Figure 2-7 shows a query that uses a

subset of the items and stock tables to illustrate the concept of a join.

Figure 2-8 joins the customer and state tables.

Figure 2-9 consists of specified rows and columns from both the customer and

state tables

item_num order_num stock_num

1 1001 1
1 1002 4
2 1002 3
3 1003 5
1 1005 5

stock_num manu_code description

1 HRO baseball gloves
1 HSK baseball gloves
2 HRO baseball
4 HSK football
5 NRG tennis racquet

SELECT UNIQUE item_num, order_num,
stock.stock_num, description

FROM items, stock
WHERE items.stock_num = stock.stock_num

items table (example) stock table (example)

item_num or der_num stock_num description

1 1001 1 baseball gloves
1 1002 4 football
3 1003 5 tennis racquet
1 1005 5 tennis racquet

Figure 2-7. A Join Between Two Tables

SELECT UNIQUE city, state, zipcode, sname

 FROM customer, state

 WHERE customer.state = state.code;

Figure 2-8. Query

2-6 IBM Informix Guide to SQL: Tutorial

Single-Table SELECT Statements

You can query a single table in a database in many ways. You can tailor a SELECT

statement to perform the following actions:

v Retrieve all or specific columns

v Retrieve all or specific rows

v Perform computations or other functions on the retrieved data

v Order the data in various ways

The most basic SELECT statement contains only the two required clauses, the

Projection clause and FROM.

Using the Asterisk Symbol (*)

Figure 2-10 specifies all the columns in the manufact table in a projection list. An

explicit projection list is a list of the column names or expressions that you want to

project from a table.

Figure 2-11 uses the wildcard asterisk symbol (*) as shorthand in the projection list

to represent the names of all the columns in the table. You can use the asterisk

symbol (*) when you want all the columns in their defined order. An implicit select

list uses the asterisk symbol.

city state zipcode sname

Bartlesville OK 74006 Oklahoma

Blue Island NY 60406 New York

Brighton MA 02135 Massachusetts

Cherry Hill NJ 08002 New Jersey

Denver CO 80219 Colorado

Jacksonville FL 32256 Florida

Los Altos CA 94022 California

Menlo Park CA 94025 California

Mountain View CA 94040 California

Mountain View CA 94063 California

Oakland CA 94609 California

Palo Alto CA 94303 California

Palo Alto CA 94304 California

Phoenix AZ 85008 Arizona

Phoenix AZ 85016 Arizona

Princeton NJ 08540 New Jersey

Redwood City CA 94026 California

Redwood City CA 94062 California

Redwood City CA 94063 California

San Francisco CA 94117 California

Sunnyvale CA 94085 California

Sunnyvale CA 94086 California

Wilmington DE 19898 Delaware

Figure 2-9. Query Result

SELECT manu_code, manu_name, lead_time FROM manufact;

Figure 2-10. Query

Chapter 2. Composing SELECT Statements 2-7

Because the manufact table has only three columns, Figure 2-10 and Figure 2-11 are

equivalent and display the same results; that is, a list of every column and row in

the manufact table. Figure 2-12 shows the results.

Reordering the Columns

Figure 2-13 shows how you can change the order in which the columns are listed

by changing their order in your projection list.

Figure 2-14 includes the same columns as the previous query result, but because

the columns are specified in a different order, the display is also different.

Using the ORDER BY Clause to Sort the Rows

The results from a query are not arranged in any particular order. For example,

Figure 2-4 on page 2-5 and Figure 2-14 appear to be in random order.

You can add an ORDER BY clause to your SELECT statement to direct the system

to sort the data in a specific order. The ORDER BY clause is a list of column names

from any remote or local table or view. Any expressions that are allowed in the

projection list are allowed in the ORDER BY list. If a column used in the ORDER

BY list has a Select trigger on it, the trigger will not be activated.

SELECT * FROM manufact;

Figure 2-11. Query

manu_code manu_name lead_time

 SMT Smith 3

 ANZ Anza 5

 NRG Norge 7

 HSK Husky 5

 HRO Hero 4

 SHM Shimara 30

 KAR Karsten 21

 NKL Nikolus 8

 PRC ProCycle 9

Figure 2-12. Query Result

SELECT manu_name, manu_code, lead_time FROM manufact;

Figure 2-13. Query

manu_name manu_code lead_time

 Smith SMT 3

 Anza ANZ 5

 Norge NRG 7

 Husky HSK 5

 Hero HRO 4

 Shimara SHM 30

 Karsten KAR 21

 Nikolus NKL 8

 ProCycle PRC 9

Figure 2-14. Query Result

2-8 IBM Informix Guide to SQL: Tutorial

Figure 2-15 returns every row from the manu_code, manu_name, and lead_time

columns in the manufact table, sorted according to lead_time.

Dynamic Server

You do not need to include the columns that you want to use in the ORDER BY

clause in the projection list. That is, you can sort the data according to a column

that is not retrieved in the projection list. Figure 2-16 returns every row from the

manu_code and manu_name columns in the manufact table, sorted according to

lead_time. The lead_time column is in the ORDER BY clause although it is not

declared in the SELECT list.

End of Dynamic Server

Ascending Order

The retrieved data is sorted and displayed, by default, in ascending order. In the

ASCII character set, ascending order is uppercase A to lowercase z for character

data types, and lowest to highest value for numeric data types. DATE and

DATETIME data is sorted from earliest to latest, and INTERVAL data is ordered

from shortest to longest span of time.

Descending Order

Descending order is the opposite of ascending order, from lowercase z to

uppercase A for character types and highest to lowest for numeric data types.

DATE and DATETIME data is sorted from latest to earliest, and INTERVAL data is

ordered from longest to shortest span of time. Figure 2-17 shows an example of

descending order.

The keyword DESC following a column name causes the retrieved data to be

sorted in descending order, as Figure 2-18 shows.

SELECT manu_code, manu_name, lead_time

 FROM manufact

 ORDER BY lead_time;

Figure 2-15. Query

SELECT manu_code, manu_name,

 FROM manufact

 ORDER BY lead_time;

Figure 2-16. Query

SELECT * FROM manufact ORDER BY lead_time DESC;

Figure 2-17. Query

Chapter 2. Composing SELECT Statements 2-9

You can specify any column of a built-in data type (except TEXT, BYTE, BLOB, or

CLOB) in the ORDER BY clause, and the database server sorts the data based on

the values in that column.

Sorting on Multiple Columns

You can also ORDER BY two or more columns, which creates a nested sort. The

default is still ascending, and the column that is listed first in the ORDER BY

clause takes precedence.

Figure 2-19 and Figure 2-21 and corresponding query results show nested sorts. To

modify the order in which selected data is displayed, change the order of the two

columns that are named in the ORDER BY clause.

In Figure 2-20, the manu_code column data appears in alphabetical order and,

within each set of rows with the same manu_code (for example, ANZ, HRO), the

unit_price is listed in ascending order.

Figure 2-21 shows the reverse order of the columns in the ORDER BY clause.

manu_code manu_name lead_time

 SHM Shimara 30

 KAR Karsten 21

 PRC ProCycle 9

 NKL Nikolus 8

 NRG Norge 7

 HSK Husky 5

 ANZ Anza 5

 HRO Hero 4

 SMT Smith 3

Figure 2-18. Query Result

SELECT stocknum, manu_code, description, unit_price

 FROM stock

 ORDER BY manu_code, unit_price;

Figure 2-19. Query

stock_num manu_code description unit_price

 5 ANZ tennis racquet $19.80

 9 ANZ volleyball net $20.00

 6 ANZ tennis ball $48.00

 313 ANZ swim cap $60.00

 201 ANZ golf shoes $75.00

 310 ANZ kick board $84.00

 ...
 111 SHM 10-spd, assmbld $499.99

 112 SHM 12-spd, assmbld $549.00

 113 SHM 18-spd, assmbld $685.90

 5 SMT tennis racquet $25.00

 6 SMT tennis ball $36.00

 1 SMT baseball gloves $450.00

Figure 2-20. Query Result

2-10 IBM Informix Guide to SQL: Tutorial

In Figure 2-22, the data appears in ascending order of unit_price and, where two

or more rows have the same unit_price (for example, $20.00, $48.00, $312.00), the

manu_code is in alphabetical order.

The order of the columns in the ORDER BY clause is important, and so is the

position of the DESC keyword. Although the statements in Figure 2-23 contain the

same components in the ORDER BY clause, each produces a different result (not

shown).

Selecting Specific Columns

The previous section shows how to select and order all data from a table.

However, often all you want to see is the data in one or more specific columns.

Again, the formula is to use the Projection and FROM clauses, specify the columns

and table, and perhaps order the data in ascending or descending order with an

ORDER BY clause.

If you want to find all the customer numbers in the orders table, use a statement

such as the one in Figure 2-24.

SELECT stock_num, manu_code, description, unit_price

 FROM stock

 ORDER BY unit_price, manu_code;

Figure 2-21. Query

stock_num manu_code description unit_price

 302 HRO ice pack $4.50

 302 KAR ice pack $5.00

 5 ANZ tennis racquet $19.80

 9 ANZ volleyball net $20.00

 103 PRC frnt derailleur $20.00

 ...
 108 SHM crankset $45.00

 6 ANZ tennis ball $48.00

 305 HRO first-aid kit $48.00

 303 PRC socks $48.00

 311 SHM water gloves $48.00

 ...
 113 SHM 18-spd, assmbld $685.90

 1 HSK baseball gloves $800.00

 8 ANZ volleyball $840.00

 4 HSK football $960.00

Figure 2-22. Query Result

SELECT * FROM stock ORDER BY manu_code, unit_price DESC;

SELECT * FROM stock ORDER BY unit_price, manu_code DESC;

SELECT * FROM stock ORDER BY manu_code DESC, unit_price;

SELECT * FROM stock ORDER BY unit_price DESC, manu_code;

Figure 2-23. Query

Chapter 2. Composing SELECT Statements 2-11

Figure 2-25 shows how the statement simply selects all data in the customer_num

column in the orders table and lists the customer numbers on all the orders,

including duplicates.

The output includes several duplicates because some customers have placed more

than one order. Sometimes you want to see duplicate rows in a projection. At other

times, you want to see only the distinct values, not how often each value appears.

To suppress duplicate rows, you can include the keyword DISTINCT or its

synonym UNIQUE at the start of the select list, once in each level of a query, as

Figure 2-26 shows.

To produce a more readable list, Figure 2-26 limits the display to show each

customer number in the orders table only once, as Figure 2-27 shows.

SELECT customer_num FROM orders;

Figure 2-24. Query

customer_num

 104

 101

 104

 ...
 122

 123

 124

 126

 127

Figure 2-25. Query Result

SELECT DISTINCT customer_num FROM orders;

SELECT UNIQUE customer_num FROM orders;

Figure 2-26. Query

2-12 IBM Informix Guide to SQL: Tutorial

Suppose you are handling a customer call, and you want to locate purchase order

number DM354331. To list all the purchase order numbers in the orders table, use

a statement such as the one that Figure 2-28 shows.

Figure 2-29 shows how the statement retrieves data in the po_num column in the

orders table.

However, the list is not in a useful order. You can add an ORDER BY clause to sort

the column data in ascending order and make it easier to find that particular

po_num, as Figure 2-31 shows.

customer_num

 101

 104

 106

 110

 111

 112

 115

 116

 117

 119

 120

 121

 122

 123

 124

 126

 127

Figure 2-27. Query Result

SELECT po_num FROM orders;

Figure 2-28. Query

po_num

B77836

9270

B77890

8006

2865

Q13557

278693 ...

Figure 2-29. Query Result

SELECT po_num FROM orders ORDER BY po_num;

Figure 2-30. Query

Chapter 2. Composing SELECT Statements 2-13

To select multiple columns from a table, list them in the projection list in the

Projection clause. Figure 2-32 shows that the order in which the columns are

selected is the order in which they are retrieved, from left to right.

As “Sorting on Multiple Columns” on page 2-10 shows, you can use the ORDER

BY clause to sort the data in ascending or descending order and perform nested

sorts. Figure 2-33 shows ascending order.

po_num

278693

278701

2865

429Q

4745

8006

8052

9270

B77836

B77890 ...

Figure 2-31. Query Result

SELECT ship_date, order_date, customer_num,

 order_num, po_num

 FROM orders

 ORDER BY order_date, ship_date;

Figure 2-32. Query

ship_date order_date customer_num order_num po_num

06/01/1998 05/20/1998 104 1001 B77836

05/26/1998 05/21/1998 101 1002 9270

05/23/1998 05/22/1998 104 1003 B77890

05/30/1998 05/22/1998 106 1004 8006

06/09/1998 05/24/1998 116 1005 2865

 05/30/1998 112 1006 Q13557

06/05/1998 05/31/1998 117 1007 278693

07/06/1998 06/07/1998 110 1008 LZ230

06/21/1998 06/14/1998 111 1009 4745

06/29/1998 06/17/1998 115 1010 429Q

06/29/1998 06/18/1998 117 1012 278701

07/03/1998 06/18/1998 104 1011 B77897

07/10/1998 06/22/1998 104 1013 B77930

07/03/1998 06/25/1998 106 1014 8052

07/16/1998 06/27/1998 110 1015 MA003

07/12/1998 06/29/1998 119 1016 PC6782

07/13/1998 07/09/1998 120 1017 DM354331

07/13/1998 07/10/1998 121 1018 S22942

07/16/1998 07/11/1998 122 1019 Z55709

07/16/1998 07/11/1998 123 1020 W2286

07/25/1998 07/23/1998 124 1021 C3288

07/30/1998 07/24/1998 126 1022 W9925

07/30/1998 07/24/1998 127 1023 KF2961

Figure 2-33. Query Result

2-14 IBM Informix Guide to SQL: Tutorial

When you use SELECT and ORDER BY on several columns in a table, you might

find it helpful to use integers to refer to the position of the columns in the ORDER

BY clause. When an integer is an element in the ORDER BY list, the database

server treats it as the position in the projection list. For example, using 3 in the

ORDER BY list (ORDER BY 3) refers to the third item in the projection list. The

statements in Figure 2-34 retrieve and display the same data, as Figure 2-35 shows.

 You can include the DESC keyword in the ORDER BY clause when you assign

integers to column names, as Figure 2-36 shows.

In this case, data is first sorted in descending order by order_date and in

ascending order by customer_num.

Selecting Substrings

To select part of the value of a character column, include a substring in the

projection list. Suppose your marketing department is planning a mailing to your

customers and wants their geographical distribution based on zip codes. You could

SELECT customer_num, order_num, po_num, order_date

 FROM orders

 ORDER BY 4, 1;

SELECT customer_num, order_num, po_num, order_date

 FROM orders

 ORDER BY order_date, customer_num;

Figure 2-34. Query

customer_num order_num po_num order_date

 104 1001 B77836 05/20/1998

 101 1002 9270 05/21/1998

 104 1003 B77890 05/22/1998

 106 1004 8006 05/22/1998

 116 1005 2865 05/24/1998

 112 1006 Q13557 05/30/1998

 117 1007 278693 05/31/1998

 110 1008 LZ230 06/07/1998

 111 1009 4745 06/14/1998

 115 1010 429Q 06/17/1998

 104 1011 B77897 06/18/1998

 117 1012 278701 06/18/1998

 104 1013 B77930 06/22/1998

 106 1014 8052 06/25/1998

 110 1015 MA003 06/27/1998

 119 1016 PC6782 06/29/1998

 120 1017 DM354331 07/09/1998

 121 1018 S22942 07/10/1998

 122 1019 Z55709 07/11/1998

 123 1020 W2286 07/11/1998

 124 1021 C3288 07/23/1998

 126 1022 W9925 07/24/1998

 127 1023 KF2961 07/24/1998

Figure 2-35. Query Result

SELECT customer_num, order_num, po_num, order_date

 FROM orders

 ORDER BY 4 DESC, 1;

Figure 2-36. Query

Chapter 2. Composing SELECT Statements 2-15

write a query similar to the one that Figure 2-37 shows.

Figure 2-37 uses a substring to select the first three characters of the zipcode

column (which identify the state) and the full customer_num, and lists them in

ascending order by zip code, as Figure 2-38 shows.

ORDER BY and Non-English Data

By default, Informix database servers use the U.S. English language environment,

called a locale, for database data. The U.S. English locale specifies data sorted in

code-set order. This default locale uses the ISO 8859-1 code set.

If your database contains non-English data, you should store non-English data in

NCHAR (or NVARCHAR) columns to obtain results sorted by the language. The

ORDER BY clause should return data in the order appropriate to that language.

Figure 2-39 uses a SELECT statement with an ORDER BY clause to search the table,

abonnés, and to order the selected information by the data in the nom column.

The collation order for the results of this query can vary, depending on the

following system variations:

v Whether the nom column is CHAR or NCHAR data type. The database server

sorts data in CHAR columns by the order the characters appear in the code set.

The database server sorts data in NCHAR columns by the order the characters

are listed in the collation portion of the locale.

v Whether the database server is using the correct non-English locale when it

accesses the database. To use a non-English locale, you must set the

CLIENT_LOCALE and DB_LOCALE environment variables to the appropriate

locale name.

For Figure 2-39 to return expected results, the nom column should be NCHAR

data type in a database that uses a French locale. Other operations, such as less

SELECT zipcode[1,3], customer_num

 FROM customer

 ORDER BY zipcode;

Figure 2-37. Query

zipcode customer_num

021 125

080 119

085 122

198 121

322 123 ...
943 103

943 107

946 118

Figure 2-38. Query Result

SELECT numéro,nom,prénom

 FROM abonnés

 ORDER BY nom;

Figure 2-39. Query

2-16 IBM Informix Guide to SQL: Tutorial

than, greater than, or equal to, are also affected by the user-specified locale. For

more information on non-English data and locales, see the IBM Informix GLS User’s

Guide.

Figure 2-40 and Figure 2-41 show two sample sets of output.

Figure 2-40 follows the ISO 8859-1 code-set order, which ranks uppercase letters

before lowercase letters and moves names that contain an accented character

(Ålesund, Étaix, Ötker, and Øverst) to the end of the list.

Figure 2-41 shows that when the appropriate locale file is referenced by the

database server, names including non-English characters (Ålesund, Étaix, Ötker,

and Øverst) are collated differently than they are in the ISO 8859-1 code set. They

are sorted correctly for the locale. It does not distinguish between uppercase and

lowercase letters.

numéro nom prénom

13612 Azevedo Edouardo Freire

13606 Dupré Michèle Françoise

13607 Hammer Gerhard

13602 Hämmer le Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13609 Tiramisù Paolo Alfredo

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13601 Ålesund Sverre

13608 Étaix Émile

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

Figure 2-40. Query Result

numéro nom prénom

13601 Ålesund Sverre

13612 Azevedo Edouardo Freire

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13606 Dupré Michèle Françoise

13608 Étaix Émile

13607 Hammer Gerhard

13602 Hämmer le Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

13609 Tiramisù Paolo Alfredo

Figure 2-41. Query Result

Chapter 2. Composing SELECT Statements 2-17

Using the WHERE Clause

The set of rows that a SELECT statement returns is its active set. A singleton

SELECT statement returns a single row. You can add a WHERE clause to a

SELECT statement if you want to see only specific rows. For example, you use a

WHERE clause to restrict the rows that the database server returns to only the

orders that a particular customer placed or the calls that a particular customer

service representative entered.

You can use the WHERE clause to set up a comparison condition or a join condition.

This section demonstrates only the first use. Join conditions are described in a later

section and in the next chapter.

Creating a Comparison Condition

The WHERE clause of a SELECT statement specifies the rows that you want to see.

A comparison condition employs specific keywords and operators to define the

search criteria.

For example, you might use one of the keywords BETWEEN, IN, LIKE, or

MATCHES to test for equality, or the keywords IS NULL to test for null values.

You can combine the keyword NOT with any of these keywords to specify the

opposite condition.

The following table lists the relational operators that you can use in a WHERE clause

in place of a keyword to test for equality.

Operator Operation

= equals

!= or <> does not equal

> greater than

>= greater than or equal to

< less than

<= less than or equal to

 For CHAR expressions, greater than means after in ASCII collating order, where

lowercase letters are after uppercase letters, and both are after numerals. See the

ASCII Character Set chart in the IBM Informix Guide to SQL: Syntax. For DATE and

DATETIME expressions, greater than means later in time, and for INTERVAL

expressions, it means of longer duration.

You cannot use TEXT or BYTE columns to create a comparison condition, except

when you use the IS NULL or IS NOT NULL keywords to test for NULL values.

Dynamic Server

You cannot specify BLOB or CLOB columns to create a comparison condition on

Dynamic Server, except when you use the IS NULL or IS NOT NULL keywords to

test for NULL values.

End of Dynamic Server

 You can use the preceding keywords and operators in a WHERE clause to create

comparison-condition queries that perform the following actions:

2-18 IBM Informix Guide to SQL: Tutorial

v Include values

v Exclude values

v Find a range of values

v Find a subset of values

v Identify NULL values

To perform variable text searches using the following criteria, use the preceding

keywords and operators in a WHERE clause to create comparison-condition

queries:

v Exact-text comparison

v Single-character wildcards

v Restricted single-character wildcards

v Variable-length wildcards

v Subscripting

The following section contains examples that illustrate these types of queries.

Including Rows

Use the equal sign (=) relational operator to include rows in a WHERE clause, as

Figure 2-42 shows.

Figure 2-42 returns the set of rows that Figure 2-43 shows.

Excluding Rows

Use the relational operators != or <> to exclude rows in a WHERE clause.

Figure 2-44 assumes that you are selecting from an ANSI-compliant database; the

statements specify the owner or login name of the creator of the customer table.

This qualifier is not required when the creator of the table is the current user, or

when the database is not ANSI compliant. However, you can include the qualifier

in either case. For a detailed discussion of owner naming, see the IBM Informix

Guide to SQL: Syntax.

SELECT customer_num, call_code, call_dtime, res_dtime

 FROM cust_calls

 WHERE user_id = ’maryj’;

Figure 2-42. Query

customer_num call_code call_dtime res_dtime

 106 D 1998-06-12 08:20 1998-06-12 08:25

 121 O 1998-07-10 14:05 1998-07-10 14:06

 127 I 1998-07-31 14:30

Figure 2-43. Query Result

Chapter 2. Composing SELECT Statements 2-19

Both statements in Figure 2-44 exclude values by specifying that, in the customer

table that the user odin owns, the value in the state column should not be equal to

CA, as Figure 2-45 shows.

Specifying A Range of Rows

Figure 2-46 shows two ways to specify a range of rows in a WHERE clause.

Each statement in Figure 2-46 specifies a range for catalog_num from 10005

through 10008, inclusive. The first statement uses keywords, and the second

statement uses relational operators to retrieve the rows, as Figure 2-47 shows.

SELECT customer_num, company, city, state

 FROM odin.customer

 WHERE state != ’CA’;

SELECT customer_num, company, city, state

 FROM odin.customer

 WHERE state <> ’CA’;

Figure 2-44. Query

customer_num company city state

 119 The Triathletes Club Cherry Hill NJ

 120 Century Pro Shop Phoenix AZ

 121 City Sports Wilmington DE

 122 The Sporting Life Princeton NJ

 123 Bay Sports Jacksonville FL

 124 Putnum’s Putters Bartlesville OK

 125 Total Fitness Sports Brighton MA

 126 Neelie’s Discount Sp Denver CO

 127 Big Blue Bike Shop Blue Island NY

 128 Phoenix College Phoenix AZ

Figure 2-45. Query Result

SELECT catalog_num, stock_num, manu_code, cat_advert

 FROM catalog

 WHERE catalog_num BETWEEN 10005 AND 10008;

SELECT catalog_num, stock_num, manu_code, cat_advert

 FROM catalog

 WHERE catalog_num >= 10005 AND catalog_num <= 10008;

Figure 2-46. Query

2-20 IBM Informix Guide to SQL: Tutorial

Although the catalog table includes a column with the BYTE data type, that

column is not included in this SELECT statement because the output would show

only the words <BYTE value> by the column name. You can write an SQL API

application to display TEXT and BYTE values.

Excluding a Range of Rows

Figure 2-48 uses the keywords NOT BETWEEN to exclude rows that have the

character range 94000 through 94999 in the zipcode column, as Figure 2-49 shows.

Using a WHERE Clause to Find a Subset of Values

Like “Excluding Rows” on page 2-19, Figure 2-50 assumes the use of an

ANSI-compliant database. The owner qualifier is in quotation marks to preserve

the case sensitivity of the literal string.

catalog_num 10005

stock_num 3

manu_code HSK

cat_advert High-Technology Design Expands the Sweet Spot

catalog_num 10006

stock_num 3

manu_code SHM

cat_advert Durable Aluminum for High School and Collegiate Athletes

catalog_num 10007

stock_num 4

manu_code HSK

cat_advert Quality Pigskin with Joe Namath Signature

catalog_num 10008

stock_num 4

manu_code HRO

cat_advert Highest Quality Football for High School

 and Collegiate Competitions

Figure 2-47. Query Result

SELECT fname, lname, city, state

 FROM customer

 WHERE zipcode NOT BETWEEN ’94000’ AND ’94999’

 ORDER BY state;

Figure 2-48. Query

fname lname city state

Frank Lessor Phoenix AZ

Fred Jewell Phoenix AZ

Eileen Neelie Denver CO

Jason Wallack Wilmington DE

Marvin Hanlon Jacksonville FL

James Henry Brighton MA

Bob Shorter Cherry Hill NJ

Cathy O’Brian Princeton NJ

Kim Satifer Blue Island NY

Chris Putnum Bartlesville OK

Figure 2-49. Query Result

Chapter 2. Composing SELECT Statements 2-21

Each statement in Figure 2-50 retrieves rows that include the subset of AZ or NJ in

the state column of the Aleta.customer table, as Figure 2-51 shows.

You cannot test TEXT or BYTE columns with the IN keyword.

Dynamic Server

Also, when you use Dynamic Server, you cannot test BLOB or CLOB columns with

the IN keyword.

End of Dynamic Server

 In Figure 2-52, an example of a query on an ANSI-compliant database, no

quotation marks exist around the table owner name. Whereas the two statements

in Figure 2-50 searched the Aleta.customer table, Figure 2-52 searches the table

ALETA.customer, which is a different table, because of the way ANSI-compliant

databases look at owner names.

Figure 2-52 adds the keywords NOT IN, so the subset changes to exclude the

subsets AZ and NJ in the state column. Figure 2-53 shows the results in order of the

state column.

SELECT lname, city, state, phone

 FROM ’Aleta’.customer

 WHERE state = ’AZ’ OR state = ’NJ’

 ORDER BY lname;

SELECT lname, city, state, phone

 FROM ’Aleta’.customer

 WHERE state IN (’AZ’, ’NJ’)

 ORDER BY lname;

Figure 2-50. Query

lname city state phone

Jewell Phoenix AZ 602-265-8754

Lessor Phoenix AZ 602-533-1817

O’Brian Princeton NJ 609-342-0054

Shorter Cherry Hill NJ 609-663-6079

Figure 2-51. Query Result

SELECT lname, city, state, phone

 FROM Aleta.customer

 WHERE state NOT IN (’AZ’, ’NJ’)

 ORDER BY state;

Figure 2-52. Query

2-22 IBM Informix Guide to SQL: Tutorial

Identifying NULL Values

Use the IS NULL or IS NOT NULL option to check for NULL values. A NULL

value represents either the absence of data or an unknown value. A NULL value is

not the same as a zero or a blank.

Figure 2-54 returns all rows that have a null paid_date, as Figure 2-55 shows.

Forming Compound Conditions

To connect two or more comparison conditions, or Boolean expressions, use the

logical operators AND, OR, and NOT. A Boolean expression evaluates as true or

false or, if NULL values are involved, as unknown.

lname city state phone

Pauli Sunnyvale CA 408-789-8075

Sadler San Francisco CA 415-822-1289

Currie Palo Alto CA 415-328-4543

Higgins Redwood City CA 415-368-1100

Vector Los Altos CA 415-776-3249

Watson Mountain View CA 415-389-8789

Ream Palo Alto CA 415-356-9876

Quinn Redwood City CA 415-544-8729

Miller Sunnyvale CA 408-723-8789

Jaeger Redwood City CA 415-743-3611

Keyes Sunnyvale CA 408-277-7245

Lawson Los Altos CA 415-887-7235

Beatty Menlo Park CA 415-356-9982

Albertson Redwood City CA 415-886-6677

Grant Menlo Park CA 415-356-1123

Parmelee Mountain View CA 415-534-8822

Sipes Redwood City CA 415-245-4578

Baxter Oakland CA 415-655-0011

Neelie Denver CO 303-936-7731

Wallack Wilmington DE 302-366-7511

Hanlon Jacksonville FL 904-823-4239

Henry Brighton MA 617-232-4159

Satifer Blue Island NY 312-944-5691

Putnum Bartlesville OK 918-355-2074

Figure 2-53. Query Result

SELECT order_num, customer_num, po_num, ship_date

 FROM orders

 WHERE paid_date IS NULL

 ORDER BY customer_num;

Figure 2-54. Query

order_num customer_num po_num ship_date

 1004 106 8006 05/30/1998

 1006 112 Q13557

 1007 117 278693 06/05/1998

 1012 117 278701 06/29/1998

 1016 119 PC6782 07/12/1998

 1017 120 DM354331 07/13/1998

Figure 2-55. Query Result

Chapter 2. Composing SELECT Statements 2-23

In Figure 2-56, the operator AND combines two comparison expressions in the

WHERE clause.

The query returns all rows that have NULL paid_date or a NOT NULL ship_date,

as Figure 2-57 shows.

Using Exact-Text Comparisons

The following examples include a WHERE clause that searches for exact-text

comparisons by using the keyword LIKE or MATCHES or the equal sign (=)

relational operator. Unlike earlier examples, these examples illustrate how to query

a table that is not in the current database. You can access a table that is not in the

current database only if the database that contains the table has the same ANSI

compliance status as the current database. If the current database is an

ANSI-compliant database, the table you want to access must also reside in an

ANSI-compliant database. If the current database is not an ANSI-compliant

database, the table you want to access must also reside in a database that is not an

ANSI-compliant database.

Although the database used previously in this chapter is the demonstration

database, the FROM clause in the following examples specifies the manatee table,

created by the owner bubba, which resides in an ANSI-compliant database named

syzygy. For more information on how to access tables that are not in the current

database, see the IBM Informix Guide to SQL: Syntax.

Each statement in Figure 2-58 retrieves all the rows that have the single word

helmet in the description column, as Figure 2-59 shows.

SELECT order_num, customer_num, po_num, ship_date

 FROM orders

 WHERE paid_date IS NULL

 AND ship_date IS NOT NULL

 ORDER BY customer_num;

Figure 2-56. Query

order_num customer_num po_num ship_date

 1004 106 8006 05/30/1998

 1007 117 278693 06/05/1998

 1012 117 278701 06/29/1998

 1017 120 DM354331 07/13/1998

Figure 2-57. Query Result

2-24 IBM Informix Guide to SQL: Tutorial

The results might look like Figure 2-59.

Using Variable-Text Searches

You can use the keywords LIKE and MATCHES for variable-text queries that are

based on substring searches of fields. Include the keyword NOT to indicate the

opposite condition. The keyword LIKE is the ANSI standard, whereas MATCHES

is an Informix extension.

Variable-text search strings can include the wildcards listed with LIKE or

MATCHES in the following table.

 Keyword Symbol Meaning

LIKE % Evaluates to zero or more characters

LIKE _ Evaluates to a single character

LIKE \ Escapes special significance of next character

MATCHES * Evaluates to zero or more characters

MATCHES ? Evaluates to a single character (except null)

MATCHES [] Evaluates to a single character or range of values

MATCHES \ Escapes special significance of next character

You cannot test TEXT or BYTE columns with the LIKE or MATCHES keywords.

Also, when you use Dynamic Server, you cannot test BLOB or CLOB columns with

the LIKE or MATCHES keywords.

Using a Single-Character Wildcard

The statements in Figure 2-60 illustrate the use of a single-character wildcard in a

WHERE clause. Further, they demonstrate a query on a table that is not in the

SELECT stock_no, mfg_code, description, unit_price

 FROM syzygy:bubba.manatee

 WHERE description = ’helmet’

 ORDER BY mfg_code;

SELECT stock_no, mfg_code, description, unit_price

 FROM syzygy:bubba.manatee

 WHERE description LIKE ’helmet’

 ORDER BY mfg_code;

SELECT stock_no, mfg_code, description, unit_price

 FROM syzygy:bubba.manatee

 WHERE description MATCHES ’helmet’

 ORDER BY mfg_code;

Figure 2-58. Query

stock_no mfg_code description unit_price

 991 ABC helmet $222.00

 991 BKE helmet $269.00

 991 HSK helmet $311.00

 991 PRC helmet $234.00

 991 SPR helmet $245.00

Figure 2-59. Query Result

Chapter 2. Composing SELECT Statements 2-25

current database. The stock table is in the database sloth. Besides being outside the

current demonstration database, sloth is on a separate database server called

meerkat.

For more information, see Chapter 7, “Accessing and Modifying Data in an

External Database,” on page 7-1 and the IBM Informix Guide to SQL: Syntax.

Each statement in Figure 2-60 retrieves only those rows for which the middle letter

of the manu_code is R, as Figure 2-61 shows. The comparison ’_R_’ (for LIKE) or

’?R?’ (for MATCHES) specifies, from left to right, the following items:

v Any single character

v The letter R

v Any single character

WHERE Clause Specifying a Range of Initial Characters: Figure 2-62 selects only

those rows where the manu_code begins with A through H and returns the rows

that Figure 2-63 shows. The test ’[A-H]’ specifies any single letter from A through H,

inclusive. No equivalent wildcard symbol exists for the LIKE keyword.

SELECT stock_num, manu_code, description, unit_price

 FROM sloth@meerkat:stock

 WHERE manu_code LIKE ’_R_’

 AND unit_price >= 100

 ORDER BY description, unit_price;

SELECT stock_num, manu_code, description, unit_price

 FROM sloth@meerkat:stock

 WHERE manu_code MATCHES ’?R?’

 AND unit_price >= 100

 ORDER BY description, unit_price;

Figure 2-60. Query

stock_num manu_code description unit_price

 205 HRO 3 golf balls $312.00

 2 HRO baseball $126.00

 1 HRO baseball gloves $250.00

 7 HRO basketball $600.00

 102 PRC bicycle brakes $480.00

 114 PRC bicycle gloves $120.00

 4 HRO football $480.00

 110 PRC helmet $236.00

 110 HRO helmet $260.00

 307 PRC infant jogger $250.00

 306 PRC tandem adapter $160.00

 308 PRC twin jogger $280.00

 304 HRO watch $280.00

Figure 2-61. Query Result

SELECT stock_num, manu_code, description, unit_price

 FROM stock

 WHERE manu_code MATCHES ’[A-H]*’

 ORDER BY description, manu_code;

Figure 2-62. Query

2-26 IBM Informix Guide to SQL: Tutorial

WHERE Clause with Variable-Length Wildcard: The statements in Figure 2-64

use a wildcard at the end of a string to retrieve all the rows where the description

begins with the characters bicycle.

Either statement returns the rows that Figure 2-65 shows.

The comparison ’bicycle%’ or ’bicycle*’ specifies the characters bicycle followed

by any sequence of zero or more characters. It matches bicycle stem with stem

matched by the wildcard. It matches to the characters bicycle alone, if a row exists

with that description.

stock_num manu_code description unit_price

 205 ANZ 3 golf balls $312.00

 205 HRO 3 golf balls $312.00

 2 HRO baseball $126.00

 3 HSK baseball bat $240.00

 1 HRO baseball gloves $250.00

 1 HSK baseball gloves $800.00

 7 HRO basketball $600.00

 ...
 313 ANZ swim cap $60.00

 6 ANZ tennis ball $48.00

 5 ANZ tennis racquet $19.80

 8 ANZ volleyball $840.00

 9 ANZ volleyball net $20.00

 304 ANZ watch $170.00

Figure 2-63. Query Result

SELECT stock_num, manu_code, description, unit_price

 FROM stock

 WHERE description LIKE ’bicycle%’

 ORDER BY description, manu_code;

SELECT stock_num, manu_code, description, unit_price

 FROM stock

 WHERE description MATCHES ’bicycle*’

 ORDER BY description, manu_code;

Figure 2-64. Query

stock_num manu_code description unit_price

 102 PRC bicycle brakes $480.00

 102 SHM bicycle brakes $220.00

 114 PRC bicycle gloves $120.00

 107 PRC bicycle saddle $70.00

 106 PRC bicycle stem $23.00

 101 PRC bicycle tires $88.00

 101 SHM bicycle tires $68.00

 105 PRC bicycle wheels $53.00

 105 SHM bicycle wheels $80.00

Figure 2-65. Query Result

Chapter 2. Composing SELECT Statements 2-27

Figure 2-66 narrows the search by adding another comparison condition that

excludes a manu_code of PRC.

The statement retrieves only the rows that Figure 2-67 shows.

When you select from a large table and use an initial wildcard in the comparison

string (such as ’%cycle’), the query often takes longer to execute. Because indexes

cannot be used, every row is searched.

MATCHES and Non-Default Locales

By default, Informix database servers use the U.S. English language environment,

called a locale, for database data. This default locale uses the ISO 8859-1 code set.

The U.S. English locale specifies that MATCHES will use code-set order.

If your database uses a non-default locale, a MATCHES clause that specifies a

range uses the collation order of that locale for character data types (including

CHAR, NCHAR, VARCHAR, NVARCHAR, and LVARCHAR). This feature of

MATCHES ranges is an exception to the general rule that only NCHAR and

NVARCHAR columns can use locale-specific collation. If the locale does not

specify any special collation order, however, then MATCHES uses the code-set

order.

With Dynamic Server, you can use the SET COLLATION statement to specify a

database locale for your session that is different from the DB_LOCALE setting. See

the IBM Informix Guide to SQL: Syntax for a description of SET COLLATION.

 In Figure 2-69, the rows for Étaix, Ötker, and Øverst are not selected and listed

because, with ISO 8859-1 code-set order, the accented first letter of each name is

not in the E through P MATCHES range for the nom column.

SELECT stock_num, manu_code, description, unit_price

 FROM stock

 WHERE description LIKE ’bicycle%’

 AND manu_code NOT LIKE ’PRC’

 ORDER BY description, manu_code;

Figure 2-66. Query

stock_num manu_code description unit_price

 102 SHM bicycle brakes $220.00

 101 SHM bicycle tires $68.00

 105 SHM bicycle wheels $80.00

Figure 2-67. Query Result

SELECT numéro,nom,prénom

 FROM abonnés

 WHERE nom MATCHES ’[E-P]*’

 ORDER BY nom;

Figure 2-68. Query

2-28 IBM Informix Guide to SQL: Tutorial

For more information on non-English data and locales, see the IBM Informix GLS

User’s Guide.

Protecting Special Characters

Figure 2-70 uses the keyword ESCAPE with LIKE or MATCHES so you can protect

a special character from misinterpretation as a wildcard symbol.

The ESCAPE keyword designates an escape character (! in this example) that

protects the next character so that it is interpreted as data and not as a wildcard. In

the example, the escape character causes the middle percent sign (%) to be treated

as data. By using the ESCAPE keyword, you can search for occurrences of a

percent sign (%) in the res_descr column by using the LIKE wildcard percent sign

(%). The query retrieves the row that Figure 2-71 shows.

Using Subscripting in a WHERE Clause

You can use subscripting in the WHERE clause of a SELECT statement to specify a

range of characters or numbers in a column, as Figure 2-72 shows.

numéro nom prénom

13607 Hammer Gerhard

13602 Hämmer Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

Figure 2-69. Query Result

SELECT * FROM cust_calls

 WHERE res_descr LIKE ’%!%%’ ESCAPE ’!’;

Figure 2-70. Query

customer_num 116

call_dtime 1997-12-21 11:24

user_id mannyn

call_code I

call_descr Second complaint from this customer!

 Received two cases righthanded outfielder

 glove (1 HRO) instead of one case lefties.

res_dtime 1997-12-27 08:19

res_descr Memo to shipping (Ava Brown) to send case

 of lefthanded gloves, pick up wrong case;

 memo to billing requesting 5% discount to

 placate customer due to second offense

 and lateness of resolution because of

 holiday.

Figure 2-71. Query Result

SELECT catalog_num, stock_num, manu_code, cat_advert,

 cat_descr

 FROM catalog

 WHERE cat_advert[1,4] = ’High’;

Figure 2-72. Query

Chapter 2. Composing SELECT Statements 2-29

The subscript [1,4] causes Figure 2-72 to retrieve all rows in which the first four

letters of the cat_advert column are High, as Figure 2-73 shows.

Using a FIRST Clause to Select Specific Rows

You can include a FIRST max specification in the Projection clause of a SELECT

statement, where max has an integer value, to instruct the query to return no more

than the first max rows that match the conditions of the SELECT statement. You

can also use the keyword LIMIT as a synonym for FIRST in this context (and only

in this context). The rows that a SELECT statement with a FIRST clause returns

might depend on whether the statement also includes an ORDER BY clause.

The keyword SKIP, followed by an unsigned integer, can precede the FIRST or

LIMIT keyword in the Projection clause. The SKIP offset clause instructs the

database server to exclude the first offset qualifying rows from the result set of the

query before returning the number of rows that the FIRST clause specifies. In SPL

routines, the parameter of SKIP, FIRST, or LIMIT can be a literal integer or a local

SPL variable. If the Projection clause includes SKIP offset but no FIRST or LIMIT

specification, then the query returns all of the qualifying rows except for the first

offset rows.

The Projection clause cannot include the SKIP, FIRST, or LIMIT keywords in these

contexts:

v when the SELECT statement is part of a view definition

v in a subquery, except in the FROM clause of the outer query

catalog_num 10004

stock_num 2

manu_code HRO

cat_advert Highest Quality Ball Available, from Hand-Sti

 tching to the Robinson Signature

cat_descr

Jackie Robinson signature ball. Highest professional quality,

used by National League.

catalog_num 10005

stock_num 3

manu_code HSK

cat_advert High-Technology Design Expands the Sweet Spot

cat_descr

Pro-style wood. Available in sizes: 31, 32, 33, 34, 35. ...
catalog_num 10045

stock_num 204

manu_code KAR

cat_advert High-Quality Beginning Set of Irons. Appropriate

 for High School Competitions

cat_descr

Ideally balanced for optimum control. Nylon covered shaft.

catalog_num 10068

stock_num 310

manu_code ANZ

cat_advert High-Quality Kickboard

cat_descr

White. Standard size.

Figure 2-73. Query Result

2-30 IBM Informix Guide to SQL: Tutorial

v in a cross-server distributed query in which a participating database server does

not support the SKIP, FIRST, or LIMIT keywords.

For information about restrictions on use of the FIRST clause, see the description of

the Projection clause of the SELECT statement in the IBM Informix Guide to SQL:

Syntax.

FIRST Clause Without an ORDER BY Clause

If you do not include an ORDER BY clause in a SELECT statement with a FIRST

clause, any rows that match the conditions of the SELECT statement might be

returned. In other words, the database server determines which of the qualifying

rows to return, and the query result can vary depending on the query plan that the

optimizer chooses.

Figure 2-74 uses the FIRST clause to return the first five rows from the state table.

You can use a FIRST clause when you simply want to know the names of all the

columns and the type of data that a table contains, or to test a query that

otherwise would return many rows. Figure 2-76 shows how to use the FIRST

clause to return column values for the first row of a table.

FIRST Clause with an ORDER BY Clause

You can include an ORDER BY clause in a SELECT statement with a FIRST clause

to return rows that contain the highest or lowest values for a specified column.

Figure 2-78 shows a query that includes an ORDER BY clause to return (by

alphabetical order) the first five states contained in the state table. Figure 2-78,

SELECT FIRST 5 * FROM state;

Figure 2-74. Query

code sname

AK Alaska

HI Hawaii

CA California

OR Oregon

WA Washington

Figure 2-75. Query Result

SELECT FIRST 1 * FROM orders;

Figure 2-76. Query

order_num 1001

order_date 05/20/1998

customer_num 104

ship_instruct express

backlog n

po_num B77836

ship_date 06/01/1998

ship_weight 20.40

ship_charge $10.00

paid_date 07/22/1998

Figure 2-77. Query Result

Chapter 2. Composing SELECT Statements 2-31

which is the same as Figure 2-74 except for the ORDER BY clause, returns a

different set of rows than Figure 2-74.

Figure 2-80 shows how to use a FIRST clause in a query with an ORDER BY clause

to find the 10 most expensive items listed in the stock table.

Applications can use the SKIP and FIRST keywords of the Projection clause, in

conjunction with the ORDER BY clause, to perform successive queries that

incrementally retrieve all of the qualifying rows in subsets of some fixed size (for

example, the maximum number of rows that are visible without scrolling a screen

display). You can accomplish this by incrementing the offset parameter of the SKIP

clause by the max parameter of the FIRST clause after each query. By imposing a

unique order on the qualifying rows, the ORDER BY clause ensures that each

query returns a disjunct subset of the qualifying rows.

Figure 2-82 shows a query that includes SKIP, FIRST, and ORDER BY specifications

to return (by alphabetical order) the sixth through tenth states in the state table,

but not the first five states. Figure 2-82. This query resembles Figure 2-74, except

that the SKIP 5 specification instructs the database server to returns a different set

of rows than Figure 2-74.

SELECT FIRST 5 * FROM state ORDER BY sname;

Figure 2-78. Query

code sname

AL Alabama

AK Alaska

AZ Arizona

AR Arkansas

CA California

Figure 2-79. Query Result

SELECT FIRST 10 description, unit_price

 FROM stock ORDER BY unit_price DESC;

Figure 2-80. Query

description unit_price

football $960.00

volleyball $840.00

baseball gloves $800.00

18-spd, assmbld $685.90

irons/wedge $670.00

basketball $600.00

12-spd, assmbld $549.00

10-spd, assmbld $499.99

football $480.00

bicycle brakes $480.00

Figure 2-81. Query Result

2-32 IBM Informix Guide to SQL: Tutorial

If you use the SKIP, FIRST, or LIMIT keywords, you must take care to specify

parameters that correspond to the design goals of your application. If the offset

parameter of skip is larger than the number of qualifying rows, then any FIRST or

LIMIT specification has no effect, and the query returns nothing.

Expressions and Derived Values

You are not limited to selecting columns by name. You can list an expression in the

Projection clause of a SELECT statement to perform computations on column data

and to display information derived from the contents of one or more columns.

An expression consists of a column name, a constant, a quoted string, a keyword,

or any combination of these items connected by operators. It can also include host

variables (program data) when the SELECT statement is embedded in a program.

Arithmetic Expressions

An arithmetic expression contains at least one of the arithmetic operators listed in

the following table and produces a number.

Operator Operation

+ addition

- subtraction

* multiplication

/ division

 You cannot use TEXT or BYTE columns in arithmetic expressions.

With Dynamic Server, you cannot specify BLOB or CLOB in arithmetic expressions.

Arithmetic operations enable you to see the results of proposed computations

without actually altering the data in the database. You can add an INTO TEMP

clause to save the altered data in a temporary table for further reference,

computations, or impromptu reports. Figure 2-84 calculates a 7 percent sales tax on

the unit_price column when the unit_price is $400 or more (but does not update it

in the database).

SELECT SKIP 5 FIRST 5 * FROM state ORDER BY sname;

Figure 2-82. Query

code sname

CO Colorado

CT Connecticut

DE Delaware

FL Florida

GA Georgia

Figure 2-83. Query Result

Chapter 2. Composing SELECT Statements 2-33

The result appears in the expression column, as Figure 2-85 shows.

Figure 2-86 calculates a surcharge of $6.50 on orders when the quantity ordered is

less than 5.

The result appears in the expression column, as Figure 2-87 shows.

Figure 2-88 calculates and displays in the expression column the interval between

when the customer call was received (call_dtime) and when the call was resolved

SELECT stock_num, description, unit_price, unit_price * 1.07

 FROM stock

 WHERE unit_price >= 400;

Figure 2-84. Query

stock_num description unit_price (expression)

 1 baseball gloves $800.00 $856.00

 1 baseball gloves $450.00 $481.50

 4 football $960.00 $1027.20

 4 football $480.00 $513.60

 7 basketball $600.00 $642.00

 8 volleyball $840.00 $898.80

 102 bicycle brakes $480.00 $513.60

 111 10-spd, assmbld $499.99 $534.99

 112 12-spd, assmbld $549.00 $587.43

 113 18-spd, assmbld $685.90 $733.91

 203 irons/wedge $670.00 $716.90

Figure 2-85. Query Result

SELECT item_num, order_num, quantity,

 total_price, total_price + 6.50

 FROM items

 WHERE quantity < 5;

Figure 2-86. Query

item_num order_num quantity total_price (expression)

 1 1001 1 $250.00 $256.50

 1 1002 1 $960.00 $966.50

 2 1002 1 $240.00 $246.50

 1 1003 1 $20.00 $26.50

 2 1003 1 $840.00 $846.50

 1 1004 1 $250.00 $256.50

 2 1004 1 $126.00 $132.50

 3 1004 1 $240.00 $246.50

 4 1004 1 $800.00 $806.50 ...
 1 1023 2 $40.00 $46.50

 2 1023 2 $116.00 $122.50

 3 1023 1 $80.00 $86.50

 4 1023 1 $228.00 $234.50

 5 1023 1 $170.00 $176.50

 6 1023 1 $190.00 $196.50

Figure 2-87. Query Result

2-34 IBM Informix Guide to SQL: Tutorial

(res_dtime), in days, hours, and minutes.

Using Display Labels: You can assign a display label to a computed or derived

data column to replace the default column header expression. In Figure 2-84,

Figure 2-86, and Figure 2-90, the derived data appears in the expression column.

Figure 2-90 also presents derived values, but the column that displays the derived

values has the descriptive header taxed.

Figure 2-91 shows that the label taxed is assigned to the expression in the

projection list that displays the results of the operation unit_price * 1.07.

In Figure 2-92, the label surcharge is defined for the column that displays the

results of the operation total_price + 6.50.

SELECT customer_num, call_code, call_dtime,

 res_dtime - call_dtime

 FROM cust_calls

 ORDER BY customer_num;

Figure 2-88. Query

customer_num call_code call_dtime (expression)

 106 D 1998-06-12 08:20 0 00:05

 110 L 1998-07-07 10:24 0 00:06

 116 I 1997-11-28 13:34 0 03:13

 116 I 1997-12-21 11:24 5 20:55

 119 B 1998-07-01 15:00 0 17:21

 121 O 1998-07-10 14:05 0 00:01

 127 I 1998-07-31 14:30

Figure 2-89. Query Result

SELECT stock_num, description, unit_price,

 unit_price * 1.07 taxed

 FROM stock

 WHERE unit_price >= 400;

Figure 2-90. Query

stock_num description unit_price taxed

 1 baseball gloves $800.00 $856.00

 1 baseball gloves $450.00 $481.50

 4 football $960.00 $1027.20

 4 football $480.00 $513.60

 7 basketball $600.00 $642.00

 8 volleyball $840.00 $898.80

 102 bicycle brakes $480.00 $513.60

 111 10-spd, assmbld $499.99 $534.99

 112 12-spd, assmbld $549.00 $587.43

 113 18-spd, assmbld $685.90 $733.91

 203 irons/wedge $670.00 $716.90

Figure 2-91. Query Result

Chapter 2. Composing SELECT Statements 2-35

The surcharge column is labeled in the output, as Figure 2-93 shows.

Figure 2-94 assigns the label span to the column that displays the results of

subtracting the DATETIME column call_dtime from the DATETIME column

res_dtime.

The span column is labeled in the output, as Figure 2-95 shows.

CASE Expressions

A CASE expression is a conditional expression, which is similar to the concept of

the CASE statement in programming languages. You can use a CASE expression

when you want to change the way data is represented. The CASE expression

allows a statement to return one of several possible results, depending on which of

several condition tests evaluates to TRUE.

TEXT or BYTE values are not allowed in a CASE expression.

SELECT item_num, order_num, quantity,

 total_price, total_price + 6.50 surcharge

 FROM items

 WHERE quantity < 5;

Figure 2-92. Query

item_num order_num quantity total_price surcharge

 1 1001 1 $250.00 $256.50

 1 1002 1 $960.00 $966.50

 2 1002 1 $240.00 $246.50

 1 1003 1 $20.00 $26.50

 2 1003 1 $840.00 $846.50 ...
 1 1023 2 $40.00 $46.50

 2 1023 2 $116.00 $122.50

 3 1023 1 $80.00 $86.50

 4 1023 1 $228.00 $234.50

 5 1023 1 $170.00 $176.50

 6 1023 1 $190.00 $196.50

Figure 2-93. Query Result

SELECT customer_num, call_code, call_dtime,

 res_dtime - call_dtime span

 FROM cust_calls

 ORDER BY customer_num;

Figure 2-94. Query

customer_num call_code call_dtime span

 106 D 1998-06-12 08:20 0 00:05

 110 L 1998-07-07 10:24 0 00:06

 116 I 1997-11-28 13:34 0 03:13

 116 I 1997-12-21 11:24 5 20:55

 119 B 1998-07-01 15:00 0 17:21

 121 O 1998-07-10 14:05 0 00:01

 127 I 1998-07-31 14:30

Figure 2-95. Query Result

2-36 IBM Informix Guide to SQL: Tutorial

Consider a column that represents marital status numerically as 1, 2, 3, 4 with the

corresponding values meaning single, married, divorced, widowed. In some cases,

you might prefer to store the short values (1,2,3,4) for database efficiency, but

employees in human resources might prefer the more descriptive values (single,

married, divorced, widowed). The CASE expression makes such conversions

between different sets of values easy.

In Dynamic Server, the CASE expression also supports extended data types and

cast expressions.

The following example shows a CASE expression with multiple WHEN clauses

that returns more descriptive values for the manu_code column of the stock table.

If none of the WHEN conditions is true, NULL is the default result. (You can omit

the ELSE NULL clause.)

SELECT

 CASE

 WHEN manu_code = "HRO" THEN "Hero"

 WHEN manu_code = "SHM" THEN "Shimara"

 WHEN manu_code = "PRC" THEN "ProCycle"

 WHEN manu_code = "ANZ" THEN "Anza"

 ELSE NULL

 END

 FROM stock;

You must include at least one WHEN clause within the CASE expression;

subsequent WHEN clauses and the ELSE clause are optional. If no WHEN

condition evaluates to true, the resulting value is NULL. You can use the IS NULL

expression to handle NULL results. For information on handling NULL values, see

the IBM Informix Guide to SQL: Syntax.

Figure 2-96 shows a simple CASE expression that returns a character string value

to flag any orders from the orders table that have not been shipped to the

customer.

SELECT order_num, order_date,

 CASE

 WHEN ship_date IS NULL

 THEN "order not shipped"

 END

 FROM orders;

Figure 2-96. Query

Chapter 2. Composing SELECT Statements 2-37

For information about how to use the CASE expression to update a column, see

“Using a CASE Expression to Update a Column” on page 6-19.

Sorting on Derived Columns

When you want to use ORDER BY on an expression, you can use either the

display label assigned to the expression or an integer, as Figure 2-98 and

Figure 2-100 show.

Figure 2-98 retrieves the same data from the cust_calls table as Figure 2-94. In

Figure 2-98, the ORDER BY clause causes the data to be displayed in ascending

order of the derived values in the span column, as Figure 2-99 shows.

Figure 2-100 uses an integer to represent the result of the operation res_dtime -

call_dtime and retrieves the same rows that appear in Figure 2-99.

order_num order_date (expression)

 1001 05/20/1998

 1002 05/21/1998

 1003 05/22/1998

 1004 05/22/1998

 1005 05/24/1998

 1006 05/30/1998 order not shipped

 1007 05/31/1998

 ...
 1019 07/11/1998

 1020 07/11/1998

 1021 07/23/1998

 1022 07/24/1998

 1023 07/24/1998

Figure 2-97. Query Result

SELECT customer_num, call_code, call_dtime,

 res_dtime - call_dtime span

 FROM cust_calls

 ORDER BY span;

Figure 2-98. Query

customer_num call_code call_dtime span

 127 I 1998-07-31 14:30

 121 O 1998-07-10 14:05 0 00:01

 106 D 1998-06-12 08:20 0 00:05

 110 L 1998-07-07 10:24 0 00:06

 116 I 1997-11-28 13:34 0 03:13

 119 B 1998-07-01 15:00 0 17:21

 116 I 1997-12-21 11:24 5 20:55

Figure 2-99. Query Result

2-38 IBM Informix Guide to SQL: Tutorial

Using Rowid Values In SELECT Statements

The database server assigns a unique rowid to rows in nonfragmented tables. The

rowid is, in effect, a hidden column in every table. The sequential values of rowid

have no special significance and can vary depending on the location of the

physical data in the chunk. You can use a rowid to locate the internal record

number that is associated with a row in a table. Rows in fragmented tables do not

automatically contain the rowid column.

It is recommended that you use primary keys as a method of access in your

applications rather than rowids. Because primary keys are defined in the ANSI

specification of SQL, using them to access data makes your applications more

portable. In addition, the database server requires less time to access data in a

fragmented table when it uses a primary key than it requires to access the same

data when it uses rowid.

For more information about rowids, see the IBM Informix Database Design and

Implementation Guide and your IBM Informix Administrator’s Guide.

Figure 2-101 uses the rowid and the wildcard asterisk symbol (*) in the Projection

clause to retrieve each row in the manufact table and its corresponding rowid.

Never store a rowid in a permanent table or attempt to use it as a foreign key. If a

table is dropped and then reloaded from external data, all the rowids will be

different.

SELECT customer_num, call_code, call_dtime,

 res_dtime - call_dtime span

 FROM cust_calls

 ORDER BY 4;

Figure 2-100. Query

SELECT rowid, * FROM manufact;

Figure 2-101. Query

rowid manu_code manu_name lead_time

 257 SMT Smith 3

 258 ANZ Anza 5

 259 NRG Norge 7

 260 HSK Husky 5

 261 HRO Hero 4

 262 SHM Shimara 30

 263 KAR Karsten 21

 264 NKL Nikolus 8

 265 PRC ProCycle 9

Figure 2-102. Query Result

Chapter 2. Composing SELECT Statements 2-39

Multiple-Table SELECT Statements

To select data from two or more tables, specify the table names in the FROM

clause. Add a WHERE clause to create a join condition between at least one related

column in each table. This WHERE clause creates a temporary composite table in

which each pair of rows that satisfies the join condition is linked to form a single

row.

A simple join combines information from two or more tables based on the

relationship between one column in each table. A composite join is a join between

two or more tables based on the relationship between two or more columns in

each table.

To create a join, you must specify a relationship, called a join condition, between at

least one column from each table. Because the columns are being compared, they

must have compatible data types. When you join large tables, performance

improves when you index the columns in the join condition.

Data types are described in the IBM Informix Guide to SQL: Reference and the IBM

Informix Database Design and Implementation Guide. Indexing is discussed in detail in

the IBM Informix Administrator’s Guide.

Creating a Cartesian Product

When you perform a multiple-table query that does not explicitly state a join

condition among the tables, you create a Cartesian product. A Cartesian product

consists of every possible combination of rows from the tables. This result is

usually large and unwieldy.

Figure 2-103 selects from two tables and produces a Cartesian product.

Although only 52 rows exist in the state table and 28 rows in the customer table,

the effect of Figure 2-103 is to multiply the rows of one table by the rows of the

other and retrieve an impractical 1,456 rows, as Figure 2-104 shows.

SELECT * FROM customer, state;

Figure 2-103. Query

2-40 IBM Informix Guide to SQL: Tutorial

In addition, some of the data that is displayed in the concatenated rows is

contradictory. For example, although the city and state from the customer table

indicate an address in California, the code and sname from the state table might

be for a different state.

Creating a Join

Conceptually, the first stage of any join is the creation of a Cartesian product. To

refine or constrain this Cartesian product and eliminate meaningless combinations

of rows of data, include a WHERE clause with a valid join condition in your

SELECT statement.

This section illustrates cross joins, equi-joins, natural joins, and multiple-table joins.

Additional complex forms, such as self-joins and outer joins, are discussed in

Chapter 5.

Cross Join (IDS)

A cross join combines all rows in all tables selected and creates a Cartesian

product. The results of a cross join can be very large and difficult to manage.

customer_num 101

fname Ludwig

lname Pauli

company All Sports Supplies

address1 213 Erstwild Court

address2

city Sunnyvale

state CA

zipcode 94086

phone 408-789-8075

code AK

sname Alaska

customer_num 101

fname Ludwig

lname Pauli

company All Sports Supplies

address1 213 Erstwild Court

address2

city Sunnyvale

state CA

zipcode 94086

phone 408-789-8075

code HI

sname Hawaii

customer_num 101

fname Ludwig

lname Pauli

company All Sports Supplies

address1 213 Erstwild Court

address2

city Sunnyvale

state CA

zipcode 94086

phone 408-789-8075

code CA

sname California ...

Figure 2-104. Query Result

Chapter 2. Composing SELECT Statements 2-41

Figure 2-105 uses ANSI join syntax to create a cross join.

The results of Figure 2-105 are identical to the results of Figure 2-103. In addition,

you can filter a cross join by specifying a WHERE clause.

For more information about Cartesian products, see “Creating a Cartesian Product”

on page 2-40. For more information about ANSI syntax, see “ANSI Join Syntax” on

page 5-11.

Equi-Join

An equi-join is a join based on equality or matching column values. This equality

is indicated with an equal sign (=) as the comparison operator in the WHERE

clause, as Figure 2-106 shows.

Figure 2-106 joins the manufact and stock tables on the manu_code column. It

retrieves only those rows for which the values of the two columns are equal, some

of which Figure 2-107 shows.

SELECT * FROM customer CROSS JOIN state;

Figure 2-105. Query

SELECT * FROM manufact, stock

 WHERE manufact.manu_code = stock.manu_code;

Figure 2-106. Query

2-42 IBM Informix Guide to SQL: Tutorial

In this equi-join, Figure 2-107 includes the manu_code column from both the

manufact and stock tables because the select list requested every column.

You can also create an equi-join with additional constraints, where the comparison

condition is based on the inequality of values in the joined columns. These joins

use a relational operator in addition to the equal sign (=) in the comparison

condition that is specified in the WHERE clause.

To join tables that contain columns with the same name, qualify each column name

with the name of its table and a period symbol (.), as Figure 2-108 shows.

manu_code SMT

manu_name Smith

lead_time 3

stock_num 1

manu_code SMT

description baseball gloves

unit_price $450.00

unit case

unit_descr 10 gloves/case

manu_code SMT

manu_name Smith

lead_time 3

stock_num 5

manu_code SMT

description tennis racquet

unit_price $25.00

unit each

unit_descr each

manu_code SMT

manu_name Smith

lead_time 3

stock_num 6

manu_code SMT

description tennis ball

unit_price $36.00

unit case

unit_descr 24 cans/case

manu_code ANZ

manu_name Anza

lead_time 5

stock_num 5

manu_code ANZ

description tennis racquet

unit_price $19.80

unit each

unit_descr each ...

Figure 2-107. Query Result

SELECT order_num, order_date, ship_date, cust_calls.*

 FROM orders, cust_calls

 WHERE call_dtime >= ship_date

 AND cust_calls.customer_num = orders.customer_num

 ORDER BY orders.customer_num;

Figure 2-108. Query

Chapter 2. Composing SELECT Statements 2-43

Figure 2-108 joins the customer_num column and then selects only those rows

where the call_dtime in the cust_calls table is greater than or equal to the

ship_date in the orders table. Figure 2-109 shows the combined rows that it

returns.

Natural Join

A natural join is a type of equi-join and is structured so that the join column does

not display data redundantly, as Figure 2-110 shows.

Like the example for equi-join, Figure 2-110 joins the manufact and stock tables on

the manu_code column. Because the Projection list is more closely defined, the

manu_code is listed only once for each row retrieved, as Figure 2-111 shows.

order_num 1004

order_date 05/22/1998

ship_date 05/30/1998

customer_num 106

call_dtime 1998-06-12 08:20

user_id maryj

call_code D

call_descr Order received okay, but two of the cans of

 ANZ tennis balls within the case were empty

res_dtime 1998-06-12 08:25

res_descr Authorized credit for two cans to customer,

 issued apology. Called ANZ buyer to report

 the qa problem.

order_num 1008

order_date 06/07/1998

ship_date 07/06/1998

customer_num 110

call_dtime 1998-07-07 10:24

user_id richc

call_code L

call_descr Order placed one month ago (6/7) not received.

res_dtime 1998-07-07 10:30

res_descr Checked with shipping (Ed Smith). Order out

 yesterday-was waiting for goods from ANZ.

 Next time will call with delay if necessary.

order_num 1023

order_date 07/24/1998

ship_date 07/30/1998

customer_num 127

call_dtime 1998-07-31 14:30

user_id maryj

call_code I

call_descr Received Hero watches (item # 304) instead

 of ANZ watches

res_dtime

res_descr Sent memo to shipping to send ANZ item 304

 to customer and pickup HRO watches. Should

 be done tomorrow, 8/1

Figure 2-109. Query Result

SELECT manu_name, lead_time, stock.*

 FROM manufact, stock

 WHERE manufact.manu_code = stock.manu_code;

Figure 2-110. Query

2-44 IBM Informix Guide to SQL: Tutorial

All joins are associative; that is, the order of the joining terms in the WHERE clause

does not affect the meaning of the join.

Both statements in Figure 2-112 create the same natural join.

Each statement retrieves the row that Figure 2-113 shows.

manu_name Smith

lead_time 3

stock_num 1

manu_code SMT

description baseball gloves

unit_price $450.00

unit case

unit_descr 10 gloves/case

manu_name Smith

lead_time 3

stock_num 5

manu_code SMT

description tennis racquet

unit_price $25.00

unit each

unit_descr each

manu_name Smith

lead_time 3

stock_num 6

manu_code SMT

description tennis ball

unit_price $36.00

unit case

unit_descr 24 cans/case

manu_name Anza

lead_time 5

stock_num 5

manu_code ANZ

description tennis racquet

unit_price $19.80

unit each

unit_descr each ...

Figure 2-111. Query Result

SELECT catalog.*, description, unit_price, unit, unit_descr

 FROM catalog, stock

 WHERE catalog.stock_num = stock.stock_num

 AND catalog.manu_code = stock.manu_code

 AND catalog_num = 10017;

SELECT catalog.*, description, unit_price, unit, unit_descr

 FROM catalog, stock

 WHERE catalog_num = 10017

 AND catalog.manu_code = stock.manu_code

 AND catalog.stock_num = stock.stock_num;

Figure 2-112. Query

Chapter 2. Composing SELECT Statements 2-45

Figure 2-112 includes a TEXT column, cat_descr; a BYTE column, cat_picture; and

a VARCHAR column, cat_advert.

Multiple-Table Join

A multiple-table join connects more than two tables on one or more associated

columns; it can be an equi-join or a natural join.

Figure 2-114 creates an equi-join on the catalog, stock, and manufact tables.

Figure 2-114 retrieves the rows that Figure 2-115 shows.

The manu_code is repeated three times, once for each table, and stock_num is

repeated twice.

catalog_num 10017

stock_num 101

manu_code PRC

cat_descr

Reinforced, hand-finished tubular. Polyurethane belted.

Effective against punctures. Mixed tread for super wear

and road grip.

cat_picture <BYTE value>

cat_advert Ultimate in Puncture Protection, Tires

 Designed for In-City Riding

description bicycle tires

unit_price $88.00

unit box

unit_descr 4/box

Figure 2-113. Query Result

SELECT * FROM catalog, stock, manufact

 WHERE catalog.stock_num = stock.stock_num

 AND stock.manu_code = manufact.manu_code

 AND catalog_num = 10025;

Figure 2-114. Query

catalog_num 10025

stock_num 106

manu_code PRC

cat_descr

Hard anodized alloy with pearl finish; 6mm hex bolt hard ware.

Available in lengths of 90-140mm in 10mm increments.

cat_picture <BYTE value>

cat_advert ProCycle Stem with Pearl Finish

stock_num 106

manu_code PRC

description bicycle stem

unit_price $23.00

unit each

unit_descr each

manu_code PRC

manu_name ProCycle

lead_time 9

Figure 2-115. Query Result

2-46 IBM Informix Guide to SQL: Tutorial

To avoid the considerable duplication of a multiple-table query such as

Figure 2-114, include specific columns in the projection list to define the SELECT

statement more closely, as Figure 2-116 shows.

Figure 2-116 uses a wildcard to select all columns from the table with the most

columns and then specifies columns from the other two tables. Figure 2-117 shows

the natural join that Figure 2-116 produces. It displays the same information as the

previous example, but without duplication.

Some Query Shortcuts

You can use aliases, the INTO TEMP clause, and display labels to speed your way

through joins and multiple-table queries and to produce output for other uses.

Using Aliases

You can assign aliases to the tables in the FROM clause of a SELECT statement to

make multiple-table queries shorter and more readable. You can use an alias

wherever the table name would be used, for instance, as a prefix to the column

names in the other clauses.

SELECT catalog.*, description, unit_price, unit,

 unit_descr, manu_name, lead_time

 FROM catalog, stock, manufact

 WHERE catalog.stock_num = stock.stock_num

 AND stock.manu_code = manufact.manu_code

 AND catalog_num = 10025;

Figure 2-116. Query

catalog_num 10025

stock_num 106

manu_code PRC

cat_descr

Hard anodized alloy with pearl finish. 6mm hex bolt

hardware. Available in lengths of 90-140mm in 10mm increments.

cat_picture <BYTE value>

cat_advert ProCycle Stem with Pearl Finish

description bicycle stem

unit_price $23.00

unit each

unit_descr each

manu_name ProCycle

lead_time 9

Figure 2-117. Query Result

SELECT s.stock_num, s.manu_code, s.description,

 s.unit_price, c.catalog_num,

 c.cat_advert, m.lead_time

 FROM stock s, catalog c, manufact m

 WHERE s.stock_num = c.stock_num

 AND s.manu_code = c.manu_code

 AND s.manu_code = m.manu_code

 AND s.manu_code IN (’HRO’, ’HSK’)

 AND s.stock_num BETWEEN 100 AND 301

 ORDER BY catalog_num;

Figure 2-118. Query

Chapter 2. Composing SELECT Statements 2-47

The associative nature of the SELECT statement allows you to use an alias before

you define it. In Figure 2-118, the aliases s for the stock table, c for the catalog

table, and m for the manufact table are specified in the FROM clause and used

throughout the SELECT and WHERE clauses as column prefixes.

Compare the length of Figure 2-118 with Figure 2-119, which does not use aliases.

Figure 2-118 and Figure 2-119 are equivalent and retrieve the data that Figure 2-120

shows.

You cannot use the ORDER BY clause for the TEXT column cat_descr or the BYTE

column cat_picture.

You can use aliases to shorten your queries on tables that are not in the current

database.

Figure 2-121 joins columns from two tables that reside in different databases and

systems, neither of which is the current database or system.

SELECT stock.stock_num, stock.manu_code, stock.description,

 stock.unit_price, catalog.catalog_num,

 catalog.cat_advert,

 manufact.lead_time

 FROM stock, catalog, manufact

 WHERE stock.stock_num = catalog.stock_num

 AND stock.manu_code = catalog.manu_code

 AND stock.manu_code = manufact.manu_code

 AND stock.manu_code IN (’HRO’, ’HSK’)

 AND stock.stock_num BETWEEN 100 AND 301

 ORDER BY catalog_num;

Figure 2-119. Query

stock_num 110

manu_code HRO

description helmet

unit_price $260.00

catalog_num 10033

cat_advert Lightweight Plastic with Vents Assures Cool

 Comfort Without Sacrificing Protection

lead_time 4

stock_num 110

manu_code HSK

description helmet

unit_price $308.00

catalog_num 10034

cat_advert Teardrop Design Used by Yellow Jerseys; You

 Can Time the Difference

lead_time 5 ...

Figure 2-120. Query Result

SELECT order_num, lname, fname, phone

FROM masterdb@central:customer c, sales@western:orders o

 WHERE c.customer_num = o.customer_num

 AND order_num <= 1010;

Figure 2-121. Query

2-48 IBM Informix Guide to SQL: Tutorial

By assigning the aliases c and o to the long database@system:table names,

masterdb@central:customer and sales@western:orders, respectively, you can use

the aliases to shorten the expression in the WHERE clause and retrieve the data, as

Figure 2-122 shows.

For more information on how to access tables that are not in the current database,

see “Accessing Other Database Servers” on page 7-1 and the IBM Informix Guide to

SQL: Syntax.

You can also use synonyms as shorthand references to the long names of tables that

are not in the current database as well as current tables and views. For details on

how to create and use synonyms, see the IBM Informix Database Design and

Implementation Guide.

The INTO TEMP Clause

By adding an INTO TEMP clause to your SELECT statement, you can temporarily

save the results of a multiple-table query in a separate table that you can query or

manipulate without modifying the database. Temporary tables are dropped when

you end your SQL session or when your program or report terminates.

Figure 2-123 creates a temporary table called stockman and stores the results of the

query in it. Because all columns in a temporary table must have names, the alias

adj_price is required.

order_num lname fname phone

 1001 Higgins Anthony 415-368-1100

 1002 Pauli Ludwig 408-789-8075

 1003 Higgins Anthony 415-368-1100

 1004 Watson George 415-389-8789

 1005 Parmelee Jean 415-534-8822

 1006 Lawson Margaret 415-887-7235

 1007 Sipes Arnold 415-245-4578

 1008 Jaeger Roy 415-743-3611

 1009 Keyes Frances 408-277-7245

 1010 Grant Alfred 415-356-1123

Figure 2-122. Query Result

SELECT DISTINCT stock_num, manu_name, description,

 unit_price, unit_price * 1.05 adj_price

 FROM stock, manufact

 WHERE manufact.manu_code = stock.manu_code

 INTO TEMP stockman;

SELECT * from stockman;

Figure 2-123. Query

Chapter 2. Composing SELECT Statements 2-49

You can query this table and join it with other tables, which avoids a multiple sort

and lets you move more quickly through the database. For more information on

temporary tables, see the IBM Informix Guide to SQL: Syntax and the IBM Informix

Administrator’s Guide.

Summary

This chapter presented syntax examples and results for basic kinds of SELECT

statements that are used to query a relational database. The section “Single-Table

SELECT Statements” on page 2-7 shows how to perform the following actions:

v Select columns and rows from a table with the Projection and FROM clauses

v Select rows from a table with the Projection, FROM, and WHERE clauses

v Use the DISTINCT or UNIQUE keyword in the Projection clause to eliminate

duplicate rows from query results

v Sort retrieved data with the ORDER BY clause and the DESC keyword

v Select and order data values that contain non-English characters

v Use the BETWEEN, IN, MATCHES, and LIKE keywords and various relational

operators in the WHERE clause to create comparison conditions

v Create comparison conditions that include values, exclude values, find a range

of values (with keywords, relational operators, and subscripting), and find a

subset of values

v Use exact-text comparisons, variable-length wildcards, and restricted and

unrestricted wildcards to perform variable text searches

v Use the logical operators AND, OR, and NOT to connect search conditions or

Boolean expressions in a WHERE clause

v Use the ESCAPE keyword to protect special characters in a query

v Search for NULL values with the IS NULL and IS NOT NULL keywords in the

WHERE clause

v Use the FIRST clause to specify that a query returns only a specified number of

the rows that match the conditions of the SELECT statement

stock_num manu_name description unit_price adj_price

 1 Hero baseball gloves $250.00 $262.5000

 1 Husky baseball gloves $800.00 $840.0000

 1 Smith baseball gloves $450.00 $472.5000

 2 Hero baseball $126.00 $132.3000

 3 Husky baseball bat $240.00 $252.0000

 4 Hero football $480.00 $504.0000

 4 Husky football $960.00 $1008.0000

 ...
 306 Shimara tandem adapter $190.00 $199.5000

 307 ProCycle infant jogger $250.00 $262.5000

 308 ProCycle twin jogger $280.00 $294.0000

 309 Hero ear drops $40.00 $42.0000

 309 Shimara ear drops $40.00 $42.0000

 310 Anza kick board $84.00 $88.2000

 310 Shimara kick board $80.00 $84.0000

 311 Shimara water gloves $48.00 $50.4000

 312 Hero racer goggles $72.00 $75.6000

 312 Shimara racer goggles $96.00 $100.8000

 313 Anza swim cap $60.00 $63.0000

 313 Shimara swim cap $72.00 $75.6000

Figure 2-124. Query Result

2-50 IBM Informix Guide to SQL: Tutorial

v Use arithmetic operators in the Projection clause to perform computations on

number fields and display derived data

v Assign display labels to computed columns as a formatting tool for reports

This chapter also introduced simple join conditions that enable you to select and

display data from two or more tables. The section “Multiple-Table SELECT

Statements” on page 2-40 describes how to perform the following actions:

v Create a Cartesian product

v Create a CROSS JOIN, which creates a Cartesian product

v Include a WHERE clause with a valid join condition in your query to constrain a

Cartesian product

v Define and create a natural join and an equi-join

v Join two or more tables on one or more columns

v Use aliases as a shortcut in multiple-table queries

v Retrieve selected data into a separate, temporary table with the INTO TEMP

clause to perform computations outside the database

Chapter 2. Composing SELECT Statements 2-51

2-52 IBM Informix Guide to SQL: Tutorial

Chapter 3. Selecting Data from Complex Types (IDS)

In This Chapter . 3-1

Selecting Row-Type Data . 3-1

Selecting Columns of a Typed Table . 3-2

Selecting Columns That Contain Row-Type Data . 3-3

Field Projections . 3-4

Using Field Projections to Select Nested Fields . 3-5

Using Asterisk Notation to Access All Fields of a Row Type 3-5

Selecting from a Collection . 3-6

Selecting Nested Collections . 3-7

Using the IN Keyword to Search for Elements in a Collection 3-8

Selecting Rows Within a Table Hierarchy . 3-9

Selecting Rows of the Supertable without the ONLY Keyword 3-10

Selecting Rows from a Supertable with the ONLY Keyword 3-10

Using an Alias for a Supertable . 3-11

Summary . 3-11

In This Chapter

This chapter describes how to query complex data types. A complex data type is

built from a combination of other data types with an SQL type constructor. An

SQL statement can access individual components within the complex type.

Complex data types are row types or collection types.

ROW types have instances that combine one or more related data fields. The two

kinds of ROW types are named and unnamed.

Collection types have instances where each collection value contains a group of

elements of the same data type, which can be any fundamental or complex data

type. A collection can consist of a LIST, SET, or MULTISET datatype.

Note: There is no cross-database support for complex data types. They can only be

manipulated in local databases.

For a more complete description of the data types that the database server

supports, see the chapter on data types in the IBM Informix Guide to SQL: Reference.

For information about how to create and use complex types, see the IBM Informix

Database Design and Implementation Guide, the IBM Informix Guide to SQL: Reference,

and the IBM Informix Guide to SQL: Syntax.

Selecting Row-Type Data

This section describes how to query data that is defined as row-type data. A ROW

type is a complex type that combines one or more related data fields.

The two kinds of ROW types are as follows:

v Named row types. A named ROW type can define tables, columns, fields of

another row-type column, program variables, statement local variables, and

routine return values.

© Copyright IBM Corp. 1996, 2008 3-1

v Unnamed row types. An unnamed ROW type can define columns, fields of

another row-type column, program variables, statement local variables, routine

return values, and constants.

The examples used throughout this section use the named ROW types zip_t,

address_t, and employee_t, which define the employee table. Figure 3-1 shows the

SQL syntax that creates the ROW types and table.

The named ROW types zip_t, address_t and employee_t serve as templates for the

fields and columns of the typed table, employee. A typed table is a table that is

defined on a named ROW type. The employee_t type that serves as the template

for the employee table uses the address_t type as the data type of the address

field. The address_t type uses the zip_t type as the data type of the zip field.

Figure 3-2 shows the SQL syntax that creates the student table. The s_address

column of the student table is defined on an unnamed ROW type. (The s_address

column could also have been defined as a named ROW type.)

Selecting Columns of a Typed Table

A query on a typed table is no different from a query on any other table. For

example, Figure 3-3 uses the asterisk symbol (*) to specify a SELECT statement that

returns all columns of the employee table.

CREATE ROW TYPE zip_t

(

 z_code CHAR(5),

 z_suffix CHAR(4)

)

CREATE ROW TYPE address_t

(

 street VARCHAR(20),

 city VARCHAR(20),

 state CHAR(2),

 zip zip_t

)

CREATE ROW TYPE employee_t

(

name VARCHAR(30),

address address_t,

salary INTEGER

)

CREATE TABLE employee OF TYPE employee_t

Figure 3-1.

CREATE TABLE student

(

s_name VARCHAR(30),

s_address ROW(street VARCHAR (20), city VARCHAR(20),

 state CHAR(2), zip VARCHAR(9)),

 grade_point_avg DECIMAL(3,2)

)

Figure 3-2.

SELECT * FROM employee

Figure 3-3. Query

3-2 IBM Informix Guide to SQL: Tutorial

The SELECT statement on the employee table returns all rows for all columns, as

Figure 3-4 shows.

Figure 3-5 shows how to construct a query that returns rows for the name and

address columns of the employee table.

Selecting Columns That Contain Row-Type Data

A row-type column is a column that is defined on a named ROW type or unnamed

ROW type. You use the same SQL syntax to query a named ROW type and an

unnamed row-type column.

A query on a row-type column returns data from all the fields of the ROW type. A

field is a component data type within a ROW type. For example, the address

column of the employee table contains the street, city, state, and zip fields.

Figure 3-7 shows how to construct a query that returns all fields of the address

column.

To access individual fields that a column contains, use single-dot notation to

project the individual fields of the column. For example, suppose you want to

access specific fields from the address column of the employee table. The

name Paul, J.

address ROW(102 Ruby, Belmont, CA, 49932, 1000)

salary 78000

name Davis, J.

address ROW(133 First, San Jose, CA, 85744, 4900)

salary 75000 ...

Figure 3-4. Query Result

SELECT name, address FROM employee

Figure 3-5. Query

name Paul, J.

address ROW(102 Ruby, Belmont, CA, 49932, 1000)

name Davis, J.

address ROW(133 First, San Jose, CA, 85744, 4900) ...

Figure 3-6. Query Result

SELECT address FROM employee

Figure 3-7. Query

address ROW(102 Ruby, Belmont, CA, 49932, 1000)

address ROW(133 First, San Jose, CA, 85744, 4900)

address ROW(152 Topaz, Willits, CA, 69445, 1000)) ...

Figure 3-8. Query Result

Chapter 3. Selecting Data from Complex Types (IDS) 3-3

following SELECT statement projects the city and state fields from the address

column.

You construct a query on an unnamed row-type column in the same way you

construct a query on a named row-type column. For example, suppose you want

to access data from the s_address column of the student table in Figure 3-2. You

can use dot notation to query the individual fields of a column that are defined on

an unnamed row type. Figure 3-11 shows how to construct a SELECT statement on

the student table that returns rows for the city and state fields of the s_address

column.

Field Projections

Do not confuse fields with columns. Columns are only associated with tables, and

column projections use conventional dot notation of the form name_1.name_2 for a

table and column, respectively. A field is a component data type within a ROW

type. With ROW types (and the capability to assign a ROW type to a single

column), you can project individual fields of a column with single dot notation of

the form: name_a.name_b.name_c.name_d. Informix database servers use the

following precedence rules to interpret dot notation:

1. table_name_a . column_name_b . field_name_c . field_name_d

2. column_name_a . field_name_b . field_name_c . field_name_d

When the meaning of a particular identifier is ambiguous, the database server uses

precedence rules to determine which database object the identifier specifies.

Consider the following two statements:

CREATE TABLE b (c ROW(d INTEGER, e CHAR(2)))

CREATE TABLE c (d INTEGER)

SELECT address.city, address.state FROM employee

Figure 3-9. Query

city state

Belmont CA

San Jose CA

Willits CA ...

Figure 3-10. Query Result

SELECT s_address.city, s_address.state FROM student

Figure 3-11. Query

city state

Belmont CA

Mount Prospect IL

Greeley CO ...

Figure 3-12. Query Result

3-4 IBM Informix Guide to SQL: Tutorial

In the following SELECT statement, the expression c.d references column d of

table c (rather than field d of column c in table b) because a table identifier has a

higher precedence than a column identifier:

SELECT * FROM b,c WHERE c.d = 10

To avoid referencing the wrong database object, you can specify the full notation

for a field projection. Suppose, for example, you want to reference field d of

column c in table b (not column d of table c). The following statement specifies the

table, column, and field identifiers of the object you want to reference:

SELECT * FROM b,c WHERE b.c.d = 10

Important: Although precedence rules reduce the chance of the database server

misinterpreting field projections, it is recommended that you use

unique names for all table, column, and field identifiers.

Using Field Projections to Select Nested Fields

Typically the row type is a column, but you can use any row-type expression for

field projection. When the row-type expression itself contains other row types, the

expression contains nested fields. To access nested fields within an expression or

individual fields, use dot notation. To access all the fields of the row type, use an

asterisk (*). This section describes both methods of row-type access.

For a discussion of how to use dot notation and asterisk notation with row-type

expressions, see the Expression segment in the IBM Informix Guide to SQL: Syntax.

Selecting Individual Fields of a Row Type: Consider the address column of the

employee table, which contains the fields street, city, state, and zip. In addition,

the zip field contains the nested fields: z_code and z_suffix. (You might want to

review the row type and table definitions of Figure 3-1 on page 3-2.) A query on

the zip field returns rows for the z_code and z_suffix fields. However, you can

specify that a query returns only specific nested fields. Figure 3-13 shows how to

use dot notation to construct a SELECT statement that returns rows for the z_code

field of the address column only.

Using Asterisk Notation to Access All Fields of a Row Type

Asterisk notation is supported only within the select list of a SELECT statement.

When you specify the column name for a row-type column in a projection list, the

database server returns values for all fields of the column. You can also use

asterisk notation when you want to project all the fields within a ROW type.

SELECT address.zip.z_code FROM employee

Figure 3-13. Query

z_code

39444

6500

76055

19004 ...

Figure 3-14. Query Result

Chapter 3. Selecting Data from Complex Types (IDS) 3-5

Figure 3-15 uses asterisk notation to return all fields of the address column in the

employee table.

The asterisk notation makes it easier to perform some SQL tasks. Suppose you

create a function new_row() that returns a row-type value and you want to call

this function and insert the row that is returned into a table. The database server

provides no easy way to handle such operations. However, Figure 3-17 shows how

to use asterisk notation to return all fields of new_row() and insert the returned

fields into the tab_2 table.

For information about how to use the INSERT statement, see Chapter 6,

“Modifying Data,” on page 6-1.

Important: An expression that uses the .* notation is evaluated only once.

Selecting from a Collection

This section describes how to query columns that are defined on collection types.

A collection type is a complex data type in which each collection value contains a

group of elements of the same data type. For a detailed description of collection

data types, see the IBM Informix Database Design and Implementation Guide. For

information about how to access the individual elements that a collection contains,

see “Handling Collections in SELECT Statements (IDS)” on page 5-27.

Figure 3-18 shows the manager table, which is used in examples throughout this

section. The manager table contains both simple and nested collection types. A

simple collection is a collection type that does not contain any fields that are

themselves collection types. The direct_reports column of the manager table is a

simple collection. A nested collection is a collection type that contains another

collection type. The projects column of the manager table is a nested collection.

SELECT address.* FROM employee;

Figure 3-15. Query

address ROW(102 Ruby, Belmont, CA, 49932, 1000)

address ROW(133 First, San Jose, CA, 85744, 4900)

address ROW(152 Topaz, Willits, CA, 69445, 1000)) ...

Figure 3-16. Query Result

INSERT INTO tab_2 SELECT new_row(exp).* FROM tab_1

Figure 3-17. Query

CREATE TABLE manager

(

 mgr_name VARCHAR(30),

 department VARCHAR(12),

 direct_reports SET(VARCHAR(30) NOT NULL),

 projects LIST(ROW(pro_name VARCHAR(15),

 pro_members SET(VARCHAR(20) NOT NULL)

) NOT NULL)

)

Figure 3-18.

3-6 IBM Informix Guide to SQL: Tutorial

A query on a column that is a collection type returns, for each row in the table, all

the elements that the particular collection contains. For example, Figure 3-19 shows

a query that returns data in the department column and all elements in the

direct_reports column for each row of the manager table.

The output of a query on a collection type always includes the type constructor

that specifies whether the collection is a SET, MULTISET, or LIST. For example, in

Figure 3-20, the SET constructor precedes the elements of each collection. Braces ({})

demarcate the elements of a collection; commas separate individual elements of a

collection.

Selecting Nested Collections

The projects column of the manager table (see Figure 3-18 on page 3-6) is a nested

collection. A query on a nested collection type returns all the elements that the

particular collection contains. Figure 3-21 shows a query that returns all elements

from the projects column for a specified row. The WHERE clause limits the query

to a single row in which the value in the mgr_name column is Sayles.

Figure 3-22 shows a project column collection for a single row of the manager

table. The query returns the names of those projects that the manager Sayles

oversees. The collection contains, for each element in the LIST, the project name

(pro_name) and the SET of individuals (pro_members) who are assigned to each

project.

SELECT department, direct_reports FROM manager

Figure 3-19. Query

department marketing

direct_reports SET {Smith, Waters, Adams, Davis, Kurasawa}

department engineering

ddirect_reports SET {Joshi, Davis, Smith, Waters, Fosmire, Evans, Jones}

department publications

direct_reports SET {Walker, Fremont, Porat, Johnson}

department accounting

direct_reports SET {Baker, Freeman, Jacobs} ...

Figure 3-20. Query Result

SELECT projects

 FROM manager

 WHERE mgr_name = ’Sayles’

Figure 3-21. Query

projects LIST {ROW(voyager_project, SET{Simonian, Waters, Adams, Davis})}

projects LIST {ROW(horizon_project, SET{Freeman, Jacobs, Walker, Cannan})}

projects LIST {ROW(sapphire_project, SET{Villers, Reeves, Doyle, Strongin})} ...

Figure 3-22. Query Result

Chapter 3. Selecting Data from Complex Types (IDS) 3-7

Using the IN Keyword to Search for Elements in a Collection

You can use the IN keyword in the WHERE clause of an SQL statement to

determine whether a collection contains a certain element. For example, Figure 3-23

shows how to construct a query that returns values for mgr_name and department

where Adams is an element of a collection in the direct_reports column.

Although you can use a WHERE clause with the IN keyword to search for a

particular element in a simple collection, the query always returns the complete

collection. For example, Figure 3-25 returns all the elements of the collection where

Adams is an element of a collection in the direct_reports column.

As Figure 3-26 shows, a query on a collection column returns the entire collection,

not a particular element within the collection.

You can use the IN keyword in a WHERE clause to reference a simple collection

only. You cannot use the IN keyword to reference a collection that contains fields

that are themselves collections. For example, you cannot use the IN keyword to

reference the projects column in the manager table because projects is a nested

collection.

You can combine the NOT and IN keywords in the WHERE clause of a SELECT

statement to search for collections that do not contain a certain element. For

example, Figure 3-27 shows a query that returns values for mgr_name and

department where Adams is not an element of a collection in the direct_reports

column.

SELECT mgr_name, department

 FROM manager

 WHERE ’Adams’ IN direct_reports

Figure 3-23. Query

mgr_name Sayles

department marketing

Figure 3-24. Query Result

SELECT mgr_name, direct_reports

 FROM manager

 WHERE ’Adams’ IN direct_reports

Figure 3-25. Query

mgr_name Sayles

direct_reports SET {Smith, Waters, Adams, Davis, Kurasawa}

Figure 3-26. Query Result

SELECT mgr_name, department

 FROM manager

 WHERE ’Adams’ NOT IN direct_reports

Figure 3-27. Query

3-8 IBM Informix Guide to SQL: Tutorial

For information about how to count the elements in a collection column, see

“Cardinality Function (IDS)” on page 4-13.

Selecting Rows Within a Table Hierarchy

This section describes how to query rows from tables within a table hierarchy. For

more information about how to create and use a table hierarchy, see the IBM

Informix Database Design and Implementation Guide.

Figure 3-29 shows the statements that create the type and table hierarchies that the

examples in this section use.

mgr_name Williams

department engineering

mgr_name Lyman

department publications

mgr_name Cole

department accounting

Figure 3-28. Query Result

CREATE ROW TYPE address_t

(

 street VARCHAR (20),

 city VARCHAR(20),

 state CHAR(2),

 zip VARCHAR(9)

)

CREATE ROW TYPE person_t

(

 name VARCHAR(30),

 address address_t,

 soc_sec CHAR(9)

)

CREATE ROW TYPE employee_t

(

salary INTEGER

)

UNDER person_t

CREATE ROW TYPE sales_rep_t

(

 rep_num SERIAL8,

 region_num INTEGER

)

UNDER employee_t

CREATE TABLE person OF TYPE person_t

CREATE TABLE employee OF TYPE employee_t

UNDER person

CREATE TABLE sales_rep OF TYPE sales_rep_t

UNDER employee

Figure 3-29.

Chapter 3. Selecting Data from Complex Types (IDS) 3-9

Figure 3-30 shows the hierarchical relationships of the row types and tables in

Figure 3-29.

Selecting Rows of the Supertable without the ONLY Keyword

A table hierarchy allows you to construct, in a single SQL statement, a query

whose scope is a supertable and its subtables. A query on a supertable returns

rows from both the supertable and its subtables. Figure 3-31 shows a query on the

person table, which is the root supertable in the table hierarchy.

Figure 2-31 returns all columns in the supertable and those columns in subtables

(employee and sales_rep) that are inherited from the supertable. A query on a

supertable does not return columns from subtables that are not in the supertable.

Figure 3-32 shows the name, address, and soc_sec columns in the person,

employee, and sales_rep tables.

Selecting Rows from a Supertable with the ONLY Keyword

Although a SELECT statement on a supertable returns rows from both the

supertable and its subtables, you cannot tell which rows come from the supertable

and which rows come from the subtables. To limit the results of a query to the

supertable only, you must include the ONLY keyword in the SELECT statement.

For example, Figure 3-33 returns rows in the person table only.

employee_t

sales_rep

person

employee

sales_rep_t

person_t

Type hierarchy Table hierarchy

Figure 3-30. Type and Table Hierarchies

SELECT * FROM person

Figure 3-31. Query

name Rogers, J.

address ROW(102 Ruby Ave, Belmont, CA, 69055)

soc_sec 454849344

name Sallie, A.

address ROW(134 Rose St, San Carlos, CA, 69025)

soc_sec 348441214 ...

Figure 3-32. Query Result

SELECT * FROM ONLY(person);

Figure 3-33. Query

3-10 IBM Informix Guide to SQL: Tutorial

Using an Alias for a Supertable

An alias is a word that immediately follows the name of a table in the FROM

clause. You can specify an alias for a typed table in a SELECT or UPDATE

statement and then use the alias as an expression by itself. If you create an alias for

a supertable, the alias can represent values from the supertable or the subtables

that inherit from the supertable. In DB–Access, Figure 3-35 returns row values for

all instances of the person, employee, and sales_rep tables.

Informix ESQL/C does not recognize this construct. In an Informix ESQL/C

program, Figure 3-35 returns an error.

Summary

This chapter introduced sample syntax and results for selecting data from complex

types using SELECT statements to query a relational database. The section

“Selecting Row-Type Data” on page 3-1 shows how to perform the following

actions:

v Select row-type data from typed tables and columns

v Use row-type expressions for field projections

The section “Selecting from a Collection” on page 3-6 shows how to perform the

following actions:

v Query columns that are defined on collection types

v Search for elements in a collection

v Query columns that are defined on nested collection types

The section “Selecting Rows Within a Table Hierarchy” on page 3-9 shows how to

perform the following actions:

v Query a supertable with or without the ONLY keyword

v Specify an alias for a supertable

name Rogers, J.

address ROW(102 Ruby Ave, Belmont, CA, 69055)

soc_sec 454849344 ...

Figure 3-34. Query Result

SELECT p FROM person p;

Figure 3-35. Query

Chapter 3. Selecting Data from Complex Types (IDS) 3-11

3-12 IBM Informix Guide to SQL: Tutorial

Chapter 4. Using Functions in SELECT Statements

In This Chapter . 4-1

Using Functions in SELECT Statements . 4-2

Aggregate Functions . 4-2

Using the COUNT Function . 4-3

Using the AVG Function . 4-3

Using the MAX and MIN Functions . 4-4

Using the SUM Function . 4-4

Using the RANGE Function . 4-4

Using the STDEV Function . 4-5

Using the VARIANCE Function . 4-5

Applying Functions to Expressions . 4-6

Time Functions . 4-6

Using DAY and CURRENT Functions . 4-6

Using the MONTH Function . 4-8

Using the WEEKDAY Function . 4-9

Using the YEAR Function . 4-9

Formatting DATETIME Values . 4-10

Date-Conversion Functions (IDS) . 4-11

Using the DATE Function . 4-11

Using the TO_CHAR Function . 4-11

Using the TO_DATE Function . 4-12

Cardinality Function (IDS) . 4-13

Smart-Large-Object Functions (IDS) . 4-14

String-Manipulation Functions (IDS) . 4-15

Using the LOWER Function . 4-16

Using the UPPER Function . 4-16

Using the INITCAP Function . 4-16

Using the REPLACE Function . 4-17

Using the SUBSTRING and SUBSTR Functions . 4-17

Using the SUBSTRING Function . 4-18

Using the SUBSTR Function . 4-19

Using the LPAD Function . 4-19

Using the RPAD Function . 4-20

Other Functions . 4-21

Using the LENGTH Function . 4-21

Using the USER Function . 4-22

Using the TODAY Function . 4-22

Using the DBSERVERNAME and SITENAME Functions 4-23

Using the HEX Function . 4-23

Using the DBINFO Function . 4-24

Using the DECODE Function . 4-25

Using the NVL Function (IDS) . 4-26

Using SPL Routines in SELECT Statements . 4-27

Using Data Encryption Functions (IDS) . 4-28

Summary . 4-30

In This Chapter

In addition to column names and operators, an expression can also include one or

more functions. This chapter shows how to use functions in SELECT statements to

perform more complex database queries and data manipulation. This chapter

includes: aggregates functions, time functions, date-conversion functions, the

cardinality function, smart-large-object functions, string-manipulation functions,

data encryption functions, and other functions.

© Copyright IBM Corp. 1996, 2008 4-1

For information about the syntax of the following SQL functions and other SQL

functions, see the Expressions segment in the IBM Informix Guide to SQL: Syntax.

Tip: You can also use functions that you create yourself. For information about

user-defined functions, see Chapter 11, “Creating and Using SPL Routines,”

on page 11-1, and IBM Informix User-Defined Routines and Data Types

Developer’s Guide.

Using Functions in SELECT Statements

You can use any basic type of expression (column, constant, function, aggregate

function, and procedure), or combination thereof, in the select list.

A function expression uses a function that is evaluated for each row in the query.

All function expressions require arguments. This set of expressions contains the

time function and the length function when they are used with a column name as

an argument.

Aggregate Functions

All Informix database servers support the following aggregate functions:

v AVG

v COUNT

v MAX

v MIN

v RANGE

v STDEV

v SUM

v VARIANCE

An aggregate function returns one value for a set of queried rows. The aggregate

functions take on values that depend on the set of rows that the WHERE clause of

the SELECT statement returns. In the absence of a WHERE clause, the aggregate

functions take on values that depend on all the rows that the FROM clause forms.

You cannot use aggregate functions for expressions that contain the following data

types:

v TEXT

v BYTE

v CLOB

v BLOB

v Collection data types (LIST, MULTISET, and SET

v ROW types

v Opaque data types (except with user-defined aggregate functions that support

opaque types)

Aggregates are often used to summarize information about groups of rows in a

table. This use is discussed in Chapter 5. When you apply an aggregate function to

an entire table, the result contains a single row that summarizes all the selected

rows.

4-2 IBM Informix Guide to SQL: Tutorial

Using the COUNT Function

Figure 4-1 counts and displays the total number of rows in the stock table.

Figure 4-3 includes a WHERE clause to count specific rows in the stock table, in

this case, only those rows that have a manu_code of SHM.

By including the keyword DISTINCT (or its synonym UNIQUE) and a column

name in Figure 4-5, you can tally the number of different manufacturer codes in

the stock table.

Using the AVG Function

Figure 4-7 computes the average unit_price of all rows in the stock table.

SELECT COUNT(*) FROM stock;

Figure 4-1. Query

(count(*))

 73

Figure 4-2. Query Result

SELECT COUNT (*) FROM stock WHERE manu_code = ’SHM’;

Figure 4-3. Query

(count(*))

 17

Figure 4-4. Query Result

SELECT COUNT (DISTINCT manu_code) FROM stock;

Figure 4-5. Query

(count)

 9

Figure 4-6. Query Result

SELECT AVG (unit_price) FROM stock;

Figure 4-7. Query

 (avg)

$197.14

Figure 4-8. Query Result

Chapter 4. Using Functions in SELECT Statements 4-3

Figure 4-9 computes the average unit_price of just those rows in the stock table

that have a manu_code of SHM.

Using the MAX and MIN Functions

You can combine aggregate functions in the same SELECT statement. For example,

you can include both the MAX and the MIN functions in the select list, as

Figure 4-11 shows.

Figure 4-11 finds and displays both the highest and lowest ship_charge in the

orders table, as Figure 4-12 shows.

Using the SUM Function

Figure 4-13 calculates the total ship_weight of orders that were shipped on July 13,

1998.

Using the RANGE Function

The RANGE function computes the difference between the maximum and the

minimum values for the selected rows.

You can apply the RANGE function only to numeric columns. Figure 4-15 finds the

range of prices for items in the stock table.

SELECT AVG (unit_price) FROM stock WHERE manu_code = ’SHM’;

Figure 4-9. Query

 (avg)

$204.93

Figure 4-10. Query Result

SELECT MAX (ship_charge), MIN (ship_charge) FROM orders;

Figure 4-11. Query

 (max) (min)

$25.20 $5.00

Figure 4-12. Query Result

SELECT SUM (ship_weight) FROM orders

 WHERE ship_date = ’07/13/1998’;

Figure 4-13.

(sum)

130.5

Figure 4-14. Query Result

4-4 IBM Informix Guide to SQL: Tutorial

As with other aggregates, the RANGE function applies to the rows of a group

when the query includes a GROUP BY clause, which Figure 4-17 shows.

Using the STDEV Function

The STDEV function computes the standard deviation for the selected rows. It is

the square root of the VARIANCE function.

You can apply the STDEV function only to numeric columns. The following query

finds the standard deviation on a population:

SELECT STDEV(age) FROM u_pop WHERE age > 21;

As with the other aggregates, the STDEV function applies to the rows of a group

when the query includes a GROUP BY clause, as the following example shows:

SELECT STDEV(age) FROM u_pop

 GROUP BY state

 WHERE STDEV(age) > 21;

Nulls are ignored unless every value in the specified column is null. If every

column value is null, the STDEV function returns a null for that column. For more

information about the STDEV function, see the Expression segment in the IBM

Informix Guide to SQL: Syntax.

Using the VARIANCE Function

The VARIANCE function returns the variance for a sample of values as an

unbiased estimate of the variance for all rows selected. It computes the following

value:

SELECT RANGE(unit_price) FROM stock;

Figure 4-15. Query

(range)

955.50

Figure 4-16. Query Result

SELECT RANGE(unit_price) FROM stock

 GROUP BY manu_code;

Figure 4-17. Query

(range)

820.20

595.50

720.00

225.00

632.50

 0.00

460.00

645.90

425.00

Figure 4-18. Query Result

Chapter 4. Using Functions in SELECT Statements 4-5

(SUM(Xi**2) - (SUM(Xi)**2)/N)/(N-1)

In this example, Xi is each value in the column and N is the total number of values

in the column. You can apply the VARIANCE function only to numeric columns.

The following query finds the variance on a population:

SELECT VARIANCE(age) FROM u_pop WHERE age > 21;

As with the other aggregates, the VARIANCE function applies to the rows of a

group when the query includes a GROUP BY clause, which the following example

shows:

SELECT VARIANCE(age) FROM u_pop

 GROUP BY birth

 WHERE VARIANCE(age) > 21;

Nulls are ignored unless every value in the specified column is null. If every

column value is null, the VARIANCE function returns a null for that column. For

more information about the VARIANCE function, see the Expression segment in

the IBM Informix Guide to SQL: Syntax.

Applying Functions to Expressions

Figure 4-19 shows how you can apply functions to expressions and supply display

labels for their results.

Figure 4-19 finds and displays the maximum, minimum, and average amounts of

time (in days, hours, and minutes) between the reception and resolution of a

customer call and labels the derived values appropriately. Figure 4-20 shows these

qualities of time.

Time Functions

You can use the time functions DAY, MONTH, WEEKDAY, and YEAR in either

the Projection clause or the WHERE clause of a query. These functions return a

value that corresponds to the expressions or arguments that you use to call the

function. You can also use the CURRENT or SYSDATE function to return a value

with the current date and time, or use the EXTEND function to adjust the

precision of a DATE or DATETIME value.

Using DAY and CURRENT Functions

Figure 4-21 returns the day of the month for the call_dtime and res_dtime columns

in two expression columns.

SELECT MAX (res_dtime - call_dtime) maximum,

 MIN (res_dtime - call_dtime) minimum,

 AVG (res_dtime - call_dtime) average

 FROM cust_calls;

Figure 4-19. Query

maximum minimum average

5 20:55 0 00:01 1 02:56

Figure 4-20. Query Result

4-6 IBM Informix Guide to SQL: Tutorial

Figure 4-23 uses the DAY and CURRENT functions to compare column values to

the current day of the month. It selects only those rows where the value is earlier

than the current day. In this example, the CURRENT day is 15.

Figure 4-25 uses the CURRENT function to select all calls except those that came

in today.

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)

 FROM cust_calls;

Figure 4-21. Query

customer_num (expression) (expression)

 106 12 12

 110 7 7

 119 1 2

 121 10 10

 127 31

 116 28 28

 116 21 27

Figure 4-22. Query Result

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)

 FROM cust_calls

 WHERE DAY (call_dtime) < DAY (CURRENT);

Figure 4-23. Query

customer_num (expression) (expression)

 106 12 12

 110 7 7

 119 1 2

 121 10 10

Figure 4-24. Query Result

SELECT customer_num, call_code, call_descr

 FROM cust_calls

 WHERE call_dtime < CURRENT YEAR TO DAY;

Figure 4-25. Query

Chapter 4. Using Functions in SELECT Statements 4-7

The SYSDATE function closely resembles the CURRENT function, but the default

precision of its returned value is DATETIME YEAR TO FRACTION(5), rather than

the default DATETIME YEAR TO FRACTION(3) precision of CURRENT when no

DATETIME qualifier is specified.

Using the MONTH Function

Figure 4-27 uses the MONTH function to extract and show what month the

customer call was received and resolved, and it uses display labels for the resulting

columns. However, it does not make a distinction between years.

Figure 4-29 uses the MONTH function plus DAY and CURRENT to show what

month the customer call was received and resolved if DAY is earlier than the

current day.

customer_num 106

call_code D

call_descr Order was received, but two of the cans of ANZ tennis balls

 within the case were empty

customer_num 110

call_code L

call_descr Order placed one month ago (6/7) not received. ...
customer_num 116

call_code I

call_descr Second complaint from this customer! Received two cases

 right-handed outfielder gloves (1 HRO) instead of one case

 lefties.

Figure 4-26. Query Result

SELECT customer_num,

 MONTH (call_dtime) call_month,

 MONTH (res_dtime) res_month

 FROM cust_calls;

Figure 4-27. Query

customer_num call_month res_month

 106 6 6

 110 7 7

 119 7 7

 121 7 7

 127 7

 116 11 11

 116 12 12

Figure 4-28. Query Result

SELECT customer_num,

 MONTH (call_dtime) called,

 MONTH (res_dtime) resolved

 FROM cust_calls

 WHERE DAY (res_dtime) < DAY (CURRENT);

Figure 4-29. Query

4-8 IBM Informix Guide to SQL: Tutorial

Using the WEEKDAY Function

Figure 4-31 uses the WEEKDAY function to indicate which day of the week calls

are received and resolved (0 represents Sunday, 1 is Monday, and so on), and the

expression columns are labeled.

Figure 4-33 uses the COUNT and WEEKDAY functions to count how many calls

were received on a weekend. This kind of statement can give you an idea of

customer-call patterns or indicate whether overtime pay might be required.

Using the YEAR Function

Figure 4-35 retrieves rows where the call_dtime is earlier than the beginning of the

current year.

customer_num called resolved

 106 6 6

 119 7 7

 121 7 7

Figure 4-30. Query Result

SELECT customer_num,

 WEEKDAY (call_dtime) called,

 WEEKDAY (res_dtime) resolved

 FROM cust_calls

 ORDER BY resolved;

Figure 4-31. Query

customer_num called resolved

 127 3

 110 0 0

 119 1 2

 121 3 3

 116 3 3

 106 3 3

 116 5 4

Figure 4-32. Query Result

SELECT COUNT(*)

 FROM cust_calls

 WHERE WEEKDAY (call_dtime) IN (0,6);

Figure 4-33. Query

(count(*))

 4

Figure 4-34. Query Result

Chapter 4. Using Functions in SELECT Statements 4-9

Formatting DATETIME Values

In Figure 4-37, the EXTEND function displays only the specified subfields to

restrict the two DATETIME values.

Figure 4-38 returns the month-to-minute range for the columns labeled call_time

and res_time and gives an indication of the work load.

The TO_CHAR function can also format DATETIME values. See “Using the

TO_CHAR Function” on page 4-11 for information about this built-in function,

which can also accept DATE values or numeric values as an argument, and returns

a formatted character string.

Besides the built-in time functions that these examples illustrate, Dynamic Server

also supports the ADD_MONTHS, LAST_DAY, MDY, MONTHS_BETWEEN,

and NEXT_DAY functions. In addition to these functions, the TRUNC and

ROUND functions can return values that change the precision of DATE or

DATETIME arguments. These additional time functions are described in the IBM

Informix Guide to SQL: Syntax.

SELECT customer_num, call_code,

 YEAR (call_dtime) call_year,

 YEAR (res_dtime) res_year

 FROM cust_calls

 WHERE YEAR (call_dtime) < YEAR (TODAY);

Figure 4-35. Query

customer_num call_code call_year res_year

 116 I 1997 1997

 116 I 1997 1997

Figure 4-36. Query Result

SELECT customer_num,

 EXTEND (call_dtime, month to minute) call_time,

 EXTEND (res_dtime, month to minute) res_time

 FROM cust_calls

 ORDER BY res_time;

Figure 4-37. Query

customer_num call_time res_time

 127 07-31 14:30

 106 06-12 08:20 06-12 08:25

 119 07-01 15:00 07-02 08:21

 110 07-07 10:24 07-07 10:30

 121 07-10 14:05 07-10 14:06

 116 11-28 13:34 11-28 16:47

 116 12-21 11:24 12-27 08:19

Figure 4-38. Query Result

4-10 IBM Informix Guide to SQL: Tutorial

Date-Conversion Functions (IDS)

The following conversion functions convert between date and character values:

v DATE

v TO_CHAR

v TO_DATE

You can use a date-conversion function anywhere you use an expression.

Using the DATE Function

The DATE function converts a character string to a DATE value. In Figure 4-39, the

DATE function converts a character string to a DATE value to allow for

comparisons with DATETIME values. The query retrieves DATETIME values only

when call_dtime is later than the specified DATE.

Figure 4-41 converts DATETIME values to DATE format and displays the values,

with labels, only when call_dtime is greater than or equal to the specified date.

Using the TO_CHAR Function

The TO_CHAR function converts DATETIME or DATE values to character string

values. The TO_CHAR function evaluates a DATETIME value according to the

date-formatting directive that you specify and returns an NVARCHAR value. For a

SELECT customer_num, call_dtime, res_dtime

 FROM cust_calls

 WHERE call_dtime > DATE (’12/31/97’);

Figure 4-39. Query

customer_num call_dtime res_dtime

 106 1998-06-12 08:20 1998-06-12 08:25

 110 1998-07-07 10:24 1998-07-07 10:30

 119 1998-07-01 15:00 1998-07-02 08:21

 121 1998-07-10 14:05 1998-07-10 14:06

 127 1998-07-31 14:30

Figure 4-40. Query Result

SELECT customer_num,

 DATE (call_dtime) called,

 DATE (res_dtime) resolved

 FROM cust_calls

 WHERE call_dtime >= DATE (’1/1/98’);

Figure 4-41. Query

customer_num called resolved

 106 06/12/1998 06/12/1998

 110 07/07/1998 07/07/1998

 119 07/01/1998 07/02/1998

 121 07/10/1998 07/10/1998

 127 07/31/1998

Figure 4-42. Query Result

Chapter 4. Using Functions in SELECT Statements 4-11

complete list of the supported date-formatting directives, see the description of the

GL_DATETIME environment variable in the IBM Informix GLS User’s Guide.

You can also use the TO_CHAR function to convert a DATETIME or DATE value

to an LVARCHAR value.

Figure 4-43 uses the TO_CHAR function to convert a DATETIME value to a more

readable character string.

Figure 4-45 uses the TO_CHAR function to convert DATE values to more readable

character strings.

The TO_CHAR function can also format numeric values. For more information

about the built-in TO_CHAR function, see the IBM Informix Guide to SQL: Syntax.

Using the TO_DATE Function

The TO_DATE function accepts an argument of a character data type and converts

this value to a DATETIME value. The TO_DATE function evaluates a character

string according to the date-formatting directive that you specify and returns a

SELECT customer_num,

 TO_CHAR(call_dtime, "%A %B %d %Y") call_date

 FROM cust_calls

 WHERE call_code = "B";

Figure 4-43. Query

customer_num 119

call_date Friday July 01 1998

Figure 4-44. Query Result

SELECT order_num,

 TO_CHAR(ship_date,"%A %B %d %Y") date_shipped

 FROM orders

 WHERE paid_date IS NULL;

Figure 4-45. Query

order_num 1004

date_shipped Monday May 30 1998

order_num 1006

date_shipped

order_num 1007

date_shipped Sunday June 05 1998

order_num 1012

date_shipped Wednesday June 29 1998

order_num 1016

date_shipped Tuesday July 12 1998

order_num 1017

date_shipped Wednesday July 13 1998

Figure 4-46. Query Result

4-12 IBM Informix Guide to SQL: Tutorial

DATETIME value. For a complete list of the supported date-formatting directives,

see the description of the GL_DATETIME environment variable in the IBM

Informix GLS User’s Guide.

You can also use the TO_DATE function to convert an LVARCHAR value to a

DATETIME value.

Figure 4-47 uses the TO_DATE function to convert character string values to

DATETIME values whose format you specify.

You can use the DATE or TO_DATE function to convert a character string to a

DATE value. One advantage of the TO_DATE function is that it allows you to

specify a format for the value returned. (You can use the TO_DATE function,

which always returns a DATETIME value, to convert a character string to a DATE

value because the database server implicitly handles conversions between DATE

and DATETIME values.)

Figure 4-49 uses the TO_DATE function to convert character string values to DATE

values whose format you specify.

Cardinality Function (IDS)

The CARDINALITY function counts the number of elements that a collection

contains. You can use the CARDINALITY function with simple or nested

collections. Any duplicates in a collection are counted as individual elements.

Figure 4-51 shows a query that returns, for every row in the manager table,

department values and the number of elements in each direct_reports collection.

SELECT customer_num, call_descr

 FROM cust_calls

 WHERE call_dtime = TO_DATE("1998-07-07 10:24",

 "%Y-%m-%d %H:%M");

Figure 4-47. Query

customer_num 110

call_descr Order placed one month ago (6/7) not received.

Figure 4-48. Query Result

SELECT order_num, paid_date

 FROM orders

 WHERE order_date = TO_DATE("6/7/98", "%m/%d/%iY");

Figure 4-49. Query

order_num paid_date

1008 07/21/1998

Figure 4-50. Query Result

SELECT department, CARDINALITY(direct_reports) FROM manager;

Figure 4-51. Query

Chapter 4. Using Functions in SELECT Statements 4-13

You can also evaluate the number of elements in a collection from within a

predicate expression, as Figure 4-53 shows.

Smart-Large-Object Functions (IDS)

The database server provides four SQL functions that you can call from within an

SQL statement to import and export smart large objects. Table 4-1 shows the

smart-large-object functions.

 Table 4-1. SQL Functions for Smart Large Objects

Function Name Purpose

FILETOBLOB() Copies a file into a BLOB column

FILETOCLOB() Copies a file into a CLOB column

LOCOPY() Copies BLOB or CLOB data into another BLOB or CLOB column

LOTOFILE() Copies a BLOB or CLOB into a file

For detailed information and the syntax of smart-large-object functions, see the

Expression segment in the IBM Informix Guide to SQL: Syntax.

You can use any of the functions that Table 4-1 shows in SELECT, UPDATE, and

INSERT statements. For examples of how to use the preceding functions in INSERT

and UPDATE statements, see Chapter 6, “Modifying Data,” on page 6-1.

Suppose you create the inmate and fbi_list tables, as Figure 4-55 shows.

department marketing 5

department engineering 7

department publications 4

department accounting 3

Figure 4-52. Query Result

SELECT department, CARDINALITY(direct_reports) FROM manager

 WHERE CARDINALITY(direct_reports) < 6

 GROUP BY department;

Figure 4-53. Query

department accounting 3

department marketing 5

department publications 4

Figure 4-54. Query Result

4-14 IBM Informix Guide to SQL: Tutorial

The following SELECT statement uses the LOTOFILE() function to copy data from

the felony column into the felon_322.txt file that is located on the client computer:

SELECT id_num, LOTOFILE(felony, ’felon_322.txt’, ’client’)

 FROM inmate

 WHERE id = 322;

The first argument for LOTOFILE() specifies the name of the column from which

data is to be exported. The second argument specifies the name of the file into

which data is to be copied. The third argument specifies whether the target file is

located on the client computer (’client’) or server computer (’server’).

The following rules apply for specifying the path of a filename in a function

argument, depending on whether the file resides on the client or server computer:

v If the source file resides on the server computer, you must specify the full

pathname to the file (not the pathname relative to the current working

directory).

v If the source file resides on the client computer, you can specify either the full or

relative pathname to the file.

String-Manipulation Functions (IDS)

String-manipulation functions accept arguments of type CHAR, NCHAR,

VARCHAR, NVARCHAR, or LVARCHAR. You can use a string-manipulation

function anywhere you use an expression.

The following functions convert between upper and lowercase letters in a character

string:

v LOWER

v UPPER

v INITCAP

The following functions manipulate character strings in various ways:

v REPLACE

v SUBSTR

v SUBSTRING

v LPAD

v RPAD

You cannot overload any of the string-manipulation functions to handle extended

data types.

CREATE TABLE inmate

(

 id_num INT,

 picture BLOB,

 felony CLOB

);

CREATE TABLE fbi_list

(

 id INTEGER,

 mugshot BLOB

) PUT mugshot IN (sbspace1);

Figure 4-55.

Chapter 4. Using Functions in SELECT Statements 4-15

Using the LOWER Function

Use the LOWER function to replace every uppercase letter in a character string

with a lowercase letter. The LOWER function accepts an argument of a character

data type and returns a value of the same data type as the argument you specify.

Figure 4-56 uses the LOWER function to convert any uppercase letters in a

character string to lowercase letters.

Using the UPPER Function

Use the UPPER function to replace every lowercase letter in a character string with

an uppercase letter. The UPPER function accepts an argument of a character data

type and returns a value of the same data type as the argument you specify.

Figure 4-58 uses the UPPER function to convert any lowercase letters in a character

string to uppercase letters.

Using the INITCAP Function

Use the INITCAP function to replace the first letter of every word in a character

string with an uppercase letter. The INITCAP function assumes a new word

whenever the function encounters a letter that is preceded by any character other

than a letter. The INITCAP function accepts an argument of a character data type

and returns a value of the same data type as the argument you specify.

Figure 4-60 uses the INITCAP function to convert the first letter of every word in a

character string to an uppercase letter.

SELECT manu_code, LOWER(manu_code)

 FROM items

 WHERE order_num = 1018

Figure 4-56. Query

manu_code (expression)

PRC prc

KAR kar

PRC prc

SMT smt

HRO hro

Figure 4-57. Query Result

SELECT call_code, UPPER(code_descr) FROM call_type

Figure 4-58. Query

call_code (expression)

B BILLING ERROR

D DAMAGED GOODS

I INCORRECT MERCHANDISE SENT

L LATE SHIPMENT

O OTHER

Figure 4-59. Query Result

4-16 IBM Informix Guide to SQL: Tutorial

Using the REPLACE Function

Use the REPLACE function to replace a certain set of characters in a character

string with other characters.

In Figure 4-62, the REPLACE function replaces the unit column value each with

item for every row that the query returns. The first argument of the REPLACE

function is the expression to be evaluated. The second argument specifies the

characters that you want to replace. The third argument specifies a new character

string to replace the characters removed.

Using the SUBSTRING and SUBSTR Functions

You can use the SUBSTRING and SUBSTR functions to return a portion of a

character string. You specify the start position and length (optional) to determine

which portion of the character string the function returns.

SELECT INITCAP(description) FROM stock

 WHERE manu_code = "ANZ";

Figure 4-60. Query

(expression)

Tennis Racquet

Tennis Ball

Volleyball

Volleyball Net

Helmet

Golf Shoes

3 Golf Balls

Running Shoes

Watch

Kick Board

Swim Cap

Figure 4-61. Query Result

SELECT stock_num, REPLACE(unit,"each", "item") cost_per, unit_price

 FROM stock

 WHERE manu_code = "HRO";

Figure 4-62. Query

stock_num cost_per unit_price

1 case $250.00

2 case $126.00

4 case $480.00

7 case $600.00

110 case $260.00

205 case $312.00

301 item $42.50

302 item $4.50

304 box $280.00

305 case $48.00

309 case $40.00

312 box $72.00

Figure 4-63. Query Result

Chapter 4. Using Functions in SELECT Statements 4-17

Using the SUBSTRING Function

You can use the SUBSTRING function to return some portion of a character

string. You specify the start position and length (optional) to determine which

portion of the character string the function returns. You can specify a positive or

negative number for the start position. A start position of 1 specifies that the

SUBSTRING function begins from the first position in the string. When the start

position is zero (0) or a negative number, the SUBSTRING function counts

backward from the beginning of the string.

Figure 4-64 shows an example of the SUBSTRING function, which returns the first

four characters for any sname column values that the query returns. In this

example, the SUBSTRING function starts at the beginning of the string and

returns four characters counting forward from the start position.

In Figure 4-66, the SUBSTRING function specifies a start position of 6 but does

not specify the length. The function returns a character string that extends from the

sixth position to the end of the string.

In Figure 4-68, the SUBSTRING function returns only the first character for any

sname column value that the query returns. For the SUBSTRING function, a start

position of -2 counts backward three positions (0, -1, -2) from the start position

of the string (for a start position of 0, the function counts backward one position

from the beginning of the string).

SELECT sname, SUBSTRING(sname FROM 1 FOR 4) FROM state

 WHERE code = "AZ";

Figure 4-64. Query

sname (expression)

Arizona Ariz

Figure 4-65. Query Result

SELECT sname, SUBSTRING(sname FROM 6) FROM state

 WHERE code = "WV";

Figure 4-66. Query

sname (expression)

West Virginia Virginia

Figure 4-67. Query Result

SELECT sname, SUBSTRING(sname FROM -2 FOR 4) FROM state

 WHERE code = "AZ";

Figure 4-68. Query

4-18 IBM Informix Guide to SQL: Tutorial

Using the SUBSTR Function

The SUBSTR function serves the same purpose as the SUBSTRING function, but

the syntax of the two functions differs.

To return a portion of a character string, specify the start position and length

(optional) to determine which portion of the character string the SUBSTR function

returns. The start position that you specify for the SUBSTR function can be a

positive or a negative number. However, the SUBSTR function treats a negative

number in the start position differently than does the SUBSTRING function. When

the start position is a negative number, the SUBSTR function counts backward

from the end of the character string, which depends on the length of the string, not

the character length of a word or visible characters that the string contains. The

SUBSTR function recognizes zero (0) or 1 in the start position as the first position

in the string.

Figure 4-70 shows an example of the SUBSTR function that includes a negative

number for the start position. Given a start position of -15, the SUBSTR function

counts backward 15 positions from the end of the string to find the start position

and then returns the next five characters.

To use a negative number for the start position, you need to know the length of

the value that is evaluated. The sname column is defined as CHAR(15), so a

SUBSTR function that accepts an argument of type sname can use a start position

of 0, 1, or -15 for the function to return a character string that begins from the first

position in the string.

Figure 4-72 returns the same result as Figure 4-70.

Using the LPAD Function

Use the LPAD function to return a copy of a string that has been left padded with

a sequence of characters that are repeated as many times as necessary or truncated,

sname (expression)

Arizona A

Figure 4-69. Query Result

SELECT sname, SUBSTR(sname, -15, 5) FROM state

 WHERE code = "CA";

Figure 4-70. Query

sname (expression)

California Calif

Figure 4-71. Query Result

SELECT sname, SUBSTR(sname, 1, 5) FROM state

 WHERE code = "CA";

Figure 4-72. Query

Chapter 4. Using Functions in SELECT Statements 4-19

depending on the specified length of the padded portion of the string. Specify the

source string, the length of the string to be returned, and the character string to

serve as padding.

The data type of the source string and the character string that serves as padding

can be any data type that converts to VARCHAR or NVARCHAR.

Figure 4-73 shows an example of the LPAD function with a specified length of 21

bytes. Because the source string has a length of 15 bytes (sname is defined as

CHAR(15)), the LPAD function pads the first six positions to the left of the source

string.

Using the RPAD Function

Use the RPAD function to return a copy of a string that has been right padded

with a sequence of characters that are repeated as many times as necessary or

truncated, depending on the specified length of the padded portion of the string.

Specify the source string, the length of the string to be returned, and the character

string to serve as padding.

The data type of the source string and the character string that serves as padding

can be any data type that converts to VARCHAR or NVARCHAR.

Figure 4-75 shows an example of the RPAD function with a specified length of 21

bytes. Because the source string has a length of 15 bytes (sname is defined as

CHAR(15)), the RPAD function pads the first six positions to the right of the

source string.

In addition to these functions, the LTRIM and RTRIM functions can return a value

that drops specified leading or trailing padding characters from their string

argument, and the ASCII function can return the numeric value of the codepoint

SELECT sname, LPAD(sname, 21, "-")

 FROM state

 WHERE code = "CA" OR code = "AZ";

Figure 4-73. Query

sname (expression)

California ------California

Arizona ------Arizona

Figure 4-74. Query Result

SELECT sname, RPAD(sname, 21, "-")

 FROM state

 WHERE code = "WV" OR code = "AZ";

Figure 4-75. Query

sname (expression)

West Virginia West Virginia ------

Arizona Arizona ------

Figure 4-76. Query Result

4-20 IBM Informix Guide to SQL: Tutorial

within the ASCII character set of the first character in its string argument. These

built-in functions for operations on string values are described in theIBM Informix

Guide to SQL: Syntax.

Other Functions

You can also use the LENGTH, USER, CURRENT, SYSDATE, and TODAY

functions anywhere in an SQL expression that you would use a constant. In

addition, you can include the DBSERVERNAME function in a SELECT statement

to display the name of the database server where the current database resides.

You can use these functions to select an expression that consists entirely of constant

values or an expression that includes column data. In the first instance, the result

is the same for all rows of output.

In addition, you can use the HEX function to return the hexadecimal encoding of

an expression, the ROUND function to return the rounded value of an expression,

and the TRUNC function to return the truncated value of an expression. For more

information on the preceding functions, see the IBM Informix Guide to SQL: Syntax.

Using the LENGTH Function

In Figure 4-77, the LENGTH function calculates the number of bytes in the

combined fname and lname columns for each row where the length of company is

greater than 15.

Although the LENGTH function might not be useful when you work with

DB–Access, it can be important to determine the string length for programs and

reports. The LENGTH function returns the clipped length of a CHARACTER or

VARCHAR string and the full number of bytes in a TEXT or BYTE string.

Dynamic Server also supports the CHAR_LENGTH function, which returns the

number of logical characters in its string argument, rather than the number of

bytes. This function is useful in locales where a single logical character might

SELECT customer_num,

 LENGTH (fname) + LENGTH (lname) namelength

 FROM customer

 WHERE LENGTH (company) > 15;

Figure 4-77. Query

customer_num namelength

 101 11

 105 13

 107 11

 112 14

 115 11

 118 10

 119 10

 120 10

 122 12

 124 11

 125 10

 126 12

 127 10

 128 11

Figure 4-78. Query Result

Chapter 4. Using Functions in SELECT Statements 4-21

require more than a single byte of storage. For more information about the

CHAR_LENGTH function, see the IBM Informix Guide to SQL: Syntax and the IBM

Informix GLS User’s Guide.

Using the USER Function

Use the USER function when you want to define a restricted view of a table that

contains only rows that include your user id. For information about how to create

views, see the IBM Informix Database Design and Implementation Guide and the

GRANT and CREATE VIEW statements in the IBM Informix Guide to SQL: Syntax.

Figure 4-79 returns the user name (login account name) of the user who executes

the query. It is repeated once for each row in the table.

If the user name of the current user is richc, Figure 4-79 retrieves only those rows

in the cust_calls table where user_id = richc, as Figure 4-80 shows.

Using the TODAY Function

The TODAY function returns the current system date. If Figure 4-81 is issued when

the current system date is July 10, 1998, it returns this one row.

SELECT * FROM cust_calls

 WHERE user_id = USER;

Figure 4-79. Query

customer_num 110

call_dtime 1998-07-07 10:24

user_id richc

call_code L

call_descr Order placed one month ago (6/7) not received.

res_dtime 1998-07-07 10:30

res_descr Checked with shipping (Ed Smith). Order sent yesterday-we

 were waiting for goods from ANZ. Next time will call with

 delay if necessary

customer_num 119

call_dtime 1998-07-01 15:00

user_id richc

call_code B

call_descr Bill does not reflect credit from previous order

res_dtime 1998-07-02 08:21

res_descr Spoke with Jane Akant in Finance. She found the error and is

 sending new bill to customer

Figure 4-80. Query Result

SELECT * FROM orders WHERE order_date = TODAY;

Figure 4-81. Query

4-22 IBM Informix Guide to SQL: Tutorial

Using the DBSERVERNAME and SITENAME Functions

You can include the function DBSERVERNAME (or its synonym, SITENAME) in a

SELECT statement to find the name of the database server. You can query the

DBSERVERNAME for any table that has rows, including system catalog tables.

In Figure 4-83, you assign the label server to the DBSERVERNAME expression and

also select the tabid column from the systables system catalog table. This table

describes database tables, and tabid is the table identifier.

The WHERE clause restricts the numbers of rows displayed. Otherwise, the

database server name would be displayed once for each row of the systables table.

Using the HEX Function

In Figure 4-85, the HEX function returns the hexadecimal format of two columns in

the customer table, as Figure 4-86 shows.

order_num 1018

order_date 07/10/1998

customer_num 121

ship_instruct SW corner of Biltmore Mall

backlog n

po_num S22942

ship_date 07/13/1998

ship_weight 70.50

ship_charge $20.00

paid_date 08/06/1998

Figure 4-82. Query Result

SELECT DBSERVERNAME server, tabid

 FROM systables

 WHERE tabid <= 4;

Figure 4-83. Query

 server tabid

montague 1

montague 2

montague 3

montague 4

Figure 4-84. Query Result

SELECT HEX (customer_num) hexnum, HEX (zipcode) hexzip

 FROM customer;

Figure 4-85. Query

Chapter 4. Using Functions in SELECT Statements 4-23

Using the DBINFO Function

You can use the DBINFO function in a SELECT statement to find any of the

following information:

v The name of a dbspace corresponding to a tblspace number or expression

v The last SERIAL8 value inserted in a table

v The number of rows processed by selects, inserts, deletes, updates, and execute

routine statements

v The session ID of the current session

v The name of the host computer on which the database server runs

v The type of operating system and the word length of the host computer

v The local time zone and the current date and time in Coordinated Universal

Time (UTC) format

v The exact version of the database server to which a client application is

connected

You can use the DBINFO function anywhere within SQL statements and within

SPL routines.

Figure 4-87 shows how you might use the DBINFO function to find out the name

of the host computer on which the database server runs.

Without the FIRST 1 clause to restrict the values in the tabid, the host name of the

computer on which the database server runs would be repeated for each row of

the systables table. Figure 4-89 shows how you might use the DBINFO function to

find out the complete version number and the type of the current database server.

hexnum hexzip

0x00000065 0x00016F86

0x00000066 0x00016FA5

0x00000067 0x0001705F

0x00000068 0x00016F4A

0x00000069 0x00016F46

0x0000006A 0x00016F6F ...

Figure 4-86. Query Result

SELECT FIRST 1 DBINFO(’dbhostname’) FROM systables;

Figure 4-87. Query

(constant)

lyceum

Figure 4-88. Query Result

SELECT FIRST 1 DBINFO(’version’,’full’) FROM systables;

Figure 4-89. Query

4-24 IBM Informix Guide to SQL: Tutorial

For more information about how to use the DBINFO function to find information

about your current database server, database session, or database, see the IBM

Informix Guide to SQL: Syntax.

Using the DECODE Function

You can use the DECODE function to convert an expression of one value to

another value. The DECODE function has the following form:

DECODE(test, a, a_value, b, b_value, ..., n, n_value, exp_m)

DECODE returns a_value when a equals test, and returns b_value when b equals

test, and, in general, returns n_value when n equals test.

If several expressions match test, DECODE returns n_value for the first expression

found. If no expression matches test, DECODE returns exp_m; if no expression

matches test and there is no exp_m, DECODE returns NULL.

The DECODE function does not support arguments of type TEXT or BYTE.

Suppose an employee table exists that includes emp_id and evaluation columns.

Suppose also that execution of Figure 4-90 on the employee table returns the rows

that Figure 4-91 shows.

In some cases, you might want to convert a set of values. For example, suppose

you want to convert the descriptive values of the evaluation column in the

preceding example to corresponding numeric values. Figure 4-92 shows how you

might use the DECODE function to convert values from the evaluation column to

numeric values for each row in the employee table.

SELECT emp_id, evaluation FROM employee;

Figure 4-90. Query

emp_id evaluation

012233 great

012344 poor

012677 NULL

012288 good

012555 very good

Figure 4-91. Query Result

SELECT emp_id, DECODE(evaluation, "poor", 0, "fair", 25, "good",

50, "very good", 75, "great", 100, -1) AS evaluation

 FROM employee;

Figure 4-92. Query

Chapter 4. Using Functions in SELECT Statements 4-25

You can specify any data type for the arguments of the DECODE function

provided that the arguments meet the following requirements:

v The arguments test, a,b, ..., n all have the same data type or evaluate to a

common compatible data type.

v The arguments a_value, b_value, ..., n_value all have the same data type or

evaluate to a common compatible data type.

Using the NVL Function (IDS)

You can use the NVL function to convert an expression that evaluates to NULL to

a value that you specify. The NVL function accepts two arguments: the first

argument takes the name of the expression to be evaluated; the second argument

specifies the value that the function returns when the first argument evaluates to

NULL. If the first argument does not evaluate to NULL, the function returns the

value of the first argument. Suppose a student table exists that includes name and

address columns. Suppose also that execution of Figure 4-94 on the student table

returns the rows that Figure 4-95 shows.

Figure 4-96 includes the NVL function, which returns a new value for each row in

the table where the address column contains a NULL value.

emp_id evaluation

012233 100

012344 0

012677 -1

012288 50

012555 75 ...

Figure 4-93. Query Result

SELECT name, address FROM student;

Figure 4-94. Query

name address

John Smith 333 Vista Drive

Lauren Collier 1129 Greenridge Street

Fred Frith NULL

Susan Jordan NULL

Figure 4-95. Query Result

SELECT name, NVL(address, "address is unknown") AS address

 FROM student;

Figure 4-96. Query

4-26 IBM Informix Guide to SQL: Tutorial

You can specify any data type for the arguments of the NVL function provided

that the two arguments evaluate to a common compatible data type.

If both arguments of the NVL function evaluate to NULL, the function returns

NULL.

Dynamic server also supports the NULLIF function, which resembles the NVL

function, but has different semantics. NULLIFreturns NULL if its two arguments

are equal, or returns its first argument if its arguments are not equal. For more

information about the NULLIF function, see the IBM Informix Guide to SQL: Syntax.

Using SPL Routines in SELECT Statements

Previous examples in this chapter show SELECT statement expressions that consist

of column names, operators, and SQL functions. This section shows expressions

that contain an SPL routine call.

SPL routines contain special Stored Procedure Language (SPL) statements as well

as SQL statements. For more information on SPL routines, see Chapter 11.

Dynamic Server

Dynamic Server allows you to write external routines in C and in Java™. For more

information, see IBM Informix User-Defined Routines and Data Types Developer’s

Guide.

End of Dynamic Server

 When you include an SPL routine expression in a projection list, the SPL routine

must be one that returns a single value (one column of one row). For example, the

following statement is valid only if test_func() returns a single value:

SELECT col_a, test_func(col_b) FROM tab1

 WHERE col_c = "Davis";

SPL routines that return more than a single value are not supported in the

Projection clause of SELECT statements. In the preceding example, if test_func()

returns more than one value, the database server returns an error message.

SPL routines provide a way to extend the range of functions available by allowing

you to perform a subquery on each row you select.

For example, suppose you want a listing of the customer number, the customer’s

last name, and the number of orders the customer has made. Figure 4-98 shows

one way to retrieve this information. The customer table has customer_num and

lname columns but no record of the number of orders each customer has made.

You could write a get_orders routine, which queries the orders table for each

name address

John Smith 333 Vista Drive

Lauren Collier 1129 Greenridge Street

Fred Frith address is unknown

Susan Jordan address is unknown

Figure 4-97. Query Result

Chapter 4. Using Functions in SELECT Statements 4-27

customer_num and returns the number of corresponding orders (labeled n_orders).

Figure 4-99 shows the output from this SPL routine.

Use SPL routines to encapsulate operations that you frequently perform in your

queries. For example, the condition in Figure 4-100 contains a routine, conv_price,

that converts the unit price of a stock item to a different currency and adds any

import tariffs.

Using Data Encryption Functions (IDS)

You can use the SET ENCRYPTION PASSWORD statement with built-in SQL

encryption functions that use Advanced Encryption Standard (AES) and Triple DES

(3DES) encryption to secure your sensitive data. When you use encryption, only

those users who have the correct password will be able to read, copy, or modify

the data.

Use the SET ENCRYPTION PASSWORD statement with the following built-in

encryption and decryption functions:

v ENCRYPT_AES

ENCRYPT_AES(data-string-expression

[, password-string-expression [, hint-string-expression]])

v ENCRYPT_TDES

ENCRYPT_TDES (data-string-expression

 [, password-string-expression [, hint-string-expression]])

v DECRYPT_CHAR

DECRYPT_CHAR(EncryptedData [, PasswordOrPhrase])

v DECRYPT_BINARY

DECRYPT_BINARY(EncryptedData [, PasswordOrPhrase])

SELECT customer_num, lname, get_orders(customer_num) n_orders

 FROM customer;

Figure 4-98. Query

customer_num lname n_orders

 101 Pauli 1

 102 Sadler 9

 103 Currie 9

 104 Higgins 4

 ...
 123 Hanlon 1

 124 Putnum 1

 125 Henry 0

 126 Neelie 1

 127 Satifer 1

 128 Lessor 0

Figure 4-99. Query Result

SELECT stock_num, manu_code, description FROM stock

 WHERE conv_price(unit_price, ex_rate = 1.50,

 tariff = 50.00) < 1000;

Figure 4-100. Query

4-28 IBM Informix Guide to SQL: Tutorial

v GETHINT

GETHINT(EncryptedData)

If you have used the SET ENCRYPTION PASSWORD statement to specify a

default password, then the database server applies that password in subsequent

calls to encryption and decryption functions that you invoke in the same session.

Use ENCRYPT_AES and ENCRYPT_TDES to define encrypted data and use

DECRYPT_CHAR and DECRYPT_BINARY to query encrypted data. Use

GETHINT to display the password hint string, if set, on the server.

You can use these SQL built-in functions to implement column-level or cell-level

encryption.

v Use column-level encryption to encrypt all values in a given column with the

same password.

v Use cell-level encryption to encrypt data within the column with different

passwords.

Tip: If you intend to select encrypted data from a large table, specify an

unencrypted column on which to select the rows. You can create indexes or

foreign-key constraints on columns that contain encrypted data, but to do so is an

inefficient use of resources, because such indexes and foreign-key constraints are

not used by the query optimizer.

The following example uses column-level encryption to secure credit card data.

 To use column-level data encryption to secure credit card data:

1. Create the table.

create table customer (id char(30), creditcard lvarchar(67));

2. Insert the encryption data.

a. Set session password.

 SET ENCRYPTION PASSWORD "credit card number is encrypted";

b. Encrypt data.

 INSERT INTO customer VALUES

("Alice", encrypt_aes("1234567890123456"));

 INSERT INTO customer VALUES

("Bob", encrypt_aes("2345678901234567"));

3. Query encryption data with decryption function:

 SET ENCRYPTION PASSWORD "credit card number is encrypted";

 SELECT id FROM customer

 WHERE DECRYPT_CHAR(creditcard) = "2345678901234567";

Warning:: Encrypted data values occupy more storage space than the

corresponding unencrypted data. A column whose width is sufficient to

store plain text might need to be increased before it can support

column-level encryption or cell-level encryption. If you attempt to insert

an encrypted value into a column whose declared width is shorter than

the encrypted string, the column stores a truncated value that cannot be

decrypted.

For more information on encryption security, see IBM Informix Administrator’s

Guide.

Chapter 4. Using Functions in SELECT Statements 4-29

For more information on the syntax and storage requirements of built-in

encryption and decryption functions, see IBM Informix Guide to SQL: Syntax.

Summary

This chapter introduced sample syntax and results for functions in basic SELECT

statements to query a relational database and to manipulate the returned data.

“Using Functions in SELECT Statements” on page 4-2 shows how to perform the

following actions:

v Use the aggregate functions in the Projection clause to calculate and retrieve

specific data.

v Include the time functions DATE, DAY, MDY, MONTH, WEEKDAY, YEAR,

CURRENT, and EXTEND plus the TODAY, LENGTH, and USER functions in

your SELECT statements.

v Use conversion functions in the SELECT clause to convert between date and

character values.

v Use string-manipulation functions in the SELECT clause to convert between

upper and lower case letters or to manipulate character strings in various ways.

“Using SPL Routines in SELECT Statements” on page 4-27 shows how to include

SPL routines in your SELECT statements.

“Using Data Encryption Functions (IDS)” on page 4-28 shows how the use of the

SET ENCRYPTION statement and built-in encryption and decryption functions can

prevent users who cannot provide a password from viewing or modifying

sensitive data.

4-30 IBM Informix Guide to SQL: Tutorial

Chapter 5. Composing Advanced SELECT Statements

In This Chapter . 5-1

Using the GROUP BY and HAVING Clauses . 5-2

Using the GROUP BY Clause . 5-2

Using the HAVING Clause . 5-5

Creating Advanced Joins . 5-7

Self-Joins . 5-7

Outer Joins . 5-10

Informix Extension to Outer Join Syntax . 5-11

ANSI Join Syntax . 5-11

Left Outer Join . 5-12

Right Outer Join (IDS) . 5-13

Simple Join . 5-14

Simple Outer Join on Two Tables . 5-14

Outer Join for a Simple Join to a Third Table . 5-15

Outer Join of Two Tables to a Third Table . 5-16

Joins That Combine Outer Joins . 5-17

Subqueries in SELECT Statements . 5-17

Correlated Subqueries . 5-18

Subqueries in SELECT Statements . 5-18

Subqueries in a Projection Clause . 5-19

Subqueries in the FROM Clause . 5-19

Subqueries in WHERE Clauses . 5-20

Using ALL . 5-21

Using ANY . 5-21

Single-Valued Subqueries . 5-22

Correlated Subqueries . 5-23

Using EXISTS . 5-24

Subqueries in DELETE and UPDATE Statements . 5-27

Handling Collections in SELECT Statements (IDS) . 5-27

Collection Subqueries . 5-28

Omitting the ITEM Keyword in a Collection Subquery 5-28

Specifying the ITEM Keyword in a Collection Subquery 5-28

Collection Subqueries in the FROM Clause . 5-29

Collection-Derived Tables . 5-30

ISO-Compliant Syntax for Collection Derived Tables . 5-31

Set Operations . 5-32

Union . 5-32

Using ORDER BY with UNION . 5-34

Using UNION ALL . 5-34

Using Different Column Names . 5-35

Using UNION with Multiple Tables . 5-36

Using a Literal in the Projection Clause . 5-36

Using a FIRST Clause . 5-37

Intersection . 5-38

Difference . 5-39

Summary . 5-40

In This Chapter

This chapter increases the scope of what you can do with the SELECT statement

and enables you to perform more complex database queries and data

manipulation. Chapter 2, “Composing SELECT Statements,” on page 2-1, focused

on five of the clauses in the SELECT statement syntax. This chapter adds the

GROUP BY clause and the HAVING clause. You can use the GROUP BY clause

© Copyright IBM Corp. 1996, 2008 5-1

||

with aggregate functions to organize rows returned by the FROM clause. You can

include a HAVING clause to place conditions on the values that the GROUP BY

clause returns.

This chapter also extends the earlier discussion of joins. It illustrates self-joins,

which enable you to join a table to itself, and four kinds of outer joins, in which

you apply the keyword OUTER to treat two or more joined tables unequally. It

also introduces correlated and uncorrelated subqueries and their operational

keywords, shows how to combine queries with the UNION operator, and defines

the set operations known as union, intersection, and difference.

Examples in this chapter show how to use some or all of the SELECT statement

clauses in your queries. The clauses must appear in the following order:

1. Projection

2. FROM

3. WHERE

4. GROUP BY

5. HAVING

6. ORDER BY

7. INTO TEMP

For an example of a SELECT statement that uses all these clauses in the correct

order, see Figure 5-15 on page 5-7.

An additional SELECT statement clause, INTO, which you can use to specify

program and host variables in SQL APIs, is described in Chapter 8, “Programming

with SQL,” on page 8-1, as well as in the publications that come with the product.

This chapter also describes nested SELECT statements, in which subqueries are

specified within the Projection, FROM, or WHERE clauses of the main query. Other

sections show how SELECT statements can define and manipulate collections, and

how to perform set operations on query results.

Using the GROUP BY and HAVING Clauses

The optional GROUP BY and HAVING clauses add functionality to your SELECT

statement. You can include one or both in a basic SELECT statement to increase

your ability to manipulate aggregates.

The GROUP BY clause combines similar rows, producing a single result row for

each group of rows that have the same values, for each column listed in the

Projection clause. The HAVING clause sets conditions on those groups after you

form them. You can use a GROUP BY clause without a HAVING clause, or a

HAVING clause without a GROUP BY clause.

Using the GROUP BY Clause

The GROUP BY clause divides a table into sets. This clause is most often combined

with aggregate functions that produce summary values for each of those sets.

Some examples in Chapter 2 show the use of aggregate functions applied to a

whole table. This chapter illustrates aggregate functions applied to groups of rows.

Using the GROUP BY clause without aggregates is much like using the DISTINCT

(or UNIQUE) keyword in the SELECT clause. Figure 5-1 is described in “Selecting

5-2 IBM Informix Guide to SQL: Tutorial

Specific Columns” on page 2-11.

You could also write the statement as Figure 5-2 shows.

Figure 5-1 and Figure 5-2 return the rows that Figure 5-3 shows.

The GROUP BY clause collects the rows into sets so that each row in each set has

the same customer numbers. With no other columns selected, the result is a list of

the unique customer_num values.

The power of the GROUP BY clause is more apparent when you use it with

aggregate functions.

Figure 5-4 retrieves the number of items and the total price of all items for each

order.

The GROUP BY clause causes the rows of the items table to be collected into

groups, each group composed of rows that have identical order_num values (that

is, the items of each order are grouped together). After the database server forms

the groups, the aggregate functions COUNT and SUM are applied within each

group.

Figure 5-4 returns one row for each group. It uses labels to give names to the

results of the COUNT and SUM expressions, as Figure 5-5 shows.

SELECT DISTINCT customer_num FROM orders;

Figure 5-1. Query

SELECT customer_num FROM orders

 GROUP BY customer_num;

Figure 5-2. Query

customer_num

 101

 104

 106

 110

 ...
 124

 126

 127

Figure 5-3. Query Result

SELECT order_num, COUNT (*) number, SUM (total_price) price

 FROM items

 GROUP BY order_num;

Figure 5-4. Query

Chapter 5. Composing Advanced SELECT Statements 5-3

Figure 5-5 collects the rows of the items table into groups that have identical order

numbers and computes the COUNT of rows in each group and the SUM of the

prices.

You cannot include a TEXT, BYTE, CLOB, or BLOB column in a GROUP BY clause.

To group, you must be able to sort, and no natural sort order exists for these data

types.

Unlike the ORDER BY clause, the GROUP BY clause does not order data. Include

an ORDER BY clause after your GROUP BY clause if you want to sort data in a

particular order or sort on an aggregate in the projection list.

Figure 5-6 is the same as Figure 5-4 but includes an ORDER BY clause to sort the

retrieved rows in ascending order of price, as Figure 5-7 shows.

The section “Selecting Specific Columns” on page 2-11 describes how to use an

integer in an ORDER BY clause to indicate the position of a column in the

 order_num number price

 1001 1 $250.00

 1002 2 $1200.00

 1003 3 $959.00

 1004 4 $1416.00

 ...
 1021 4 $1614.00

 1022 3 $232.00

 1023 6 $824.00

Figure 5-5. Query Result

SELECT order_num, COUNT(*) number, SUM (total_price) price

 FROM items

 GROUP BY order_num

 ORDER BY price;

Figure 5-6. Query

 order_num number price

 1010 2 $84.00

 1011 1 $99.00

 1013 4 $143.80

 1022 3 $232.00

 1001 1 $250.00

 1020 2 $438.00

 1006 5 $448.00

 ...
 1002 2 $1200.00

 1004 4 $1416.00

 1014 2 $1440.00

 1019 1 $1499.97

 1021 4 $1614.00

 1007 5 $1696.00

Figure 5-7. Query Result

5-4 IBM Informix Guide to SQL: Tutorial

projection list. You can also use an integer in a GROUP BY clause to indicate the

position of column names or display labels in the GROUP BY list.

Figure 5-8 returns the same rows as Figure 5-6 shows.

When you build a query, all nonaggregate columns that are in the projection list in

the Projection clause must also be included in the GROUP BY clause. A SELECT

statement with a GROUP BY clause must return only one row per group. Columns

that are listed after GROUP BY are certain to reflect only one distinct value within

a group, and that value can be returned. However, a column not listed after

GROUP BY might contain different values in the rows that are contained in the

group.

Figure 5-9 shows how to use the GROUP BY clause in a SELECT statement that

joins tables.

Figure 5-9 joins the orders and items tables, assigns table aliases to them, and

returns the rows that Figure 5-10 shows.

Using the HAVING Clause

To complement a GROUP BY clause, use a HAVING clause to apply one or more

qualifying conditions to groups after they are formed. The effect of the HAVING

clause on groups is similar to the way the WHERE clause qualifies individual

rows. One advantage of using a HAVING clause is that you can include aggregates

in the search condition, whereas you cannot include aggregates in the search

condition of a WHERE clause.

Each HAVING condition compares one column or aggregate expression of the

group with another aggregate expression of the group or with a constant. You can

use HAVING to place conditions on both column values and aggregate values in

the group list.

Figure 5-11 returns the average total price per item on all orders that have more

than two items. The HAVING clause tests each group as it is formed and selects

SELECT order_num, COUNT(*) number, SUM (total_price) price

 FROM items

 GROUP BY 1

 ORDER BY 3;

Figure 5-8. Query

SELECT o.order_num, SUM (i.total_price)

 FROM orders o, items i

 WHERE o.order_date > ’01/01/98’

 AND o.customer_num = 110

 AND o.order_num = i.order_num

 GROUP BY o.order_num;

Figure 5-9. Query

 order_num (sum)

 1008 $940.00

 1015 $450.00

Figure 5-10. Query Result

Chapter 5. Composing Advanced SELECT Statements 5-5

those that are composed of more than two rows.

If you use a HAVING clause without a GROUP BY clause, the HAVING condition

applies to all rows that satisfy the search condition. In other words, all rows that

satisfy the search condition make up a single group.

Figure 5-13, a modified version of Figure 5-11, returns just one row, the average of

all total_price values in the table, as Figure 5-14 shows.

If Figure 5-13, like Figure 5-11, had included the nonaggregate column order_ num

in the Projection clause, you would have to include a GROUP BY clause with that

column in the group list. In addition, if the condition in the HAVING clause was

not satisfied, the output would show the column heading and a message would

indicate that no rows were found.

Figure 5-15 contains all the SELECT statement clauses that you can use in the

Informix version of interactive SQL (the INTO clause that names host variables is

available only in an SQL API).

SELECT order_num, COUNT(*) number, AVG (total_price) average

 FROM items

 GROUP BY order_num

 HAVING COUNT(*) > 2;

Figure 5-11. Query

 order_num number average

 1003 3 $319.67

 1004 4 $354.00

 1005 4 $140.50

 1006 5 $89.60

 1007 5 $339.20

 1013 4 $35.95

 1016 4 $163.50

 1017 3 $194.67

 1018 5 $226.20

 1021 4 $403.50

 1022 3 $77.33

 1023 6 $137.33

Figure 5-12. Query Result

SELECT AVG (total_price) average

 FROM items

 HAVING count(*) > 2;

Figure 5-13. Query

 average

 $270.97

Figure 5-14. Query Result

5-6 IBM Informix Guide to SQL: Tutorial

Figure 5-15 joins the orders and items tables; employs display labels, table aliases,

and integers that are used as column indicators; groups and orders the data; and

puts the results in a temporary table, as Figure 5-16 shows.

Creating Advanced Joins

The section “Creating a Join” on page 2-41 shows how to include a WHERE clause

in a SELECT statement to join two or more tables on one or more columns. It

illustrates natural joins and equi-joins.

This chapter discusses how to use two more complex kinds of joins, self-joins and

outer joins. As described for simple joins, you can define aliases for tables and

assign display labels to expressions to shorten your multiple-table queries. You can

also issue a SELECT statement with an ORDER BY clause that sorts data into a

temporary table.

Self-Joins

A join does not always have to involve two different tables. You can join a table to

itself, creating a self-join. Joining a table to itself can be useful when you want to

compare values in a column to other values in the same column.

To create a self-join, list a table twice in the FROM clause, and assign it a different

alias each time. Use the aliases to refer to the table in the Projection and WHERE

clauses as if it were two separate tables. (Aliases in SELECT statements are

discussed in “Using Aliases” on page 2-47 and in the IBM Informix Guide to SQL:

Syntax.)

Just as in joins between tables, you can use arithmetic expressions in self-joins. You

can test for null values, and you can use an ORDER BY clause to sort the values in

a specified column in ascending or descending order.

SELECT o.order_num, SUM (i.total_price) price,

 paid_date - order_date span

 FROM orders o, items i

 WHERE o.order_date > ’01/01/98’

 AND o.customer_num > 110

 AND o.order_num = i.order_num

 GROUP BY 1, 3

 HAVING COUNT (*) < 5

 ORDER BY 3

 INTO TEMP temptab1;

Figure 5-15. Query

 order_num price span

 1017 $584.00

 1016 $654.00

 1012 $1040.00

 1019 $1499.97 26

 1005 $562.00 28

 1021 $1614.00 30

 1022 $232.00 40

 1010 $84.00 66

 1009 $450.00 68

 1020 $438.00 71

Figure 5-16. Query Result

Chapter 5. Composing Advanced SELECT Statements 5-7

Figure 5-17 finds pairs of orders where the ship_weight differs by a factor of five

or more and the ship_date is not null. The query then orders the data by

ship_date.

 Table 5-1. Query Result

order_num ship_weight ship_date order_num ship_weight ship_date

1004 95.80 05/30/1998 1011 10.40 07/03/1998

1004 95.80 05/30/1998 1020 14.00 07/16/1998

1004 95.80 05/30/1998 1022 15.00 07/30/1998

1007 125.90 06/05/1998 1015 20.60 07/16/1998

1007 125.90 06/05/1998 1020 14.00 07/16/1998

If you want to store the results of a self-join into a temporary table, append an

INTO TEMP clause to the SELECT statement and assign display labels to at least

one set of columns to rename them. Otherwise, the duplicate column names cause

an error and the temporary table is not created.

Figure 5-18, which is similar to Figure 5-17, labels all columns selected from the

orders table and puts them in a temporary table called shipping.

If you query with SELECT * from table shipping, you see the rows that Figure 5-19

shows.

SELECT x.order_num, x.ship_weight, x.ship_date,

 y.order_num, y.ship_weight, y.ship_date

 FROM orders x, orders y

 WHERE x.ship_weight >= 5 * y.ship_weight

 AND x.ship_date IS NOT NULL

 AND y.ship_date IS NOT NULL

 ORDER BY x.ship_date;

Figure 5-17. Query

SELECT x.order_num orders1, x.po_num purch1,

 x.ship_date ship1, y.order_num orders2,

 y.po_num purch2, y.ship_date ship2

 FROM orders x, orders y

 WHERE x.ship_weight >= 5 * y.ship_weight

 AND x.ship_date IS NOT NULL

 AND y.ship_date IS NOT NULL

 ORDER BY orders1, orders2

 INTO TEMP shipping;

Figure 5-18. Query

5-8 IBM Informix Guide to SQL: Tutorial

You can join a table to itself more than once. The maximum number of self-joins

depends on the resources available to you.

The self-join in Figure 5-20 creates a list of those items in the stock table that are

supplied by three manufacturers. The self-join includes the last two conditions in

the WHERE clause to eliminate duplicate manufacturer codes in rows that are

retrieved.

If you want to select rows from a payroll table to determine which employees earn

more than their manager, you might construct the self-join as the following

SELECT statement shows:

 orders1 purch1 ship1 orders2 purch2 ship2

 1004 8006 05/30/1998 1011 B77897 07/03/1998

 1004 8006 05/30/1998 1020 W2286 07/16/1998

 1004 8006 05/30/1998 1022 W9925 07/30/1998

 1005 2865 06/09/1998 1011 B77897 07/03/1998

 ...
 1019 Z55709 07/16/1998 1020 W2286 07/16/1998

 1019 Z55709 07/16/1998 1022 W9925 07/30/1998

 1023 KF2961 07/30/1998 1011 B77897 07/03/1998

Figure 5-19. Query Result

SELECT s1.manu_code, s2.manu_code, s3.manu_code,

 s1.stock_num, s1.description

 FROM stock s1, stock s2, stock s3

 WHERE s1.stock_num = s2.stock_num

 AND s2.stock_num = s3.stock_num

 AND s1.manu_code < s2.manu_code

 AND s2.manu_code < s3.manu_code

 ORDER BY stock_num;

Figure 5-20. Query

manu_code manu_code manu_code stock_num description

HRO HSK SMT 1 baseball gloves

ANZ NRG SMT 5 tennis racquet

ANZ HRO HSK 110 helmet

ANZ HRO PRC 110 helmet

ANZ HRO SHM 110 helmet

ANZ HSK PRC 110 helmet

ANZ HSK SHM 110 helmet

ANZ PRC SHM 110 helmet

HRO HSK PRC 110 helmet

HRO HSK SHM 110 helmet

HRO PRC SHM 110 helmet ...
KAR NKL PRC 301 running shoes

KAR NKL SHM 301 running shoes

KAR PRC SHM 301 running shoes

NKL PRC SHM 301 running shoes

Figure 5-21. Query Result

Chapter 5. Composing Advanced SELECT Statements 5-9

SELECT emp.employee_num, emp.gross_pay, emp.level,

 emp.dept_num, mgr.employee_num, mgr.gross_pay,

 mgr.dept_num, mgr.level

 FROM payroll emp, payroll mgr

 WHERE emp.gross_pay > mgr.gross_pay

 AND emp.level < mgr.level

 AND emp.dept_num = mgr.dept_num

 ORDER BY 4;

Figure 5-22 uses a correlated subquery to retrieve and list the 10 highest-priced items

ordered.

Figure 5-22 returns the 10 rows that Figure 5-23 shows.

You can create a similar query to find and list the 10 employees in the company

who have the most seniority.

For more information about correlated subqueries, refer to “Subqueries in SELECT

Statements” on page 5-17.

Outer Joins

This section shows how to create and use outer joins in a SELECT statement.

“Creating a Join” on page 2-41 discusses inner joins. Whereas an inner join treats

two or more joined tables equally, an outer join treats two or more joined tables

asymmetrically. An outer join makes one of the tables dominant (also called the

outer table) over the other subordinate tables (also called inner tables).

In an inner join or in a simple join, the result contains only the combinations of

rows that satisfy the join conditions. Rows that do not satisfy the join conditions

are discarded.

In an outer join, the result contains the combinations of rows that satisfy the join

conditions and the rows from the dominant table that would otherwise be

discarded because no matching row was found in the subordinate table. The rows

SELECT order_num, total_price

 FROM items a

 WHERE 10 >

 (SELECT COUNT (*)

 FROM items b

 WHERE b.total_price < a.total_price)

 ORDER BY total_price;

Figure 5-22. Query

 order_num total_price

 1018 $15.00

 1013 $19.80

 1003 $20.00

 1005 $36.00

 1006 $36.00

 1013 $36.00

 1010 $36.00

 1013 $40.00

 1022 $40.00

 1023 $40.00

Figure 5-23. Query Result

5-10 IBM Informix Guide to SQL: Tutorial

from the dominant table that do not have matching rows in the subordinate table

contain NULL values in the columns selected from the subordinate table.

An outer join allows you to apply join filters to the inner table before the join

condition is applied.

Earlier versions of the database server supported only the Informix extension to

the ANSI-SQL standard syntax for outer joins. This syntax is still supported.

However, the ANSI-SQL standard syntax provides for more flexibility with creating

queries. It is recommended that you use the ANSI-SQL standard syntax to create

new queries. Whichever form of syntax you use, you must use it for all outer joins

in a single query block.

Before you rely on outer joins, determine whether one or more inner joins can

work. You can often use an inner join when you do not need supplemental

information from other tables.

Important: You cannot combine Informix and ANSI outer-join syntax in the same

query block.

For information on the syntax of outer joins, see the IBM Informix Guide to SQL:

Syntax.

Informix Extension to Outer Join Syntax

The Informix extension to outer-join syntax begins an outer join with the OUTER

keyword. When you use the Informix syntax, you must include the join condition

in the WHERE clause. When you use the Informix syntax for an outer join, the

database server supports the following three basic types of outer joins:

v A simple outer join on two tables

v An outer join for a simple join to a third table

v An outer join of two tables to a third table

An outer join must have a Projection clause, a FROM clause, and a WHERE clause.

The join conditions are expressed in a WHERE clause. To transform a simple join

into an outer join, insert the keyword OUTER directly before the name of the

subordinate tables in the FROM clause. As shown later in this section, you can

include the OUTER keyword more than once in your query.

No Informix extension to outer-join syntax is equivalent to the ANSI right outer

join.

ANSI Join Syntax

The following ANSI joins are supported:

v Left outer join

Dynamic Server

v Right outer join

End of Dynamic Server

The ANSI outer-join syntax begins an outer join with the LEFT JOIN, LEFT

OUTER JOIN, RIGHT JOIN, or RIGHT OUTER JOIN keywords. The OUTER

keyword is optional. Queries can specify a join condition and optional join filters

in the ON clause. The WHERE clause specifies a post-join filter. In addition, you

Chapter 5. Composing Advanced SELECT Statements 5-11

can explicitly specify the type of join using the LEFT or right clause. ANSI join

syntax also allows the dominant or subordinate part of an outer join to be the

result set of another join, when you begin the join with a left parenthesis.

If you use ANSI syntax for an outer join, you must use the ANSI syntax for all

outer joins in a single query block.

Tip: The examples in this section use table aliases for brevity. “Using Aliases” on

page 2-47 discusses table aliases.

Left Outer Join

In the syntax of a left outer join, the dominant table of the outer join appears to

the left of the keyword that begins the outer join. A left outer join returns all of the

rows for which the join condition is true and, in addition, returns all other rows

from the dominant table and displays the corresponding values from the

subservient table as NULL.

The following query uses ANSI syntax LEFT OUTER JOIN to achieve the same

results as Figure 5-30 on page 5-14, which uses the Informix outer-join syntax:

In this example, you can use the ON clause to specify the join condition. You can

add an additional filter in the WHERE clause to limit your result set; such a filter

is a post-join filter.

The following query returns only rows in which customers have not made any

calls to customer service. In this query, the database server applies the filter in the

WHERE clause after it performs the outer join on the customer_num column of the

customer and cust_calls tables.

In addition to the previous examples, the following examples show various types

of query constructions that are available with ANSI join syntax:

SELECT *

FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

 ON t1.c1=t3.c1) JOIN (t4 LEFT OUTER JOIN t5 ON t4.c1=t5.c1)

 ON t1.c1=t4.c1;

SELECT *

FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

 ON t1.c1=t3.c1),

 (t4 LEFT OUTER JOIN t5 ON t4.c1=t5.c1)

 WHERE t1.c1 = t4.c1;

SELECT *

FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

 ON t1.c1=t3.c1) LEFT OUTER JOIN (t4 JOIN t5 ON t4.c1=t5.c1)

 ON t1.c1=t4.c1;

SELECT c.customer_num, c.lname, c.company, c.phone,

 u.call_dtime, u.call_descr

 FROM customer c LEFT OUTER JOIN cust_calls u

 ON c.customer_num = u.customer_num;

Figure 5-24. Query

SELECT c.customer_num, c.lname, c.company, c.phone,

 u.call_dtime, u.call_descr

 FROM customer c LEFT OUTER JOIN cust_calls u

 ON c.customer_num = u.customer_num

 WHERE u.customer_num IS NULL;

Figure 5-25. Query

5-12 IBM Informix Guide to SQL: Tutorial

SELECT *

FROM t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

 ON t1.c1=t2.c1;

SELECT *

FROM t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

 ON t1.c1=t3.c1;

SELECT *

FROM (t1 LEFT OUTER JOIN t2 ON t1.c1=t2.c1)

 LEFT OUTER JOIN t3 ON t2.c1=t3.c1;

SELECT *

FROM (t1 LEFT OUTER JOIN t2 ON t1.c1=t2.c1)

 LEFT OUTER JOIN t3 ON t1.c1=t3.c1;

SELECT *

FROM t9, (t1 LEFT JOIN t2 ON t1.c1=t2.c1),

 (t3 LEFT JOIN t4 ON t3.c1=10), t10, t11,

 (t12 LEFT JOIN t14 ON t12.c1=100);

SELECT * FROM

 ((SELECT c1,c2 FROM t3) AS vt3(v31,v32)

 LEFT OUTER JOIN

 ((SELECT c1,c2 FROM t1) AS vt1(vc1,vc2)

 LEFT OUTER JOIN

 (SELECT c1,c2 FROM t2) AS vt2(vc3,vc4)

 ON vt1.vc1 = vt2.vc3)

ON vt3.v31 = vt2.vc3);

The last example above illustrates joins on derived tables. It specifies a left outer

join on a the results of a subquery in the FROM clause of the outer query with the

results of another left outer join on two other subquery results. See the section

“Subqueries in the FROM Clause” on page 5-19 for less complex examples of the

ANSI-compliant syntax for subqueries.

Right Outer Join (IDS)

In the syntax of a right outer join, the dominant table of the outer join appears to

the right of the keyword that begins the outer join. A right outer join returns all of

the rows for which the join condition is true and, in addition, returns all other

rows from the dominant table and displays the corresponding values from the

subservient table as NULL.

Figure 5-26 is an example of a right outer join on the customer and orders tables.

Figure 5-26 returns all rows from the dominant table orders and, as necessary,

displays the corresponding values from the subservient table customer as NULL.

SELECT c.customer_num, c.fname, c.lname, o.order_num,

o.order_date, o.customer_num

FROM customer c RIGHT OUTER JOIN orders o

ON (c.customer_num = o.customer_num);

Figure 5-26. Query

Chapter 5. Composing Advanced SELECT Statements 5-13

Simple Join

Figure 5-28 is an example of a simple join on the customer and cust_calls tables.

Figure 5-28 returns only those rows in which the customer has made a call to

customer service, as Figure 5-29 shows.

Simple Outer Join on Two Tables

Figure 5-30 uses the same Projection clause, tables, and comparison condition as

the preceding example, but this time it creates a simple outer join in Informix

extension syntax.

The addition of the keyword OUTER before the cust_calls table makes it the

subservient table. An outer join causes the query to return information on all

customers, whether or not they have made calls to customer service. All rows from

the dominant customer table are retrieved, and NULL values are assigned to

customer_num fname lname order_num order_date customer_num

 104 Anthony Wiggins 1001 05/30/1998 104

 101 Ludwig Pauli 1002 05/30/1998 101

 104 Anthony Wiggins 1003 05/30/1998 104

 <NULL> <NULL> <NULL> 1004 06/05/1998 106

Figure 5-27. Query Result

SELECT c.customer_num, c.lname, c.company,

 c.phone, u.call_dtime, u.call_descr

 FROM customer c, cust_calls u

 WHERE c.customer_num = u.customer_num;

Figure 5-28. Query

customer_num 106

lname Watson

company Watson & Son

phone 415-389-8789

call_dtime 1998-06-12 08:20

call_descr Order was received, but two of the cans of

 ANZ tennis balls within the case were empty ...
customer_num 116

lname Parmelee

company Olympic City

phone 415-534-8822

call_dtime 1997-12-21 11:24

call_descr Second complaint from this customer! Received

 two cases right-handed outfielder gloves (1 HRO)

 instead of one case lefties.

Figure 5-29. Query Result

SELECT c.customer_num, c.lname, c.company,

 c.phone, u.call_dtime, u.call_descr

 FROM customer c, OUTER cust_calls u

 WHERE c.customer_num = u.customer_num;

Figure 5-30. Query

5-14 IBM Informix Guide to SQL: Tutorial

columns of the subservient cust_calls table, as Figure 5-31 shows.

Outer Join for a Simple Join to a Third Table

Using ANSI syntax, Figure 5-32 shows an outer join that is the result of a simple

join to a third table. This second type of outer join is known as a nested simple join.

Figure 5-32 first performs a simple join on the orders and items tables, retrieving

information on all orders for items with a manu_code of KAR or SHM. It then

performs an outer join to combine this information with data from the dominant

customer table. An optional ORDER BY clause reorganizes the data into the form

that Figure 5-33 shows.

customer_num 101

lname Pauli

company All Sports Supplies

phone 408-789-8075

call_dtime

call_descr

customer_num 102

lname Sadler

company Sports Spot

phone 415-822-1289

call_dtime

call_descr ...
customer_num 107

lname Ream

company Athletic Supplies

phone 415-356-9876

call_dtime

call_descr

customer_num 108

lname Quinn

company Quinn’s Sports

phone 415-544-8729

call_dtime

call_descr

Figure 5-31. Query Result

SELECT c.customer_num, c.lname, o.order_num,

 i.stock_num, i.manu_code, i.quantity

 FROM customer c, LEFT OUTER JOIN (orders o, items i)

 WHERE c.customer_num = o.customer_num

 AND o.order_num = i.order_num

 AND manu_code IN (’KAR’, ’SHM’)

 ORDER BY lname;

Figure 5-32. Query

Chapter 5. Composing Advanced SELECT Statements 5-15

Outer Join of Two Tables to a Third Table

Using Informix extension syntax, Figure 5-34 shows an outer join that is the result

of an outer join of each of two tables to a third table. In this third type of outer

join, join relationships are possible only between the dominant table and the

subservient tables.

Figure 5-34 individually joins the subservient tables orders and cust_calls to the

dominant customer table; it does not join the two subservient tables. An INTO

TEMP clause selects the results into a temporary table for further manipulation or

queries, as Figure 5-35 shows.

If Figure 5-34 had tried to create a join condition between the two subservient

tables o and x, as Figure 5-36 shows, an error message would indicate the creation

of a two-sided outer join.

customer_num lname order_num stock_num manu_code quantity

 114 Albertson

 118 Baxter

 113 Beatty

 ...
 105 Vector

 121 Wallack 1018 302 KAR 3

 106 Watson

Figure 5-33. Query Result

SELECT c.customer_num, c.lname, o.order_num,

 order_date, call_dtime

 FROM customer c, OUTER orders o, OUTER cust_calls x

 WHERE c.customer_num = o.customer_num

 AND c.customer_num = x.customer_num

 ORDER BY lname

 INTO TEMP service;

Figure 5-34. Query

customer_num lname order_num order_date call_dtime

 114 Albertson

 118 Baxter

 113 Beatty

 103 Currie

 115 Grant 1010 06/17/1998

 ...
 117 Sipes 1012 06/18/1998

 105 Vector

 121 Wallack 1018 07/10/1998 1998-07-10 14:05

 106 Watson 1004 05/22/1998 1998-06-12 08:20

 106 Watson 1014 06/25/1998 1998-06-12 08:20

Figure 5-35. Query Result

5-16 IBM Informix Guide to SQL: Tutorial

Joins That Combine Outer Joins

To achieve multiple levels of nesting, you can create a join that employs any

combination of the three types of outer joins. Using ANSI syntax, Figure 5-37

creates a join that is the result of a combination of a simple outer join on two

tables and a second outer join.

Figure 5-37 first performs an outer join on the orders and items tables, retrieving

information on all orders for items with a manu_code of KAR or SHM. It then

performs a second outer join that combines this information with data from the

dominant customer table.

You can specify the join conditions in two ways when you apply an outer join to

the result of an outer join to a third table. The two subservient tables are joined,

but you can join the dominant table to either subservient table without affecting

the results if the dominant table and the subservient table share a common

column.

Subqueries in SELECT Statements

A subquery (the inner SELECT statement, where one SELECT statement is nested

within another) can return zero or more rows or expressions. Each subquery must

be delimited by parentheses, and must contain a Projection clause and a FROM

clause. A subquery can itself contain other subqueries, with the depth of nesting

limited only by the maximum length of 64 kilobytes for an SQL statement.

The database server supports subqueries in the following contexts:

WHERE o.customer_num = x.customer_num

Figure 5-36. Query

SELECT c.customer_num, c.lname, o.order_num,

 stock_num, manu_code, quantity

 FROM customer c, OUTER (orders o, OUTER items i)

 WHERE c.customer_num = o.customer_num

 AND o.order_num = i.order_num

 AND manu_code IN (’KAR’, ’SHM’)

 ORDER BY lname;

Figure 5-37. Query

customer_num lname order_num stock_num manu_code quantity

 114 Albertson

 118 Baxter

 113 Beatty

 103 Currie

 115 Grant 1010

 ...
 117 Sipes 1012

 117 Sipes 1007

 105 Vector

 121 Wallack 1018 302 KAR 3

 106 Watson 1014

 106 Watson 1004

Figure 5-38. Query Result

Chapter 5. Composing Advanced SELECT Statements 5-17

v A SELECT statement nested in the Projection clause of another SELECT

statement

v a SELECT statement nested in the WHERE clause of another SELECT statement

(or in an INSERT, DELETE, or UPDATE statement)

v a SELECT statement nested in the FROM clause of another SELECT statement.

Subqueries in the Projection clause or in the WHERE clause can be correlated or

uncorrelated. A subquery is correlated when the value that it produces depends on

a value produced by the outer SELECT statement that contains it. For more

information, see “Correlated Subqueries.”

Any other kind of subquery is considered uncorrelated. Only uncorrelated

subqueries are valid in the FROM clause of the SELECT statement.

Correlated Subqueries

A correlated subquery is a subquery that refers to a column of a table that is not

listed in its FROM clause. The column can be in the Projection clause or in the

WHERE clause. To find the table to which the correlated subquery refers, search

the columns until a correlation is found.

In general, correlated subqueries diminish performance. Use the table name or

alias in the subquery so that there is no doubt as to which table the column is in.

The database server will use the outer query to get values. For example, if the

table taba has the column col1 and table tabb has the column col2 and they

contain the following:

taba.col1 aa,bb,null

tabb.col2 bb, null

And the query is:

select * from taba where col1 in (select col1 from tabb);

Then the results might be meaningless. The database server will provide all values

in taba.col1 and then compare them to taba.col1 (outer query WHERE clause). This

will return all rows. You usually use the subquery to return column values from

the inner table. Had the query been written as:

select * from taba where col1 in (select tabb.col1 from tabb);

Then the error -217 column not found would have resulted.

The important feature of a correlated subquery is that, because it depends on a

value from the outer SELECT, it must be executed repeatedly, once for every value

that the outer SELECT produces. An uncorrelated subquery is executed only once.

Subqueries in SELECT Statements

You can construct a SELECT statement with a subquery to replace two separate

SELECT statements.

 Subqueries in SELECT statements allow you to perform various tasks, including

the following actions:

v Compare an expression to the result of another SELECT statement

v Determine whether the results of another SELECT statement include a specific

expression

5-18 IBM Informix Guide to SQL: Tutorial

v Determine whether another SELECT statement selects any rows

An optional WHERE clause in a subquery is often used to narrow the search

condition.

A subquery selects and returns values to the first or outer SELECT statement. A

subquery can return no value, a single value, or a set of values, as follows:

v If a subquery returns no value, the query does not return any rows. Such a

subquery is equivalent to a NULL value.

v If a subquery returns one value, the value is in the form of either one aggregate

expression or exactly one row and one column. Such a subquery is equivalent to

a single number or character value.

v If a subquery returns a list or set of values, the values can represent one row or

one column.

v In the FROM clause of the outer query, a subquery can represent a set of rows

(sometimes called a derived table or a table expression).

Subqueries in a Projection Clause

A subquery can occur in the Projection clause of another SELECT statement.

Figure 5-39 shows how you might use a subquery in a Projection clause to return

the total shipping charges (from the orders table) for each customer in the

customer table. You could also write this query as a join between two tables.

Subqueries in the FROM Clause

This section describes subqueries that occur as nested SELECT statements in the

FROM clause of an outer SELECT statement. Such subqueries are sometimes called

derived tables or table expressions because the outer query uses the results of the

subquery as a data source.

SELECT customer.customer_num,

 (SELECT SUM(ship_charge)

 FROM orders

 WHERE customer.customer_num = orders.customer_num)

 AS total_ship_chg

 FROM customer;

Figure 5-39. Query

customer_num total_ship_chg

 101 $15.30

 102

 103

 104 $38.00

 105

 ...
 123 $8.50

 124 $12.00

 125

 126 $13.00

 127 $18.00

 128

Figure 5-40. Query Result

Chapter 5. Composing Advanced SELECT Statements 5-19

Figure 5-41 uses asterisk notation in the outer query to return the results of a

subquery that retrieves all fields of the address column in the employee table.

This illustrates how to specify a derived table, but it is a trivial example of this

syntax, because the outer query does not manipulate any values in the table

expression that the subquery in the FROM clause returns. (See Figure 3-15 on page

3-6 for a simple query that returns the same results.)

Figure 5-43 is a more complex example in which the outer query selects only the

first qualifying row of a derived table that a subquery in the FROM clause

specifies as a simple join on the customer and cust_calls tables.

Figure 5-43 returns only those rows in which the customer has made a call to

customer service, as Figure 5-44 shows.

In the preceding example, the subquery includes an ORDER BY clause that

specifies a column that appears in Projection list of the subquery, but the query

would also be valid if the Projection list had omitted the u.call_dtime column. The

FROM clause is the only context in which a subquery can specify the ORDER BY

clause.

Subqueries in WHERE Clauses

This section describes subqueries that occur as a SELECT statement that is nested

in the WHERE clause of another SELECT statement.

SELECT * FROM (SELECT address.* FROM employee);

Figure 5-41. Query

address ROW(102 Ruby, Belmont, CA, 49932, 1000)

address ROW(133 First, San Jose, CA, 85744, 4900)

address ROW(152 Topaz, Willits, CA, 69445, 1000)) ...

Figure 5-42. Query Result

SELECT LIMIT 1 * FROM

 (SELECT c.customer_num, c.lname, c.company,

 c.phone, u.call_dtime, u.call_descr

 FROM customer c, cust_calls u

 WHERE c.customer_num = u.customer_num

 ORDER BY u.call_dtime DESC);

Figure 5-43. Query

customer_num 106

lname Watson

company Watson & Son

phone 415-389-8789

call_dtime 1998-06-12 08:20

call_descr Order was received, but two of the cans of

 ANZ tennis balls within the case were empty

Figure 5-44. Query Result

5-20 IBM Informix Guide to SQL: Tutorial

The following keywords introduce a subquery in the WHERE clause of a SELECT

statement:

v ALL

v ANY

v IN

v EXISTS

You can use any relational operator with ALL and ANY to compare something to

every one of (ALL) or to any one of (ANY) the values that the subquery produces.

You can use the keyword SOME in place of ANY. The operator IN is equivalent to

= ANY. To create the opposite search condition, use the keyword NOT or a

different relational operator.

The EXISTS operator tests a subquery to see if it found any values; that is, it asks

if the result of the subquery is not null. You cannot use the EXISTS keyword in a

subquery that contains a column with a TEXT or BYTE data type.

For the syntax that you use to create a condition with a subquery, see the IBM

Informix Guide to SQL: Syntax.

Using ALL

Use the keyword ALL preceding a subquery to determine whether a comparison is

true for every value returned. If the subquery returns no values, the search

condition is true. (If it returns no values, the condition is true of all the zero

values.)

Figure 5-45 lists the following information for all orders that contain an item for

which the total price is less than the total price on every item in order number

1023.

Using ANY

Use the keyword ANY (or its synonym SOME) before a subquery to determine

whether a comparison is true for at least one of the values returned. If the

subquery returns no values, the search condition is false. (Because no values exist,

the condition cannot be true for one of them.)

SELECT order_num, stock_num, manu_code, total_price

 FROM items

 WHERE total_price < ALL

 (SELECT total_price FROM items

 WHERE order_num = 1023);

Figure 5-45. Query

 order_num stock_num manu_code total_price

 1003 9 ANZ $20.00

 1005 6 SMT $36.00

 1006 6 SMT $36.00

 1010 6 SMT $36.00

 1013 5 ANZ $19.80

 1013 6 SMT $36.00

 1018 302 KAR $15.00

Figure 5-46. Query Result

Chapter 5. Composing Advanced SELECT Statements 5-21

Figure 5-47 finds the order number of all orders that contain an item for which the

total price is greater than the total price of any one of the items in order number

1005.

Single-Valued Subqueries

You do not need to include the keyword ALL or ANY if you know the subquery

can return exactly one value to the outer-level query. A subquery that returns exactly

one value can be treated like a function. This kind of subquery often uses an

aggregate function because aggregate functions always return single values.

Figure 5-49 uses the aggregate function MAX in a subquery to find the order_num

for orders that include the maximum number of volleyball nets.

Figure 5-51 uses the aggregate function MIN in the subquery to select items for

which the total price is higher than 10 times the minimum price.

SELECT DISTINCT order_num

 FROM items

 WHERE total_price > ANY

 (SELECT total_price

 FROM items

 WHERE order_num = 1005);

Figure 5-47. Query

order_num

 1001

 1002

 1003

 1004

 ...
 1020

 1021

 1022

 1023

Figure 5-48. Query Result

SELECT order_num FROM items

 WHERE stock_num = 9

 AND quantity =

 (SELECT MAX (quantity)

 FROM items

 WHERE stock_num = 9);

Figure 5-49. Query

 order_num

 1012

Figure 5-50. Query Result

5-22 IBM Informix Guide to SQL: Tutorial

Correlated Subqueries

A correlated subquery is a subquery that refers to a column of a table that is not in

its FROM clause. The column can be in the Projection clause or in the WHERE

clause.

In general, correlated subqueries diminish performance. It is recommended that

you qualify the column name in subqueries with the name or alias of the table, in

order to remove any doubt regarding in which table the column resides.

Figure 5-53 is an example of a correlated subquery that returns a list of the 10

latest shipping dates in the orders table. It includes an ORDER BY clause after the

subquery to order the results because (except in the FROM clause) you cannot

include ORDER BY within a subquery.

The subquery is correlated because the number that it produces depends on

main.ship_date, a value that the outer SELECT produces. Thus, the subquery must

be re-executed for every row that the outer query considers.

Figure 5-53 uses the COUNT function to return a value to the main query. The

ORDER BY clause then orders the data. The query locates and returns the 16 rows

that have the 10 latest shipping dates, as Figure 5-54 shows.

SELECT order_num, stock_num, manu_code, total_price

 FROM items x

 WHERE total_price >

 (SELECT 10 * MIN (total_price)

 FROM items

 WHERE order_num = x.order_num);

Figure 5-51. Query

order_num stock_num manu_code total_price

 1003 8 ANZ $840.00

 1018 307 PRC $500.00

 1018 110 PRC $236.00

 1018 304 HRO $280.00

Figure 5-52. Query Result

SELECT po_num, ship_date FROM orders main

 WHERE 10 >

 (SELECT COUNT (DISTINCT ship_date)

 FROM orders sub

 WHERE sub.ship_date < main.ship_date)

 AND ship_date IS NOT NULL

 ORDER BY ship_date, po_num;

Figure 5-53. Query

Chapter 5. Composing Advanced SELECT Statements 5-23

If you use a correlated subquery, such as Figure 5-53, on a large table, you should

index the ship_date column to improve performance. Otherwise, this SELECT

statement is inefficient, because it executes the subquery once for every row of the

table. For information about indexing and performance issues, see the IBM Informix

Administrator’s Guide and your IBM Informix Performance Guide.

You cannot use a correlated subquery in the FROM clause, however, as the

following invalid example illustrates:

SELECT item_num, stock_num FROM items,

 (SELECT stock_num FROM catalog

 WHERE stock_num = items.item_num) AS vtab;

The subquery in this example fails with error -24138:

ALL COLUMN REFERENCES IN A TABLE EXPRESSION MUST REFER

TO TABLES IN THE FROM CLAUSE OF THE TABLE EXPRESSION.

The database server issues this error because the items.item_num column in the

subquery also appears in the Projection clause of the outer query, but the FROM

clause of the inner query specifies only the catalog table. The term table expression

in the error message text refers to the set of column values or expressions that are

returned by a subquery in the FROM clause, where only uncorrelated subqueries

are valid.

Using EXISTS

The keyword EXISTS is known as an existential qualifier because the subquery is

true only if the outer SELECT, as Figure 5-55 shows, finds at least one row.

po_num ship_date

4745 06/21/1998

278701 06/29/1998

429Q 06/29/1998

8052 07/03/1998

B77897 07/03/1998

LZ230 07/06/1998

B77930 07/10/1998

PC6782 07/12/1998

DM354331 07/13/1998

S22942 07/13/1998

MA003 07/16/1998

W2286 07/16/1998

Z55709 07/16/1998

C3288 07/25/1998

KF2961 07/30/1998

W9925 07/30/1998

Figure 5-54. Query Result

SELECT UNIQUE manu_name, lead_time

 FROM manufact

 WHERE EXISTS

 (SELECT * FROM stock

 WHERE description MATCHES ’*shoe*’

 AND manufact.manu_code = stock.manu_code);

Figure 5-55. Query

5-24 IBM Informix Guide to SQL: Tutorial

You can often construct a query with EXISTS that is equivalent to one that uses IN.

Figure 5-56 uses an IN predicate to construct a query that returns the same result

as Figure 5-55.

Figure 5-55 and Figure 5-56 return rows for the manufacturers that produce a kind

of shoe, as well as the lead time for ordering the product. Figure 5-57 shows the

return values.

Add the keyword NOT to IN or to EXISTS to create a search condition that is the

opposite of the condition in the preceding queries. You can also substitute !=ALL

for NOT IN.

Figure 5-58 shows two ways to do the same thing. One way might allow the

database server to do less work than the other, depending on the design of the

database and the size of the tables. To find out which query might be better, use

the SET EXPLAIN command to get a listing of the query plan. SET EXPLAIN is

discussed in your IBM Informix Performance Guide and IBM Informix Guide to SQL:

Syntax.

Each statement in Figure 5-58 returns the rows that Figure 5-59 shows, which

identify customers who have not placed orders.

SELECT UNIQUE manu_name, lead_time

 FROM stock, manufact

 WHERE manufact.manu_code IN

 (SELECT manu_code FROM stock

 WHERE description MATCHES ’*shoe*’)

 AND stock.manu_code = manufact.manu_code;

Figure 5-56. Query

manu_name lead_time

Anza 5

Hero 4

Karsten 21

Nikolus 8

ProCycle 9

Shimara 30

Figure 5-57. Query Result

SELECT customer_num, company FROM customer

 WHERE customer_num NOT IN

 (SELECT customer_num FROM orders

 WHERE customer.customer_num = orders.customer_num);

SELECT customer_num, company FROM customer

 WHERE NOT EXISTS

 (SELECT * FROM orders

 WHERE customer.customer_num = orders.customer_num);

Figure 5-58. Query

Chapter 5. Composing Advanced SELECT Statements 5-25

The keywords EXISTS and IN are used for the set operation known as intersection,

and the keywords NOT EXISTS and NOT IN are used for the set operation known

as difference. These concepts are discussed in “Set Operations” on page 5-32.

Figure 5-60 performs a subquery on the items table to identify all the items in the

stock table that have not yet been ordered.

Figure 5-60 returns the rows that Figure 5-61 shows.

No logical limit exists to the number of subqueries a SELECT statement can have,

but the size of any SQL statement as a character string is physically limited to 64

kilobytes. This limit is typically larger, however, than most queries that you are

likely to compose.

Perhaps you want to check whether information has been entered correctly in the

database. One way to find errors in a database is to write a query that returns

output only when errors exist. A subquery of this type serves as a kind of audit

query, as Figure 5-62 shows.

customer_num company

 102 Sports Spot

 103 Phil’s Sports

 105 Los Altos Sports

 107 Athletic Supplies

 108 Quinn’s Sports

 109 Sport Stuff

 113 Sportstown

 114 Sporting Place

 118 Blue Ribbon Sports

 125 Total Fitness Sports

 128 Phoenix University

Figure 5-59. Query Result

SELECT * FROM stock

 WHERE NOT EXISTS

 (SELECT * FROM items

 WHERE stock.stock_num = items.stock_num

 AND stock.manu_code = items.manu_code);

Figure 5-60. Query

stock_num manu_code description unit_price unit unit_descr

 101 PRC bicycle tires $88.00 box 4/box

 102 SHM bicycle brakes $220.00 case 4 sets/case

 102 PRC bicycle brakes $480.00 case 4 sets/case

 105 PRC bicycle wheels $53.00 pair pair

 ...
 312 HRO racer goggles $72.00 box 12/box

 313 SHM swim cap $72.00 box 12/box

 313 ANZ swim cap $60.00 box 12/box

Figure 5-61. Query Result

5-26 IBM Informix Guide to SQL: Tutorial

Figure 5-62 returns only those rows for which the total price of an item on an order

is not equal to the stock unit price times the order quantity. If no discount has been

applied, such rows were probably entered incorrectly in the database. The query

returns rows only when errors occur. If information is correctly inserted into the

database, no rows are returned.

Subqueries in DELETE and UPDATE Statements

Besides subqueries within the WHERE clause of a SELECT statement, you can use

subqueries within other data manipulation language (DML) statements, including

the WHERE clause of DELETE and UPDATE statements.

Certain restrictions apply. If the FROM clause of a subquery returns more than one

row, and the clause specifies the same table or view that the outer DML statement

is modifying, the DML operation will succeed under these circumstances:

v The DML statement is not an INSERT statement.

v No SPL routine within the subquery references the table that is being modified.

v The subquery does not include a correlated column name.

v The subquery is specified using the Condition with Subquery syntax in the

WHERE clause of the DELETE or UPDATE statement.

If any of these conditions are not met, the DML operation fails with error -360.

The following example updates the stock table by increasing the unit_price value

by 10% for a subset of prices. The WHERE clause specifies which prices to increase

by applying the IN operator to the rows returned by a subquery that selects only

the rows of the stock table where the unit_price value is less than 75.

UPDATE stock SET unit_price = unit_price * 1.1

 WHERE unit_price IN

 (SELECT unit_price FROM stock WHERE unit_price < 75);

Handling Collections in SELECT Statements (IDS)

The database server provides the following SQL features to handle collection

expressions:

v A collection subquery takes a virtual table (the result of a subquery) and converts

it into a collection.

A collection subquery always returns a collection of type MULTISET. You can

use a collection subquery to convert a query result of relational data into a

MULTISET collection. For information about the collection data types, see the

IBM Informix Database Design and Implementation Guide.

SELECT * FROM items

 WHERE total_price != quantity *

 (SELECT unit_price FROM stock

 WHERE stock.stock_num = items.stock_num

 AND stock.manu_code = items.manu_code);

Figure 5-62. Query

item_num order_num stock_num manu_code quantity total_price

 1 1004 1 HRO 1 $960.00

 2 1006 5 NRG 5 $190.00

Figure 5-63. Query Result

Chapter 5. Composing Advanced SELECT Statements 5-27

|

|
|
|

|
|
|

|

|

|

|
|

|

|
|
|
|

|
|
|

|

v A collection-derived table takes a collection and converts it into a virtual table.

Each element of the collection is constructed as a row in the collection-derived

table. You can use a collection-derived table to access the individual elements of

a collection.

The collection subquery and collection-derived table features represent inverse

operations: the collection subquery converts row values from a relational table into

a collection whereas the collection-derived table converts the elements of a

collection into rows of a relational table.

Collection Subqueries

A collection subquery enables users to construct a collection expression from a

subquery expression. A collection subquery uses the MULTISET keyword

immediately before the subquery to convert the values returned into a MULTISET

collection. When you use the MULTISET keyword before a subquery expression,

however, the database server does not change the rows of the underlying table but

only modifies a copy of those rows. For example, if a collection subquery is passed

to a user-defined routine that modifies the collection, then a copy of the collection

is modified but not the underlying table.

A collection subquery is an expression that can take either of the following forms:

MULTISET(SELECT expression1, expression2... FROM tab_name...)

or

MULTISET(SELECT ITEM expression FROM tab_name...)

Omitting the ITEM Keyword in a Collection Subquery

If you omit the ITEM keyword in the collection subquery expression, the collection

subquery is a MULTISET whose element type is always an unnamed ROW type.

The fields of the unnamed ROW type match the data types of the expressions

specified in the Projection clause of the subquery.

Suppose you create the following table that contains a column of type MULTISET:

CREATE TABLE tab2

(

 id_num INT,

 ms_col MULTISET(ROW(a INT) NOT NULL)

);

Figure 5-64 shows how you might use a collection subquery in a WHERE clause to

convert the rows of INT values that the subquery returns to a collection of type

MULTISET. In this example, the database server returns rows when the ms_col

column of tab2 is equal to the result of the collection subquery expression.

Figure 5-64 omits the ITEM keyword in the collection subquery, so the INT values

the subquery returns are of type MULTISET (ROW(a INT) NOT NULL) that

matches the data type of the ms_col column of tab2.

Specifying the ITEM Keyword in a Collection Subquery

When the projection list of the subquery contains a single expression, you can

preface the projection list of the subquery with the ITEM keyword to specify that

SELECT id_num FROM tab2

 WHERE ms_col = (MULTISET(SELECT int_col FROM tab1));

Figure 5-64. Query

5-28 IBM Informix Guide to SQL: Tutorial

the element type of the MULTISET matches the data type of the subquery result. In

other words, when you include the ITEM keyword, the database server does not

put a row wrapper around the projection list. For example, if the subquery (that

immediately follows the MULTISET keyword) returns INT values, the collection

subquery is of type MULTISET(INT NOT NULL).

Suppose you create a function int_func() that accepts an argument of type

MULTISET(INT NOT NULL). Figure 5-65 shows a collection subquery that

converts rows of INT values to a MULTISET and uses the collection subquery as

an argument in the function int_func().

Figure 5-65 includes the ITEM keyword in the subquery, so the int_col values that

the query returns are converted to a collection of type MULTISET (INT NOT

NULL). Without the ITEM keyword, the collection subquery would return a

collection of type MULTISET (ROW(a INT) NOT NULL).

Collection Subqueries in the FROM Clause

Collection subqueries are valid in the FROM clause of SELECT statements, where

the outer query can use the values returned by the subquery as a source of data.

The query examples in the section “Collection Subqueries” on page 5-28 specify

collection subqueries by using the TABLE keyword followed (within parentheses)

by the MULTISET keyword, followed by a subquery. This syntax is an Informix

extension to the ANSI/ISO standard for the SQL language.

In the FROM clause of the SELECT statement, and only in that context, you can

substitute syntax that complies with the ANSI/ISO standard for SQL by specifying

a subquery, omitting the TABLE and MULTISET keywords and the nested

parentheses, to specify a collection subquery.

The following query uses Informix-extension syntax to join two collection

subqueries in the FROM clause of the outer query:

The following logically equivalent query returns the same results as Figure 5-66 by

using ANSI/ISO-compliant syntax to join two derived tables in the FROM clause

of the outer query:

An advantage of this query over the TABLE(MULTISET(SELECT ...))

Informix-extension version is that it can also be executed by any database server

that supports the ANSI/ISO-compliant syntax in the FROM clause. For more

information about syntax and restrictions for collection subqueries, see the IBM

Informix Guide to SQL: Syntax.

EXECUTE FUNCTION int_func(MULTISET(SELECT ITEM int_col

 FROM tab1

 WHERE int_col BETWEEN 1 AND 10));

Figure 5-65. Query

SELECT * FROM TABLE(MULTISET(SELECT SUM(C1) FROM T1 GROUP BY C1)),

 TABLE(MULTISET(SELECT SUM(C1) FROM T2 GROUP BY C2));

Figure 5-66. Query

SELECT * FROM (SELECT SUM(C1) FROM T1 GROUP BY C1),

 (SELECT SUM(C1) FROM T2 GROUP BY C2);

Figure 5-67. Query

Chapter 5. Composing Advanced SELECT Statements 5-29

Collection-Derived Tables

A collection-derived table enables you to handle the elements of a collection

expression as rows in a virtual table. Use the TABLE keyword in the FROM clause

of a SELECT statement to create a collection-derived table. The database server

supports collection-derived tables in SELECT, INSERT, UPDATE, and DELETE

statements.

Figure 5-68 uses a collection-derived table named c_table to access elements from

the sales column of the sales_rep table in the superstores_demo database. The

sales column is a collection of an unnamed row type whose two fields, month and

amount, store sales data. Figure 5-68 returns an element for sales.amount when

sales.month equals 98-03. Because the inner select is itself an expression, it cannot

return more than one column value per iteration of the outer query. The outer

query specifies how many rows of the sales_rep table are evaluated.

Figure 5-70 uses a collection-derived table to access elements from the sales

collection column where the rep_num column equals 102. With a collection-derived

table, you can specify aliases for the table and columns. If no table name is

specified for a collection-derived table, the database server creates one

automatically. This example specifies the derived column list s_month and

s_amount for the collection-derived table c_table.

Figure 5-72 creates a collection-derived table but does not specify a derived table or

derived column names. Figure 5-72 returns the same result as Figure 5-70 except

the derived columns assume the default field names of the sales column in the

sales_rep table.

SELECT (SELECT c_table.amount FROM TABLE (sales_rep.sales) c_table

 WHERE c_table.month = ’98-03’)

 FROM sales_rep;

Figure 5-68. Query

(expression)

$47.22

$53.22

Figure 5-69. Query Result

SELECT * FROM TABLE((SELECT sales FROM sales_rep

 WHERE sales_rep.rep_num = 102)) c_table(s_month, s_amount);

Figure 5-70. Query

s_month s_amount

1998-03 $53.22

1998-04 $18.22

Figure 5-71. Query Result

5-30 IBM Informix Guide to SQL: Tutorial

Important: A collection-derived table is read-only, so it cannot be the target table

of INSERT, UPDATE, or DELETE statements or the underlying table of

an updatable cursor or view.

For a complete description of the syntax and restrictions on collection-derived

tables, see the IBM Informix Guide to SQL: Syntax.

ISO-Compliant Syntax for Collection Derived Tables

The query examples in the section “Collection-Derived Tables” on page 5-30

specify collection-derived tables by using the TABLE keyword followed by a

SELECT statement enclosed within double parentheses. This syntax is an Informix

extension to the ANSI/ISO standard for the SQL language.

In the FROM clause of the SELECT statement, however, and only in that context,

you can instead use syntax that complies with the ANSI/ISO standard for SQL by

specifying a subquery, without the TABLE keyword or the nested parentheses, to

define a collection-derived table.

The following example is logically equivalent to Figure 5-70 on page 5-30, and

specifies the derived column list s_month and s_amount for the collection-derived

table c_table.

As in the Informix-extension syntax, declaring names for the derived table or for

its columns is optional, rather than required. The following query uses

ANSI/ISO-compliant syntax for a derived table in the FROM clause of the outer

query, and produces the same results as Figure 5-72:

SELECT * FROM TABLE((SELECT sales FROM sales_rep

 WHERE sales_rep.rep_num = 102));

Figure 5-72. Query

month amount

1998-03 $53.22

1998-04 $18.22

Figure 5-73. Query Result

SELECT * FROM (SELECT sales FROM sales_rep

 WHERE sales_rep.rep_num = 102) c_table(s_month, s_amount);

Figure 5-74. Query

s_month s_amount

1998-03 $53.22

1998-04 $18.22

Figure 5-75. Query Result

Chapter 5. Composing Advanced SELECT Statements 5-31

Set Operations

The standard set operations union, intersection, and difference let you manipulate

database information. These three operations let you use SELECT statements to

check the integrity of your database after you perform an update, insert, or delete.

They can be useful when you transfer data to a history table, for example, and

want to verify that the correct data is in the history table before you delete the

data from the original table.

Union

A union operation uses the UNION operator to combine two queries into a single

compound query. You can use the UNION operator between two or more SELECT

statements to produce a temporary table that contains rows that exist in any or all

of the original tables. You can also use the UNION operator in the definition of a

view.

You cannot use the UNION operator inside a subquery in the following contexts

v in the Projection clause of the SELECT statement

v in the WHERE clause of the SELECT, INSERT, DELETE, or UPDATE statement.

.

The UNION operator is valid, however, in a subquery in the FROM clause of the

SELECT statement, as in the following example:

SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab1(c1),

 (SELECT col1 FROM tab2 WHERE col1 = 10

 UNION ALL

 SELECT col1 FROM tab1 WHERE col1 < 50) AS vtab2(vc1);

Dynamic Server does not support ordering on ROW types. Because a UNION

operation requires a sort to remove duplicate values, you cannot use a UNION

operator when either query in the union operation includes ROW type data.

However, the database server does support UNION ALL with ROW type data,

because this type of operation does not require a sort.

Figure 5-78 illustrates the UNION set operation.

SELECT * FROM (SELECT sales FROM sales_rep

 WHERE sales_rep.rep_num = 102);

Figure 5-76. Query

month amount

1998-03 $53.22

1998-04 $18.22

Figure 5-77. Query Result

5-32 IBM Informix Guide to SQL: Tutorial

The UNION keyword selects all rows from the two queries, removes duplicates,

and returns what is left. Because the results of the queries are combined into a

single result, the projection list in each query must have the same number of

columns. Also, the corresponding columns that are selected from each table must

contain compatible data types (CHARACTER data type columns must be the same

length), and these corresponding columns must all allow or all disallow NULL

values.

For the complete syntax of the SELECT statement and the UNION operator, see

the IBM Informix Guide to SQL: Syntax. For information specific to the IBM Informix

ESQL/C product and any limitations that involve the INTO clause and compound

queries, see the IBM Informix ESQL/C Programmer’s Manual.

Figure 5-79 performs a union on the stock_num and manu_code columns in the

stock and items tables.

Figure 5-79 selects those items that have a unit price of less than $25.00 or that

have been ordered in quantities greater than three and lists their stock_num and

manu_code, as Figure 5-80 shows.

quantity > 3

unit_price < 25.00

unit_price

quantity

qualifies qualifies

qualifies

less than or
equal to 3

greater than or
equal to 25.00

less than
25.00

greater
than 3

SELECT DISTINCT stock_num,
manu_code

FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items

WHERE quantity > 3

Figure 5-78. The Union Set Operation

SELECT DISTINCT stock_num, manu_code FROM stock

 WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code FROM items

 WHERE quantity > 3;

Figure 5-79. Query

Chapter 5. Composing Advanced SELECT Statements 5-33

Using ORDER BY with UNION

As Figure 5-81 shows, when you include an ORDER BY clause, it must follow the

final SELECT statement and use an integer, not an identifier, to refer to the

ordering column. Ordering takes place after the set operation is complete.

The compound query in Figure 5-81 selects the same rows as Figure 5-79 but

displays them in order of the manufacturer code, as Figure 5-82 shows.

Using UNION ALL

By default, the UNION keyword excludes duplicate rows. To retain the duplicate

values, add the optional keyword ALL, as Figure 5-83 shows.

stock_num manu_code

 5 ANZ

 5 NRG

 5 SMT

 9 ANZ

 103 PRC

 106 PRC

 201 NKL

 301 KAR

 302 HRO

 302 KAR

Figure 5-80. Query Result

SELECT DISTINCT stock_num, manu_code FROM stock

 WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code FROM items

 WHERE quantity > 3

 ORDER BY 2;

Figure 5-81. Query

stock_num manu_code

 5 ANZ

 9 ANZ

 302 HRO

 301 KAR

 302 KAR

 201 NKL

 5 NRG

 103 PRC

 106 PRC

 5 SMT

Figure 5-82. Query Result

5-34 IBM Informix Guide to SQL: Tutorial

Figure 5-83 uses the UNION ALL keywords to unite two SELECT statements and

adds an INTO TEMP clause after the final SELECT to put the results into a

temporary table. It returns the same rows as Figure 5-81 but also includes duplicate

values.

Using Different Column Names

Corresponding columns in the Projection clauses for the combined queries must

have compatible data types, but the columns do not need to use the same column

names.

Figure 5-85 selects the state column from the customer table and the corresponding

code column from the state table.

Figure 5-86 returns state code abbreviations for customer numbers 120 through 125

and for states whose sname ends in a.

SELECT stock_num, manu_code FROM stock

 WHERE unit_price < 25.00

UNION ALL

SELECT stock_num, manu_code FROM items

 WHERE quantity > 3

 ORDER BY 2

 INTO TEMP stock item;

Figure 5-83. Query

stock_num manu_code

 9 ANZ

 5 ANZ

 9 ANZ

 5 ANZ

 9 ANZ

 ...
 5 NRG

 5 NRG

 103 PRC

 106 PRC

 5 SMT

 5 SMT

Figure 5-84. Query Result

SELECT DISTINCT state FROM customer

 WHERE customer_num BETWEEN 120 AND 125

UNION

SELECT DISTINCT code FROM state

 WHERE sname MATCHES ’*a’;

Figure 5-85. Query

Chapter 5. Composing Advanced SELECT Statements 5-35

In compound queries, the column names or display labels in the first SELECT

statement are the ones that appear in the results. Thus, in Figure 5-85, the column

name state from the first SELECT statement is used instead of the column name

code from the second.

Using UNION with Multiple Tables

Figure 5-87 performs a union on three tables. The maximum number of unions

depends on the practicality of the application and any memory limitations.

Figure 5-87 selects items where the unit_price in the stock table is greater than

$600, the catalog_num in the catalog table is 10025, or the quantity in the items

table is 10; and the query orders the data by manu_code. Figure 5-88 shows the

return values.

Using a Literal in the Projection Clause

Figure 5-89 uses a literal in the projection list to tag the output of part of a union

so it can be distinguished later. The tag is given the label sortkey. The query uses

state

AK

AL

AZ

CA

DE ...
SD

VA

WV

Figure 5-86. Query Result

SELECT stock_num, manu_code FROM stock

 WHERE unit_price > 600.00

UNION ALL

SELECT stock_num, manu_code FROM catalog

 WHERE catalog_num = 10025

UNION ALL

SELECT stock_num, manu_code FROM items

 WHERE quantity = 10

 ORDER BY 2;

Figure 5-87. Query

stock_num manu_code

 5 ANZ

 9 ANZ

 8 ANZ

 4 HSK

 1 HSK

 203 NKL

 5 NRG

 106 PRC

 113 SHM

Figure 5-88. Query Result

5-36 IBM Informix Guide to SQL: Tutorial

sortkey to order the retrieved rows.

Figure 5-89 creates a list in which the customers from California appear first, as

Figure 5-90 shows.

Using a FIRST Clause

You can use the FIRST clause to select the first rows that result from a union query.

Figure 5-91 uses a FIRST clause to return the first five rows of a union between the

stock and items tables.

SELECT ’1’ sortkey, lname, fname, company,

 city, state, phone

 FROM customer x

 WHERE state = ’CA’

UNION

SELECT ’2’ sortkey, lname, fname, company,

 city, state, phone

 FROM customer y

 WHERE state <> ’CA’

 INTO TEMP calcust;

SELECT * FROM calcust

 ORDER BY 1;

Figure 5-89. Query

sortkey 1

lname Baxter

fname Dick

company Blue Ribbon Sports

city Oakland

state CA

phone 415-655-0011

sortkey 1

lname Beatty

fname Lana

company Sportstown

city Menlo Park

state CA

phone 415-356-9982 ...
sortkey 2

lname Wallack

fname Jason

company City Sports

city Wilmington

state DE

phone 302-366-7511

Figure 5-90. Query Result

SELECT FIRST 5 DISTINCT stock_num, manu_code

 FROM stock

 WHERE unit_price < 55.00

UNION

SELECT stock_num, manu_code

 FROM items

 WHERE quantity > 3;

Figure 5-91. Query

Chapter 5. Composing Advanced SELECT Statements 5-37

Intersection

The intersection of two sets of rows produces a table that contains rows that exist in

both the original tables. Use the keyword EXISTS or IN to introduce subqueries

that show the intersection of two sets. Figure 5-93 illustrates the intersection set

operation.

Figure 5-94 is an example of a nested SELECT statement that shows the

intersection of the stock and items tables. Figure 5-95 contains all the elements that

appear in both sets and returns the following rows.

stock_num manu_code

 5 NRG

 5 ANZ

 6 SMT

 6 ANZ

 9 ANZ

Figure 5-92. Query Result

Figure 5-93. The Intersection Set Operation

SELECT stock_num, manu_code, unit_price FROM stock

 WHERE stock_num IN

 (SELECT stock_num FROM items)

 ORDER BY stock_num;

Figure 5-94. Query

5-38 IBM Informix Guide to SQL: Tutorial

Difference

The difference between two sets of rows produces a table that contains rows in the

first set that are not also in the second set. Use the keywords NOT EXISTS or NOT

IN to introduce subqueries that show the difference between two sets. Figure 5-96

illustrates the difference set operation.

Figure 5-97 is an example of a nested SELECT statement that shows the difference

between the stock and items tables.

Figure 5-98 contains all the elements from only the first set, which returns 17 rows.

stock_num manu_code unit_price

 1 HRO $250.00

 1 HSK $800.00

 1 SMT $450.00

 2 HRO $126.00

 3 HSK $240.00

 3 SHM $280.00

 ...
 306 SHM $190.00

 307 PRC $250.00

 309 HRO $40.00

 309 SHM $40.00

Figure 5-95. Query Result

stock_num

stock_num

qualifies

not in items
table

exists in
items table

not in stock
table

exists in stock
table

SELECT stock_num, manu_code,
unit_price
FROM stock
WHERE stock_num NOT IN
(SELECT stock_num
FROM items)
ORDER BY stock_num

stock table

items table

Figure 5-96. The Difference Set Operation

SELECT stock_num, manu_code, unit_price FROM stock

 WHERE stock_num NOT IN

 (SELECT stock_num FROM items)

 ORDER BY stock_num;

Figure 5-97. Query

Chapter 5. Composing Advanced SELECT Statements 5-39

Summary

This chapter builds on concepts introduced in Chapter 2. It provides sample syntax

and results for more advanced kinds of SELECT statements, which are used to

query a relational database. This chapter presents the following material:

v Introduces the GROUP BY and HAVING clauses, which you can use with

aggregates to return groups of rows and apply conditions to those groups

v Shows how to join a table to itself with a self-join to compare values in a column

with other values in the same column and to identify duplicates

v Explains how an outer join treats two or more tables asymmetrically, and

provides examples of the four kinds of outer join using both the Informix

extension and ANSI join syntax.

v Describes how to nest a SELECT statement in the WHERE clause of another

SELECT statement to create correlated and uncorrelated subqueries and shows

how to use aggregate functions in subqueries

v Describes how to nest SELECT statements in the FROM clause of another

SELECT statement to specify uncorrelated subqueries whose results are a data

source for the outer SELECT statement

v Demonstrates how to use the keywords ALL, ANY, EXISTS, IN, and SOME to

create subqueries, and the effect of adding the keyword NOT or a relational

operator

v Describes how to use collection subqueries to convert relational data to a

collection of type MULTISET and how to use collection-derived tables to access

elements within a collection

v Discusses the union, intersection, and difference set operations

v Shows how to use the UNION and UNION ALL keywords to create compound

queries that consist of two or more SELECT statements

stock_num manu_code unit_price

 102 PRC $480.00

 102 SHM $220.00

 106 PRC $23.00

 ...
 312 HRO $72.00

 312 SHM $96.00

 313 ANZ $60.00

 313 SHM $72.00

Figure 5-98. Query Result

5-40 IBM Informix Guide to SQL: Tutorial

Chapter 6. Modifying Data

In This Chapter . 6-2

Modifying Your Database . 6-2

Deleting Rows . 6-3

Deleting All Rows of a Table . 6-3

Deleting All Rows using TRUNCATE . 6-3

Deleting Specified Rows . 6-4

Deleting Selected Rows . 6-4

Deleting Rows That Contain Row Types (IDS) . 6-5

Deleting Rows That Contain Collection Types (IDS) . 6-5

Deleting Rows from a Supertable (IDS) . 6-5

Complicated Delete Conditions . 6-5

Using a Delete Join (XPS) . 6-6

Inserting Rows . 6-6

Single Rows . 6-6

Possible Column Values . 6-7

Restrictions on Column Values . 6-7

Serial Data Types . 6-8

Listing Specific Column Names . 6-8

Inserting Rows into Typed Tables (IDS) . 6-8

Inserting into Row-Type Columns (IDS) . 6-9

Rows That Contain Named Row Types . 6-9

Rows That Contain Unnamed Row Types . 6-9

Specifying Null Values for Row Types . 6-10

Inserting Rows into Supertables (IDS) . 6-10

Inserting Collection Values into Columns (IDS) . 6-11

Inserting into Simple Collections and Nested Collections 6-11

Inserting Null Values into a Collection That Contains a Row Type 6-11

Inserting Smart Large Objects (IDS) . 6-12

Multiple Rows and Expressions . 6-12

Restrictions on the Insert Selection . 6-13

Updating Rows . 6-14

Selecting Rows to Update . 6-14

Updating with Uniform Values . 6-15

Restrictions on Updates . 6-16

Updating with Selected Values . 6-16

Updating Row Types (IDS) . 6-17

Updating Rows That Contain Named Row Types . 6-17

Updating Rows That Contain Unnamed Row Types 6-17

Specifying Null Values for the Fields of a Row Type 6-17

Updating Collection Types (IDS) . 6-18

Updating Rows of a Supertable (IDS) . 6-18

Using a CASE Expression to Update a Column . 6-19

Using SQL Functions to Update Smart Large Objects (IDS) 6-19

Using a Join to Update a Column . 6-20

Privileges on a Database and on its Objects . 6-20

Database-Level Privileges . 6-20

Table-Level Privileges . 6-21

Displaying Table Privileges . 6-21

Granting Privileges to Roles . 6-22

Data Integrity . 6-22

Entity Integrity . 6-23

Semantic Integrity . 6-23

Referential Integrity . 6-24

Using the ON DELETE CASCADE Option . 6-24

Example of Cascading Deletes . 6-25

© Copyright IBM Corp. 1996, 2008 6-1

Restrictions on Cascading Deletes . 6-25

Object Modes and Violation Detection . 6-26

Definitions of Object Modes . 6-26

Example of Modes with Data Manipulation Statements 6-27

Violations and Diagnostics Tables . 6-29

Interrupted Modifications . 6-32

Transactions . 6-33

Transaction Logging . 6-33

Transaction Logging for Extended Parallel Server . 6-34

Logging and Cascading Deletes . 6-34

Specifying Transactions . 6-35

Backups and Logs with Informix Database Servers . 6-35

Concurrency and Locks . 6-36

IBM Informix Data Replication (IDS) . 6-37

Summary . 6-38

In This Chapter

This chapter describes how to modify the data in your databases. Modifying data

is fundamentally different from querying data. Querying data involves examining

the contents of tables. To modify data involves changing the contents of tables.

Modifying Your Database

The following statements modify data:

v DELETE

v INSERT

v UPDATE

Although these SQL statements are relatively simple when compared with the

more advanced SELECT statements, use them carefully because they change the

contents of the database.

Think about what happens if the system hardware or software fails during a query.

Even if the effect on the application is severe, the database itself is unharmed.

However, if the system fails while a modification is under way, the state of the

database is in doubt. Obviously, a database in an uncertain state has far-reaching

implications. Before you delete, insert, or update rows in a database, ask yourself

the following questions:

v Is user access to the database and its tables secure; that is, are specific users

given limited database and table-level privileges?

v Does the modified data preserve the existing integrity of the database?

v Are systems in place that make the database relatively immune to external

events that might cause system or hardware failures?

If you cannot answer yes to each of these questions, do not panic. Solutions to all

these problems are built into the Informix database servers. After a description of

the statements that modify data, this chapter discusses these solutions. The IBM

Informix Database Design and Implementation Guide covers these topics in greater

detail.

6-2 IBM Informix Guide to SQL: Tutorial

Deleting Rows

The DELETE statement removes any row or combination of rows from a table. You

cannot recover a deleted row after the transaction is committed. (Transactions are

discussed under “Interrupted Modifications” on page 6-32. For now, think of a

transaction and a statement as the same thing.)

When you delete a row, you must also be careful to delete any rows of other tables

whose values depend on the deleted row. If your database enforces referential

constraints, you can use the ON DELETE CASCADE option of the CREATE TABLE

or ALTER TABLE statements to allow deletes to cascade from one table in a

relationship to another. For more information on referential constraints and the ON

DELETE CASCADE option, refer to “Referential Integrity” on page 6-24.

Deleting All Rows of a Table

The DELETE statement specifies a table and usually contains a WHERE clause that

designates the row or rows that are to be removed from the table. If the WHERE

clause is left out, all rows are deleted. Do not execute the following statement:

DELETE FROM customer;

You can write DELETE statements with or without the FROM keyword.

DELETE customer;

Because these DELETE statements do not contain a WHERE clause, all rows from

the customer table are deleted. If you attempt an unconditional delete using the

DB–Access menu options, the program warns you and asks for confirmation.

However, an unconditional DELETE from within a program can occur without

warning.

If you want to delete rows from a table named from, you must first set the

DELIMIDENT environment variable, or qualify the name of the table with the

name of its owner:

DELETE legree.from;

For more information about delimited identifiers and DELIMIDENT environment

variable, see the descriptions of the Quoted String expression and of the Identifier

segment in the IBM Informix Guide to SQL: Syntax.

Deleting All Rows using TRUNCATE

You can use the TRUNCATE statement to quickly remove all rows from a table

and also remove all corresponding index data. You cannot recover deleted rows

after the transaction is committed. You can use the TRUNCATE statement on tables

that contain any type of columns, including smart large objects.

Removing rows with the TRUNCATE statement is faster than removing them with

the DELETE statement. It is not necessary to run the UPDATE STATISTICS

statement immediately after the TRUNCATE statement. After TRUNCATE executes

successfully, Dynamic Server automatically updates the statistics and distributions

for the table and for its indexes in the system catalog to show no rows in the table

or in its dbspace partitions.

For a description of logging, see “Transaction Logging” on page 6-33.

Chapter 6. Modifying Data 6-3

TRUNCATE is a data-definition language statement that does not activate DELETE

triggers, if any are defined on the table. For an explanation on using triggers, see

Chapter 12, “Creating and Using Triggers,” on page 12-1.

If the table that the TRUNCATE statement specifies is a typed table, a successful

TRUNCATE operation removes all the rows and B-tree structures from that table

and from all its subtables within the table hierarchy. TRUNCATE has no equivalent

to the ONLY keyword of the DELETE statement to restricts the operation to a

single table within the typed table hierarchy.

Dynamic Server always logs the TRUNCATE operation, even for a non-logging

table. In databases that support transaction logging, only the COMMIT WORK or

ROLLBACK WORK statement of SQL is valid after TRUNCATE within the same

transaction. For information on the performance impact of using the TRUNCATE

statement, see your IBM Informix Performance Guide. For the complete syntax, see

the IBM Informix Guide to SQL: Syntax.

Deleting Specified Rows

The WHERE clause in a DELETE statement has the same form as the WHERE

clause in a SELECT statement. You can use it to designate exactly which row or

rows should be deleted. You can delete a customer with a specific customer

number, as the following example shows:

DELETE FROM customer WHERE customer_num = 175;

In this example, because the customer_num column has a unique constraint, you

can ensure that no more than one row is deleted.

Deleting Selected Rows

You can also choose rows that are based on nonindexed columns, as the following

example shows:

DELETE FROM customer WHERE company = ’Druid Cyclery’;

Because the column that is tested does not have a unique constraint, this statement

might delete more than one row. (Druid Cyclery might have two stores, both with

the same name but different customer numbers.)

To find out how many rows a DELETE statement affects, select the count of

qualifying rows from the customer table for Druid Cyclery.

SELECT COUNT(*) FROM customer WHERE company = ’Druid Cyclery’;

You can also select the rows and display them to ensure that they are the ones you

want to delete.

Using a SELECT statement as a test is only an approximation, however, when the

database is available to multiple users concurrently. Between the time you execute

the SELECT statement and the subsequent DELETE statement, other users could

have modified the table and changed the result. In this example, another user

might perform the following actions:

v Insert a new row for another customer named Druid Cyclery

v Delete one or more of the Druid Cyclery rows before you insert the new row

v Update a Druid Cyclery row to have a new company name, or update some

other customer to have the name Druid Cyclery.

6-4 IBM Informix Guide to SQL: Tutorial

Although it is not likely that other users would do these things in that brief

interval, the possibility does exist. This same problem affects the UPDATE

statement. Ways of addressing this problem are discussed under “Concurrency and

Locks” on page 6-36, and in greater detail in Chapter 10, “Programming for a

Multiuser Environment,” on page 10-1.

Another problem you might encounter is a hardware or software failure before the

statement finishes. In this case, the database might have deleted no rows, some

rows, or all specified rows. The state of the database is unknown, which is

undesirable. To prevent this situation, use transaction logging, as “Interrupted

Modifications” on page 6-32 discusses.

Deleting Rows That Contain Row Types (IDS)

When a row contains a column that is defined on a ROW type, you can use dot

notation to specify that the only rows deleted are those that contain a specific field

value. For example, the following statement deletes only those rows from the

employee table in which the value of the city field in the address column is San

Jose:

DELETE FROM employee

 WHERE address.city = ’San Jose’;

In the preceding statement, the address column might be a named ROW type or

an unnamed ROW type. The syntax you use to specify field values of a ROW type

is the same.

Deleting Rows That Contain Collection Types (IDS)

When a row contains a column that is defined on a collection type, you can search

for a particular element in a collection and delete the row or rows in which that

element is found. For example, the following statement deletes rows in which the

direct_reports column contains a collection with the element Baker:

DELETE FROM manager

 WHERE ’Baker’ IN direct_reports;

Deleting Rows from a Supertable (IDS)

When you delete the rows of a supertable, the scope of the delete is a supertable

and its subtables. Suppose you create a supertable person that has two subtables

employee and sales_rep defined under it. The following DELETE statement on the

person table can delete rows from all the tables person, employee, and sales_rep:

DELETE FROM person

 WHERE name =’Walker’;

To limit a delete to rows of the supertable only, you must use the ONLY keyword

in the DELETE statement. For example, the following statement deletes rows of the

person table only:

DELETE FROM ONLY(person)

 WHERE name =’Walker’;

Warning: Use caution when you delete rows from a supertable because the scope

of a delete on a supertable includes the supertable and all its subtables.

Complicated Delete Conditions

The WHERE clause in a DELETE statement can be almost as complicated as the

one in a SELECT statement. It can contain multiple conditions that are connected

by AND and OR, and it might contain subqueries.

Chapter 6. Modifying Data 6-5

Suppose you discover that some rows of the stock table contain incorrect

manufacturer codes. Rather than update them, you want to delete them so that

they can be re-entered. You know that these rows, unlike the correct ones, have no

matching rows in the manufact table. The fact that these incorrect rows have no

matching rows in the manufact table allows you to write a DELETE statement

such as the one in the following example:

DELETE FROM stock

 WHERE 0 = (SELECT COUNT(*) FROM manufact

 WHERE manufact.manu_code = stock.manu_code);

The subquery counts the number of rows of manufact that match; the count is 1

for a correct row of stock and 0 for an incorrect one. The latter rows are chosen for

deletion.

Tip: One way to develop a DELETE statement with a complicated condition is to

first develop a SELECT statement that returns precisely the rows to be

deleted. Write it as SELECT *; when it returns the desired set of rows, change

SELECT * to read DELETE and execute it once more.

The WHERE clause of a DELETE statement cannot use a subquery that tests the

same table. That is, when you delete from stock, you cannot use a subquery in the

WHERE clause that also selects from stock.

The key to this rule is in the FROM clause. If a table is named in the FROM clause

of a DELETE statement, it cannot also appear in the FROM clause of a subquery of

the DELETE statement.

Using a Delete Join (XPS)

Instead of writing a subquery in the WHERE clause, in Extended Parallel Server,

you can use a delete join to join rows from various tables and delete these rows

from a target table based on the join results.

As in the above example, suppose you discover that some rows of the stock table

contain incorrect manufacturer codes. Rather than update them, you want to delete

them so that they can be re-entered. You can use a delete join query such as the

one in the following example:

DELETE FROM stock USING stock, manufact

 WHERE stock.manu_code != manufact.manu_code;

All tables being joined should be listed in the using clause. Even if the target table

is not being used for the join, it should be listed in the using clause. For more

information on delete joins, see the DELETE statement in the IBM Informix Guide to

SQL: Syntax.

Inserting Rows

The INSERT statement adds a new row, or rows, to a table. The statement has two

basic functions. It can create a single new row using column values you supply, or

it can create a group of new rows using data selected from other tables.

Single Rows

In its simplest form, the INSERT statement creates one new row from a list of

column values and puts that row in the table. The following statement shows how

to add a row to the stock table:

6-6 IBM Informix Guide to SQL: Tutorial

INSERT INTO stock

 VALUES (115, ’PRC’, ’tire pump’, 108, ’box’, ’6/box’);

The stock table has the following columns:

v stock_num (a number that identifies the type of merchandise)

v manu_code (a foreign key to the manufact table)

v description (a description of the merchandise)

v unit_price (the unit price of the merchandise)

v unit (of measure)

v unit_descr (characterizes the unit of measure)

The values that are listed in the VALUES clause in the preceding example have a

one-to-one correspondence with the columns of the stock table. To write a VALUES

clause, you must know the columns of the tables as well as their sequence from

first to last.

Possible Column Values

The VALUES clause accepts only constant values, not expressions. You can supply

the following values:

v Literal numbers

v Literal DATETIME values

v Literal INTERVAL values

v Quoted strings of characters

v The word NULL for a NULL value

v The word TODAY for the current date

v The word CURRENT (or SYSDATE) for the current date and time

v The word USER for your user name

v The word DBSERVERNAME (or SITENAME) for the name of the computer

where the database server is running

Restrictions on Column Values

Some columns of a table might not allow null values. If you attempt to insert NULL

in such a column, the statement is rejected. Other columns in the table might not

permit duplicate values. If you specify a value that is a duplicate of one that is

already in such a column, the statement is rejected. Some columns might even

restrict the possible column values allowed. Use data integrity constraints to restrict

columns. For more information, see “Data Integrity” on page 6-22.

Do not specify the currency symbols for columns that contain money values. Just

specify the numeric value of the amount.

The database server can convert between numeric and character data types. You

can give a string of numeric characters (for example, ’-0075.6’) as the value of a

numeric column. The database server converts the numeric string to a number. An

error occurs only if the string does not represent a number.

You can specify a number or a date as the value for a character column. The

database server converts that value to a character string. For example, if you

specify TODAY as the value for a character column, a character string that

represents the current date is used. (The DBDATE environment variable specifies

the format that is used.)

Chapter 6. Modifying Data 6-7

Serial Data Types

A table can have only one column of the SERIAL data type and only one column

of the SERIAL8 data type. The database server generates values for serial columns.

When you insert values, specify the value zero for the serial column. The database

server generates the next actual value in sequence. Serial columns do not allow

NULL values.

You can specify a nonzero value for a serial column (as long as it does not

duplicate any existing value in that column), and the database server uses the

value. That nonzero value might set a new starting point for values that the

database server generates. (The next value the database server generates for you is

one greater than the maximum value in the column.)

Listing Specific Column Names

You do not have to specify values for every column. Instead, you can list the

column names after the table name and then supply values for only those columns

that you named. The following example shows a statement that inserts a new row

into the stock table:

INSERT INTO stock (stock_num, description, unit_price, manu_code)

 VALUES (115, ’tyre pump ’, 114, ’SHM’);

Only the data for the stock number, description, unit price, and manufacturer code

is provided. The database server supplies the following values for the remaining

columns:

v It generates a serial number for an unlisted serial column.

v It generates a default value for a column with a specific default associated with

it.

v It generates a NULL value for any column that allows nulls but it does not

specify a default value for any column that specifies NULL as the default value.

You must list and supply values for all columns that do not specify a default

value or do not permit NULL values.

You can list the columns in any order, as long as the values for those columns are

listed in the same order. For information about how to designate null or default

values for a column, see the IBM Informix Database Design and Implementation Guide.

After the INSERT statement in the preceding example is executed, the following

new row is inserted into the stock table:

stock_num manu_code description unit_price unit unit_descr

 115 SHM tyre pump 114

Both unit and unit_descr are blank, which indicates that NULL values exist in

those two columns. Because the unit column permits NULL values, the number of

tire pumps that can be purchased for $114 is not known. Of course, if a default

value of box were specified for this column, then box would be the unit of

measure. In any case, when you insert values into specific columns of a table, pay

attention to what data is needed for that row.

Inserting Rows into Typed Tables (IDS)

You can insert rows into a typed table in the same way you insert rows into a table

not based on a ROW type.

When a typed table contains a row-type column (the named ROW type that

defines the typed table contains a nested ROW type), you insert into the row-type

6-8 IBM Informix Guide to SQL: Tutorial

column in the same way you insert into a row-type column for a table not based

on a ROW type. The following section, “Inserting into Row-Type Columns (IDS),”

describes how to perform inserts into row-type columns.

This section uses row types zip_t, address_t, and employee_t and typed table

employee for examples. Figure 6-1 shows the SQL syntax that creates the row

types and table.

Inserting into Row-Type Columns (IDS)

The following syntax rules apply for inserts on columns that are defined on named

ROW types or unnamed ROW types:

v Specify the ROW constructor before the field values to be inserted.

v Enclose the field values of the ROW type in parentheses.

v Cast the ROW expression to the appropriate named ROW type (for named ROW

types).

Rows That Contain Named Row Types

The following statement shows you how to insert a row into the employee table in

Figure 6-2 on page 6-10:

INSERT INTO employee

 VALUES (’Poole, John’,

 ROW(’402 High St’, ’Willits’, ’CA’,

 ROW(69055,1450))::address_t, 35000);

Because the address column of the employee table is a named ROW type, you

must use a cast operator and the name of the ROW type (address_t) to insert a

value of type address_t.

Rows That Contain Unnamed Row Types

Suppose you create the table that Figure 6-2 shows. The student table defines the

s_address column as an unnamed row type.

CREATE ROW TYPE zip_t

(

 z_code CHAR(5),

 z_suffix CHAR(4)

);

CREATE ROW TYPE address_t

(

 street VARCHAR(20),

 city VARCHAR(20),

 state CHAR(2),

 zip zip_t

);

CREATE ROW TYPE employee_t

(

 name VARCHAR(30),

 address address_t,

 salary INTEGER

);

CREATE TABLE employee OF TYPE employee_t;

Figure 6-1.

Chapter 6. Modifying Data 6-9

The following statement shows you how to add a row to the student table. To

insert into the unnamed row-type column s_address, use the ROW constructor but

do not cast the row-type value.

INSERT INTO student

 VALUES (’Keene, Terry’,

 ROW(’53 Terra Villa’, ’Wheeling’, ’IL’, ’45052’),

 3.75);

Specifying Null Values for Row Types

The fields of a row-type column can contain null values. You can specify NULL

values either at the level of the column or the field.

The following statement specifies a null value at the column level to insert NULL

values for all fields of the s_address column. When you insert a NULL value at the

column level, do not include the ROW constructor.

INSERT INTO student VALUES (’Brauer, Howie’, NULL, 3.75)

When you insert a NULL value for particular fields of a row type, you must

include the ROW constructor. The following INSERT statement shows how you

might insert null values into particular fields of the address column of the

employee table. (The address column is defined as a named ROW type.)

INSERT INTO employee

 VALUES (

 ’Singer, John’,

 ROW(NULL, ’Davis’, ’CA’,

 ROW(97000, 2000))::address_t, 67000

);

When you specify a NULL value for the field of a ROW type, you do not need to

explicitly cast the NULL value when the ROW type occurs in an INSERT

statement, an UPDATE statement, or a program variable assignment.

The following INSERT statement shows how you insert NULL values for the street

and zip fields of the s_address column for the student table:

INSERT INTO student

 VALUES(

 ’Henry, John’,

 ROW(NULL, ’Seattle’, ’WA’, NULL), 3.82

);

Inserting Rows into Supertables (IDS)

No special considerations exist when you insert a row into a supertable. An

INSERT statement applies only to the table that is specified in the statement. For

example, the following statement inserts values into the supertable but does not

insert values into any subtables:

CREATE TABLE student

(

s_name VARCHAR(30),

s_address ROW(street VARCHAR (20), city VARCHAR(20),

 state CHAR(2), zip VARCHAR(9)),

 grade_point_avg DECIMAL(3,2)

);

Figure 6-2.

6-10 IBM Informix Guide to SQL: Tutorial

INSERT INTO person

 VALUES (

 ’Poole, John’,

 ROW(’402 Saphire St.’, ’Elmondo’, ’CA’, ’69055’),

 345605900

);

Inserting Collection Values into Columns (IDS)

This section describes how to insert a collection value into a column with

DB–Access. It does not discuss how to insert individual elements into a collection

column. To access or modify the individual elements of a collection, use an

Informix ESQL/C program or SPL routine. For information about how to create an

Informix ESQL/C program to insert into a collection, see the IBM Informix ESQL/C

Programmer’s Manual. For information about how to create an SPL routine to insert

into a collection, see Chapter 11.

The examples that this section provides are based on the manager table in

Figure 6-3. The manager table contains both simple and nested collection types.

Inserting into Simple Collections and Nested Collections

When you insert values into a row that contains a collection column, you insert the

values of all the elements that the collection contains as well as values for the other

columns. For example, the following statement inserts a single row into the

manager table, which includes columns for both simple collections and nested

collections:

INSERT INTO manager(mgr_name, department,

 direct_reports, projects)

 VALUES

(

’Sayles’, ’marketing’,

"SET{’Simonian’, ’Waters’, ’Adams’, ’Davis’, ’Jones’}",

LIST{

 ROW(’voyager_project’, SET{’Simonian’, ’Waters’,

 ’Adams’, ’Davis’}),

 ROW (’horizon_project’, SET{’Freeman’, ’Jacobs’,

 ’Walker’, ’Smith’, ’Cannan’}),

 ROW (’saphire_project’, SET{’Villers’, ’Reeves’,

 ’Doyle’, ’Strongin’})

 }

);

Inserting Null Values into a Collection That Contains a Row Type

To insert values into a collection that is a ROW type, you must specify a value for

each field in the ROW type.

CREATE TABLE manager

(

 mgr_name VARCHAR(30),

 department VARCHAR(12),

 direct_reports SET(VARCHAR(30) NOT NULL),

 projects LIST(ROW(pro_name VARCHAR(15),

 pro_members SET(VARCHAR(20) NOT NULL))

 NOT NULL)

);

Figure 6-3.

Chapter 6. Modifying Data 6-11

In general, NULL values are not allowed in a collection. However, if the element

type of the collection is a ROW type, you can insert NULL values into individual

fields of the row type.

You can also specify an empty collection. An empty collection is a collection that

contains no elements. To specify an empty collection, use the braces ({}). For

example, the following statement inserts data into a row in the manager table but

specifies that the direct_reports and projects columns are empty collections:

INSERT INTO manager

 VALUES (’Sayles’, ’marketing’, "SET{}",

 "LIST{ROW(NULL, SET{})}"

);

A collection column cannot contain NULL elements. The following statement

returns an error because NULL values are specified as elements of collections:

INSERT INTO manager

 VALUES (’Cole’, ’accounting’, "SET{NULL}",

 "LIST{ROW(NULL, ""SET{NULL}"")}"

The following syntax rules apply for performing inserts and updates on collection

types:

v Use braces ({}) to demarcate the elements that each collection contains.

v If the collection is a nested collection, use braces ({}) to demarcate the elements

of both the inner and outer collections.

Inserting Smart Large Objects (IDS)

When you use the INSERT statement to insert an object into a BLOB or CLOB

column, the database server stores the object in an sbspace, rather than the table.

The database server provides SQL functions that you can call from within an

INSERT statement to import and export BLOB or CLOB data, otherwise known as

smart large objects. For a description of these functions, see page 4-14.

The following INSERT statement uses the filetoblob() and filetoclob() functions to

insert a row of the inmate table. (Figure 4-55 on page 4-15 defines the inmate

table.)

INSERT INTO inmate

 VALUES (437, FILETOBLOB(’datafile’, ’client’),

 FILETOCLOB(’tmp/text’, ’server’));

In the preceding example, the first argument for the FILETOBLOB() and

FILETOCLOB() functions specifies the path of the source file to be copied into the

BLOB and CLOB columns of the inmate table, respectively. The second argument

for each function specifies whether the source file is located on the client computer

(’client’) or server computer (’server’). To specify the path of a filename in the

function argument, apply the following rules:

v If the source file resides on the server computer, you must specify the full

pathname to the file (not the pathname relative to the current working

directory).

v If the source file resides on the client computer, you can specify either the full or

relative pathname to the file.

Multiple Rows and Expressions

The other major form of the INSERT statement replaces the VALUES clause with a

SELECT statement. This feature allows you to insert the following data:

6-12 IBM Informix Guide to SQL: Tutorial

v Multiple rows with only one statement (each time the SELECT statement returns

a row, a row is inserted)

v Calculated values (the VALUES clause permits only constants) because the

projection list can contain expressions

For example, suppose a follow-up call is required for every order that has been

paid for but not shipped. The INSERT statement in the following example finds

those orders and inserts a row in cust_calls for each order:

INSERT INTO cust_calls (customer_num, call_descr)

 SELECT customer_num, order_num FROM orders

 WHERE paid_date IS NOT NULL

 AND ship_date IS NULL;

This SELECT statement returns two columns. The data from these columns (in

each selected row) is inserted into the named columns of the cust_calls table. Then

an order number (from order_num, a SERIAL column) is inserted into the call

description, which is a character column. Remember that the database server

allows you to insert integer values into a character column. It automatically

converts the serial number to a character string of decimal digits.

Restrictions on the Insert Selection

The following list contains the restrictions on the SELECT statement for inserting

rows:

v It cannot contain an INTO clause.

v It cannot contain an INTO TEMP clause.

v It cannot contain an ORDER BY clause.

v It cannot refer to the table into which you are inserting rows.

Extended Parallel Server

Extended Parallel Server allows you to use a SELECT statement that contains an

ORDER BY clause in an INSERT SELECT statement.

End of Extended Parallel Server

 The INTO, INTO TEMP, and ORDER BY clause restrictions are minor. The INTO

clause is not useful in this context. (For more information, see Chapter 8.) To work

around the INTO TEMP clause restriction, first select the data you want to insert

into a temporary table and then insert the data from the temporary table with the

INSERT statement. Likewise, the lack of an ORDER BY clause is not important. If

you need to ensure that the new rows are physically ordered in the table, you can

first select them into a temporary table and order it, and then insert from the

temporary table. You can also apply a physical order to the table using a clustered

index after all insertions are done.

Important: The last restriction is more serious because it prevents you from

naming the same table in both the INTO clause of the INSERT

statement and the FROM clause of the SELECT statement. Naming the

same table in both the INTO clause of the INSERT statement and the

FROM clause of the SELECT statement causes the database server to

enter an endless loop in which each inserted row is reselected and

reinserted.

In some cases, however, you might want to select from the same table into which

you must insert data. For example, suppose that you have learned that the Nikolus

Chapter 6. Modifying Data 6-13

company supplies the same products as the Anza company, but at half the price.

You want to add rows to the stock table to reflect the difference between the two

companies. Optimally, you want to select data from all the Anza stock rows and

reinsert it with the Nikolus manufacturer code. However, you cannot select from

the same table into which you are inserting.

To get around this restriction, select the data you want to insert into a temporary

table. Then select from that temporary table in the INSERT statement, as the

following example shows:

SELECT stock_num, ’NIK’ temp_manu, description, unit_price/2

 half_price, unit, unit_descr FROM stock

 WHERE manu_code = ’ANZ’

 AND stock_num < 110

 INTO TEMP anzrows;

INSERT INTO stock SELECT * FROM anzrows;

DROP TABLE anzrows;

This SELECT statement takes existing rows from stock and substitutes a literal

value for the manufacturer code and a computed value for the unit price. These

rows are then saved in a temporary table, anzrows, which is immediately inserted

into the stock table.

When you insert multiple rows, a risk exists that one of the rows contains invalid

data that might cause the database server to report an error. When such an error

occurs, the statement terminates early. Even if no error occurs, a small risk exists

that a hardware or software failure might occur while the statement is executing

(for example, the disk might fill up).

In either event, you cannot easily tell how many new rows were inserted. If you

repeat the statement in its entirety, you might create duplicate rows, or you might

not. Because the database is in an unknown state, you cannot know what to do.

The solution lies in using transactions, as “Interrupted Modifications” on page 6-32

discusses.

Updating Rows

Use the UPDATE statement to change the contents of one or more columns in one

or more existing rows of a table. This statement takes two fundamentally different

forms. One lets you assign specific values to columns by name; the other lets you

assign a list of values (that might be returned by a SELECT statement) to a list of

columns. In either case, if you are updating rows, and some of the columns have

data integrity constraints, the data you change must be within the constraints

placed on those columns. For more information, refer to “Data Integrity” on page

6-22.

Selecting Rows to Update

Either form of the UPDATE statement can end with a WHERE clause that

determines which rows are modified. If you omit the WHERE clause, all rows are

modified. To select the precise set of rows that need changing in the WHERE

clause can be quite complicated. The only restriction on the WHERE clause is that

the table that you update cannot be named in the FROM clause of a subquery.

The first form of an UPDATE statement uses a series of assignment clauses to

specify new column values, as the following example shows:

6-14 IBM Informix Guide to SQL: Tutorial

UPDATE customer

 SET fname = ’Barnaby’, lname = ’Dorfler’

 WHERE customer_num = 103;

The WHERE clause selects the row you want to update. In the demonstration

database, the customer.customer_num column is the primary key for that table, so

this statement can update no more than one row.

You can also use subqueries in the WHERE clause. Suppose that the Anza

Corporation issues a safety recall of their tennis balls. As a result, any unshipped

orders that include stock number 6 from manufacturer ANZ must be put on back

order, as the following example shows:

UPDATE orders

 SET backlog = ’y’

 WHERE ship_date IS NULL

 AND order_num IN

 (SELECT DISTINCT items.order_num FROM items

 WHERE items.stock_num = 6

 AND items.manu_code = ’ANZ’);

This subquery returns a column of order numbers (zero or more). The UPDATE

operation then tests each row of orders against the list and performs the update if

that row matches.

Updating with Uniform Values

Each assignment after the keyword SET specifies a new value for a column. That

value is applied uniformly to every row that you update. In the examples in the

previous section, the new values were constants, but you can assign any

expression, including one based on the column value itself. Suppose the

manufacturer code HRO has raised all prices by five percent, and you must update

the stock table to reflect this increase. Use the following statement:

UPDATE stock

 SET unit_price = unit_price * 1.05

 WHERE manu_code = ’HRO’;

You can also use a subquery as part of the assigned value. When a subquery is

used as an element of an expression, it must return exactly one value (one column

and one row). Perhaps you decide that for any stock number, you must charge a

higher price than any manufacturer of that product. You need to update the prices

of all unshipped orders. The SELECT statements in the following example specify

the criteria:

UPDATE items

 SET total_price = quantity *

 (SELECT MAX (unit_price) FROM stock

 WHERE stock.stock_num = items.stock_num)

 WHERE items.order_num IN

 (SELECT order_num FROM orders

 WHERE ship_date IS NULL);

The first SELECT statement returns a single value: the highest price in the stock

table for a particular product. The first SELECT statement is a correlated subquery

because, when a value from items appears in the WHERE clause for the first

SELECT statement, you must execute the query for every row that you update.

The second SELECT statement produces a list of the order numbers of unshipped

orders. It is an uncorrelated subquery that is executed once.

Chapter 6. Modifying Data 6-15

Restrictions on Updates

Restrictions exist on the use of subqueries when you modify data. In particular,

you cannot query the table that is being modified. You can refer to the present

value of a column in an expression, as in the example that increments the

unit_price column by 5 percent. You can also refer to a value of a column in a

WHERE clause in a subquery, as in the example that updated the stock table, in

which the items table is updated and items.stock_num is used in a join

expression.

Extended Parallel Server

Extended Parallel Server does not allow you to use a subquery in the SET clause of

an UPDATE statement.

End of Extended Parallel Server

 The need to update and query a table at the same time does not occur often in a

well-designed database. (For more information about database design, see the IBM

Informix Database Design and Implementation Guide.) However, you might want to

update and query at the same time when a database is first being developed,

before its design has been carefully thought through. A typical problem arises

when a table inadvertently and incorrectly contains a few rows with duplicate

values in a column that should be unique. You might want to delete the duplicate

rows or update only the duplicate rows. Either way, a test for duplicate rows

inevitably requires a subquery on the same table that you want to modify, which is

not allowed in an UPDATE statement or DELETE statement. Chapter 9 discusses

how to use an update cursor to perform this kind of modification.

Updating with Selected Values

The second form of UPDATE statement replaces the list of assignments with a

single bulk assignment, in which a list of columns is set equal to a list of values.

When the values are simple constants, this form is nothing more than the form of

the previous example with its parts rearranged, as the following example shows:

UPDATE customer

 SET (fname, lname) = (’Barnaby’, ’Dorfler’)

 WHERE customer_num = 103;

No advantage exists to writing the statement this way. In fact, it is harder to read

because it is not obvious which values are assigned to which columns.

However, when the values to be assigned come from a single SELECT statement,

this form makes sense. Suppose that changes of address are to be applied to

several customers. Instead of updating the customer table each time a change is

reported, the new addresses are collected in a single temporary table named

newaddr. It contains columns for the customer number and the address-related

fields of the customer table. Now the time comes to apply all the new addresses at

once.

UPDATE customer

 SET (address1, address2, city, state, zipcode) =

 ((SELECT address1, address2, city, state, zipcode

 FROM newaddr

 WHERE newaddr.customer_num=customer.customer_num))

 WHERE customer_num IN (SELECT customer_num FROM newaddr);

A single SELECT statement produces the values for multiple columns. If you

rewrite this example in the other form, with an assignment for each updated

6-16 IBM Informix Guide to SQL: Tutorial

column, you must write five SELECT statements, one for each column to be

updated. Not only is such a statement harder to write, but it also takes much

longer to execute.

Tip: In SQL API programs, you can use record or host variables to update values.

For more information, refer to Chapter 8.

Updating Row Types (IDS)

The syntax you use to update a row-type value differs somewhat depending on

whether the column is a named ROW type or unnamed ROW type. This section

describes those differences and also describes how to specify NULL values for the

fields of a ROW type.

Updating Rows That Contain Named Row Types

To update a column that is defined on a named ROW type, you must specify all

fields of the ROW type. For example, the following statement updates only the

street and city fields of the address column in the employee table, but each field

of the ROW type must contain a value (NULL values are allowed):

UPDATE employee

 SET address = ROW(’103 California St’,

 San Francisco’, address.state, address.zip)::address_t

 WHERE name = ’zawinul, joe’;

In this example, the values of the state and zip fields are read from and then

immediately reinserted into the row. Only the street and city fields of the address

column are updated.

When you update the fields of a column that are defined on a named ROW type,

you must use a ROW constructor and cast the row value to the appropriate named

ROW type.

Updating Rows That Contain Unnamed Row Types

To update a column that is defined on an unnamed ROW type, you must specify

all fields of the ROW type. For example, the following statement updates only the

street and city fields of the address column in the student table, but each field of

the ROW type must contain a value (NULL values are allowed):

UPDATE student

 SET s_address = ROW(’13 Sunset’, ’Fresno’,

 s_address.state, s_address.zip)

 WHERE s_name = ’henry, john’;

To update the fields of a column that are defined on an unnamed ROW type,

always specify the ROW constructor before the field values to be inserted.

Specifying Null Values for the Fields of a Row Type

The fields of a row-type column can contain NULL values. When you insert into or

update a row-type field with a NULL value, you must cast the value to the data

type of that field.

The following UPDATE statement shows how you might specify NULL values for

particular fields of a named row-type column:

UPDATE employee

 SET address = ROW(NULL::VARCHAR(20), ’Davis’, ’CA’,

 ROW(NULL::CHAR(5), NULL::CHAR(4)))::address_t)

 WHERE name = ’henry, john’;

Chapter 6. Modifying Data 6-17

The following UPDATE statement shows how you specify NULL values for the

street and zip fields of the address column for the student table.

UPDATE student

 SET address = ROW(NULL::VARCHAR(20), address.city,

 address.state, NULL::VARCHAR(9))

 WHERE s_name = ’henry, john’;

Important: You cannot specify NULL values for a row-type column. You can only

specify NULL values for the individual fields of the row type.

Updating Collection Types (IDS)

When you use DB–Access to update a collection type, you must update the entire

collection. The following statement shows how to update the projects column. To

locate the row that needs to be updated, use the IN keyword to perform a search

on the direct_reports column.

UPDATE manager

SET projects = "LIST

{

 ROW(’brazil_project’, SET{’Pryor’, ’Murphy’, ’Kinsley’,

 ’Bryant’}),

 ROW (’cuba_project’, SET{’Forester’, ’Barth’, ’Lewis’,

 ’Leonard’})

}"

WHERE ’Williams’ IN direct_reports;

The first occurrence of the SET keyword in the preceding statement is part of the

UPDATE statement syntax.

Tip: Do not confuse the SET keyword of an UPDATE statement with the SET

constructor that indicates that a collection is a SET data type.

Although you can use the IN keyword to locate specific elements of a simple

collection, you cannot update individual elements of a collection column from

DB–Access. However, you can create Informix ESQL/C programs and SPL routines

to update elements within a collection. For information about how to create an

Informix ESQL/C program to update a collection, see the IBM Informix ESQL/C

Programmer’s Manual. For information about how to create SPL routines to update a

collection, see the section “Handling Collections (IDS)” on page 11-37.

Updating Rows of a Supertable (IDS)

When you update the rows of a supertable, the scope of the update is a supertable

and its subtables.

When you construct an UPDATE statement on a supertable, you can update all

columns in the supertable and columns of subtables that are inherited from the

supertable. For example, the following statement updates rows from the employee

and sales_rep tables, which are subtables of the supertable person:

UPDATE person

 SET salary=65000

 WHERE address.state = ’CA’;

However, an update on a supertable does not allow you to update columns from

subtables that are not in the supertable. For example, in the previous update

statement, you cannot update the region_num column of the sales_rep table

because the region_num column does not occur in the employee table.

6-18 IBM Informix Guide to SQL: Tutorial

When you perform updates on supertables, be aware of the scope of the update.

For example, an UPDATE statement on the person table that does not include a

WHERE clause to restrict which rows to update, modifies all rows of the person,

employee, and sales_rep table.

To limit an update to rows of the supertable only, you must use the ONLY

keyword in the UPDATE statement. For example, the following statement updates

rows of the person table only:

UPDATE ONLY(person)

 SET address = ROW(’14 Jackson St’, ’Berkeley’,

 address.state, address.zip)

 WHERE name = ’Sallie, A.’;

Warning: Use caution when you update rows of a supertable because the scope of

an update on a supertable includes the supertable and all its subtables.

Using a CASE Expression to Update a Column

The CASE expression allows a statement to return one of several possible results,

depending on which of several condition tests evaluates to TRUE.

The following example shows how to use a CASE expression in an UPDATE

statement to increase the unit price of certain items in the stock table:

UPDATE stock

 SET unit_price = CASE

 WHEN stock_num = 1

 AND manu_code = "HRO"

 THEN unit_price * 1.2

 WHEN stock_num = 1

 AND manu_code = "SMT"

 THEN unit_price * 1.1

 ELSE 0

 END

You must include at least one WHEN clause within the CASE expression;

subsequent WHEN clauses and the ELSE clause are optional. If no WHEN

condition evaluates to true, the resulting value is null.

Using SQL Functions to Update Smart Large Objects (IDS)

You can use an SQL function that you can call from within an UPDATE statement

to import and export smart large objects. For a description of these functions, see

page 4-14.

The following UPDATE statement uses the LOCOPY() function to copy BLOB data

from the mugshot column of the fbi_list table into the picture column of the

inmate table. (Figure 4-55 on page 4-15 defines the inmate and fbi_list tables.)

UPDATE inmate (picture)

 SET picture = (SELECT LOCOPY(mugshot, ’inmate’, ’picture’)

 FROM fbi_list WHERE fbi_list.id = 669)

 WHERE inmate.id_num = 437;

The first argument for LOCOPY() specifies the column (mugshot) from which the

object is exported. The second and third arguments specify the name of the table

(inmate) and column (picture) whose storage characteristics the newly created

object will use. After execution of the UPDATE statement, the picture column

contains data from the mugshot column.

Chapter 6. Modifying Data 6-19

When you specify the path of a filename in the function argument, apply the

following rules:

v If the source file resides on the server computer, you must specify the full

pathname to the file (not the pathname relative to the current working

directory).

v If the source file resides on the client computer, you can specify either the full or

relative pathname to the file.

Using a Join to Update a Column

Extended Parallel Server allows you to use a join on tables to determine which

columns to update. You can use columns from any table that you list in the FROM

clause in the SET clause to specify values for the columns and rows to update.

When you use the FROM clause, you must include the name of the table in which

the update is to be performed. Otherwise, an error results. The following example

illustrates how you can use the UPDATE statement with a FROM clause:

UPDATE t SET a = t2.a FROM t, t2 WHERE t.b = t2.b;

In the preceding example, the statement performs the same action as it does when

you omit the FROM clause altogether. You are allowed to specify more than one

table in the FROM clause of the UPDATE statement. However, if you specify only

one table, it must be the target table.

Privileges on a Database and on its Objects

You can use the following database privileges to control who accesses a database:

v Database-level privileges

v Table-level privileges

v Routine-level privileges

v Language-level privileges

v Type-level privileges

v Sequence-level privileges

v Fragment-level privileges

This section briefly describes database- and table-level privileges. For more

information about database privileges, see the IBM Informix Database Design and

Implementation Guide. For a list of privileges and a description of the GRANT and

REVOKE statements, see the IBM Informix Guide to SQL: Syntax.

Database-Level Privileges

When you create a database, you are the only one who can access it until you, as

the owner or database administrator (DBA) of the database, grant database-level

privileges to others. The following table shows database-level privileges.

Privilege Effect

Connect Allows you to open a database, issue queries, and create and place

indexes on temporary tables.

Resource Allows you to create permanent tables.

DBA Allows you to perform several additional functions as the DBA.

6-20 IBM Informix Guide to SQL: Tutorial

Table-Level Privileges

When you create a table in a database that is not ANSI compliant, all users have

access privileges to the table until you, as the owner of the table, revoke table-level

privileges from specific users. The following table introduces the four privileges

that govern how users can access a table.

Privilege Purpose

Select Granted on a table-by-table basis and allows you to select rows

from a table. (This privilege can be limited to specific columns in a

table.)

Delete Allows you to delete rows.

Insert Allows you to insert rows.

Update Allows you to update existing rows (that is, to change their

content).

 The people who create databases and tables often grant the Connect and Select

privileges to public so that all users have them. If you can query a table, you have

at least the Connect and Select privileges for that database and table.

You need the other table-level privileges to modify data. The owners of tables

often withhold these privileges or grant them only to specific users. As a result,

you might not be able to modify some tables that you can query freely.

Because these privileges are granted on a table-by-table basis, you can have only

Insert privileges on one table and only Update privileges on another, for example.

The Update privileges can be restricted even further to specific columns in a table.

For more information on these and other table-level privileges, see the IBM

Informix Database Design and Implementation Guide.

Displaying Table Privileges

If you are the owner of a table (that is, if you created it), you have all privileges on

that table. Otherwise, you can determine the privileges you have for a certain table

by querying the system catalog. The system catalog consists of system tables that

describe the database structure. The privileges granted on each table are recorded

in the systabauth system table. To display these privileges, you must also know

the unique identifier number of the table. This number is specified in the systables

system table. To display privileges granted on the orders table, you might enter the

following SELECT statement:

SELECT * FROM systabauth

 WHERE tabid = (SELECT tabid FROM systables

 WHERE tabname = ’orders’);

The output of the query resembles the following example:

grantorgrantee tabid tabauth

tfecitmutator 101 su-i-x--

tfecitprocrustes101 s--idx--

tfecitpublic 101 s--i-x--

The grantor is the user who grants the privilege. The grantor is usually the owner

of the table but the owner can be another user that the grantor empowered. The

Chapter 6. Modifying Data 6-21

grantee is the user to whom the privilege is granted, and the grantee public means

“any user with Connect privilege.” If your user name does not appear, you have

only those privileges granted to public.

The tabauth column specifies the privileges granted. The letters in each row of this

column are the initial letters of the privilege names, except that i means Insert and

x means Index. In this example, public has Select, Insert, and Index privileges.

Only the user mutator has Update privileges, and only the user procrustes has

Delete privileges.

Before the database server performs any action for you (for example, execution of a

DELETE statement), it performs a query similar to the preceding one. If you are

not the owner of the table, and if the database server cannot find the necessary

privilege on the table for your user name or for public, it refuses to perform the

operation.

Granting Privileges to Roles

As DBA, you can create roles to standardize the privileges given to a class of users.

When you assign privileges to that role, every user of that role has those access

privileges. The SQL statements used for defining and manipulating roles include:

CREATE ROLE, DROP ROLE, GRANT, REVOKE, and SET ROLE. For more

information on the SQL syntax statements for defining and manipulating roles, see

the IBM Informix Guide to SQL: Syntax.

Default roles automatically apply upon connection to the database for particular

users and groups, without requiring the user to issue a SET ROLE statement. For

example:

GRANT DEFAULT ROLE manager TO larry;

For more information on roles and default roles, see “Controlling Database Use”

on page 1-5 or see the IBM Informix Administrator’s Guide.

For more information on granting and revoking privileges, see “Granting and

Revoking Privileges in Applications” on page 8-22 Also see IBM Informix Database

Design and Implementation Guide.

Data Integrity

The INSERT, UPDATE, and DELETE statements modify data in an existing

database. Whenever you modify existing data, the integrity of the data can be

affected. For example, an order for a nonexistent product could be entered into the

orders table, a customer with outstanding orders could be deleted from the

customer table, or the order number could be updated in the orders table and not

in the items table. In each of these cases, the integrity of the stored data is lost.

Data integrity is actually made up of the following parts:

v Entity integrity

Each row of a table has a unique identifier.

v Semantic integrity

The data in the columns properly reflects the types of information the column

was designed to hold.

v Referential integrity

The relationships between tables are enforced.

6-22 IBM Informix Guide to SQL: Tutorial

Well-designed databases incorporate these principles so that when you modify

data, the database itself prevents you from doing anything that might harm the

integrity of the data.

Entity Integrity

An entity is any person, place, or thing to be recorded in a database. Each table

represents an entity, and each row of a table represents an instance of that entity.

For example, if order is an entity, the orders table represents the idea of an order

and each row in the table represents a specific order.

To identify each row in a table, the table must have a primary key. The primary

key is a unique value that identifies each row. This requirement is called the entity

integrity constraint.

For example, the orders table primary key is order_num. The order_num column

holds a unique system-generated order number for each row in the table. To access

a row of data in the orders table, use the following SELECT statement:

SELECT * FROM orders WHERE order_num = 1001;

Using the order number in the WHERE clause of this statement enables you to

access a row easily because the order number uniquely identifies that row. If the

table allowed duplicate order numbers, it would be almost impossible to access

one single row because all other columns of this table allow duplicate values.

For more information on primary keys and entity integrity, see the IBM Informix

Database Design and Implementation Guide.

Semantic Integrity

Semantic integrity ensures that data entered into a row reflects an allowable value

for that row. The value must be within the domain, or allowable set of values, for

that column. For example, the quantity column of the items table permits only

numbers. If a value outside the domain can be entered into a column, the semantic

integrity of the data is violated.

The following constraints enforce semantic integrity:

v Data type

The data type defines the types of values that you can store in a column. For

example, the data type SMALLINT allows you to enter values from -32,767 to

32,767 into a column.

v Default value

The default value is the value inserted into the column when an explicit value is

not specified. For example, the user_id column of the cust_calls table defaults to

the login name of the user if no name is entered.

v Check constraint

The check constraint specifies conditions on data inserted into a column. Each

row inserted into a table must meet these conditions. For example, the quantity

column of the items table might check for quantities greater than or equal to

one.

For more information on how to use semantic integrity constraints in database

design, see the IBM Informix Database Design and Implementation Guide.

Chapter 6. Modifying Data 6-23

Referential Integrity

Referential integrity refers to the relationship between tables. Because each table in a

database must have a primary key, this primary key can appear in other tables

because of its relationship to data within those tables. When a primary key from

one table appears in another table, it is called a foreign key.

Foreign keys join tables and establish dependencies between tables. Tables can

form a hierarchy of dependencies in such a way that if you change or delete a row

in one table, you destroy the meaning of rows in other tables. For example,

Figure 6-4 shows that the customer_num column of the customer table is a

primary key for that table and a foreign key in the orders and cust_call tables.

Customer number 106, George Watson, is referenced in both the orders and

cust_calls tables. If customer 106 is deleted from the customer table, the link

between the three tables and this particular customer is destroyed.

When you delete a row that contains a primary key or update it with a different

primary key, you destroy the meaning of any rows that contain that value as a

foreign key. Referential integrity is the logical dependency of a foreign key on a

primary key. The integrity of a row that contains a foreign key depends on the

integrity of the row that it references—the row that contains the matching primary

key.

By default, the database server does not allow you to violate referential integrity

and gives you an error message if you attempt to delete rows from the parent table

before you delete rows from the child table. You can, however, use the ON

DELETE CASCADE option to cause deletes from a parent table to trip deletes on

child tables. See “Using the ON DELETE CASCADE Option” on page 6-24.

To define primary and foreign keys, and the relationship between them, use the

CREATE TABLE and ALTER TABLE statements. For more information on these

statements, see the IBM Informix Guide to SQL: Syntax. For information about how

to build a data model with primary and foreign keys, see the IBM Informix Database

Design and Implementation Guide.

Using the ON DELETE CASCADE Option

To maintain referential integrity when you delete rows from a primary key for a

table, use the ON DELETE CASCADE option in the REFERENCES clause of the

Figure 6-4. Referential Integrity in the Demonstration Database

6-24 IBM Informix Guide to SQL: Tutorial

CREATE TABLE and ALTER TABLE statements. This option allows you to delete a

row from a parent table and its corresponding rows in matching child tables with a

single delete command.

Locking During Cascading Deletes: During deletes, locks are held on all

qualifying rows of the parent and child tables. When you specify a delete, the

delete that is requested from the parent table occurs before any referential actions

are performed.

What Happens to Multiple Children Tables: If you have a parent table with two

child constraints, one child with cascading deletes specified and one child without

cascading deletes, and you attempt to delete a row from the parent table that

applies to both child tables, the DELETE statement fails, and no rows are deleted

from either the parent or child tables.

Logging Must Be Turned On: You must turn on logging in your current database

for cascading deletes to work. Logging and cascading deletes are discussed in

“Transaction Logging” on page 6-33.

Example of Cascading Deletes

Suppose you have two tables with referential integrity rules applied, a parent table,

accounts, and a child table, sub_accounts. The following CREATE TABLE

statements define the referential constraints:

CREATE TABLE accounts (

 acc_num SERIAL primary key,

 acc_type INT,

 acc_descr CHAR(20));

CREATE TABLE sub_accounts (

 sub_acc INTEGER primary key,

 ref_num INTEGER REFERENCES accounts (acc_num)

 ON DELETE CASCADE,

 sub_descr CHAR(20));

The primary key of the accounts table, the acc_num column, uses a SERIAL data

type, and the foreign key of the sub_accounts table, the ref_num column, uses an

INTEGER data type. Combining the SERIAL data type on the primary key and the

INTEGER data type on the foreign key is allowed. Only in this condition can you

mix and match data types. The SERIAL data type is an INTEGER, and the

database automatically generates the values for the column. All other primary and

foreign key combinations must match explicitly. For example, a primary key that is

defined as CHAR must match a foreign key that is defined as CHAR.

The definition of the foreign key of the sub_accounts table, the ref_num column,

includes the ON DELETE CASCADE option. This option specifies that a delete of

any row in the parent table accounts will automatically cause the corresponding

rows of the child table sub_accounts to be deleted.

To delete a row from the accounts table that will cascade a delete to the

sub_accounts table, you must turn on logging. After logging is turned on, you can

delete the account number 2 from both tables, as the following example shows:

DELETE FROM accounts WHERE acc_num = 2;

Restrictions on Cascading Deletes

You can use cascading deletes for most deletes, including deletes on

self-referencing and cyclic queries. The only exception is correlated subqueries,

which are nested SELECT statements in which the value that the subquery (or

inner SELECT) produces depends on a value produced by the outer SELECT

Chapter 6. Modifying Data 6-25

statement that contains it. If you have implemented cascading deletes, you cannot

write deletes that use a child table in the correlated subquery. You receive an error

when you attempt to delete from a correlated subquery.

Important: You cannot define a DELETE trigger event on a table if the table

defines a referential constraint with ON DELETE CASCADE.

Object Modes and Violation Detection

The object modes and violation detection features of the database can help you

monitor data integrity. These features are particularly powerful when they are

combined during schema changes or when insert, delete, and update operations

are performed on large volumes of data over short periods.

Database objects, within the context of a discussion of the object modes feature, are

constraints, indexes, and triggers, and each of them have different modes. Do not

confuse database objects that are relevant to the object modes feature with generic

database objects. Generic database objects are things like tables and synonyms.

Definitions of Object Modes

You can set disabled, enabled, or filtering modes for a constraint or a unique index.

You can set disabled or enabled modes for a trigger or a duplicate index. You can

use database object modes to control the effects of INSERT, DELETE, and UPDATE

statements.

Enabled Mode (IDS): Constraints, indexes, and triggers are enabled by default.

When a database object is enabled, the database server recognizes the existence of

the database object and takes the database object into consideration while it

executes an INSERT, DELETE, or UPDATE statement. Thus, an enabled constraint

is enforced, an enabled index updated, and an enabled trigger is executed when

the trigger event takes place.

When you enable constraints and unique indexes, if a violating row exists, the data

manipulation statement fails (that is no rows change) and the database server

returns an error message.

You can identify the reason for the failure when you analyze the information in the

violations and diagnostic tables. You can then take corrective action or roll back the

operation.

Disabled Mode (IDS): When a database object is disabled, the database server

does not take it into consideration during the execution of an INSERT, DELETE, or

UPDATE statement. A disabled constraint is not enforced, a disabled index is not

updated, and a disabled trigger is not executed when the trigger event takes place.

When you disable constraints and unique indexes, any data manipulation

statement that violates the restriction of the constraint or unique index succeed,

(that is, the target row is changed), and the database server does not return an

error message.

Filtering Mode: When a constraint or unique index is in filtering mode, the

statement succeeds and the database server enforces the constraint or the unique

index requirement during an INSERT, DELETE, or UPDATE statement by writing

the failed rows to the violations table associated with the target table. Diagnostic

information about the constraint violation is written to the diagnostics table

associated with the target table.

6-26 IBM Informix Guide to SQL: Tutorial

Example of Modes with Data Manipulation Statements

An example with the INSERT statement can illustrate the differences between the

enabled, disabled, and filtering modes. Consider an INSERT statement in which a

user tries to add a row that does not satisfy an integrity constraint on a table. For

example, assume that user joe created a table named cust_subset, and this table

consists of the following columns: ssn (customer’s social security number), fname

(customer’s first name), lname (customer’s last name), and city (city in which the

customer lives). The ssn column has the INT data type. The other three columns

have the CHAR data type.

Assume that user joe defined the lname column as not null but has not assigned a

name to the not null constraint, so the database server has implicitly assigned the

name n104_7 to this constraint. Finally, assume that user joe created a unique

index named unq_ssn on the ssn column.

Now user linda who has the Insert privilege on the cust_subset table enters the

following INSERT statement on this table:

INSERT INTO cust_subset (ssn, fname, city)

 VALUES (973824499, "jane", "los altos");

To better understand the distinctions among enabled, disabled, and filtering

modes, you can view the results of the preceding INSERT statement in the

following three sections.

Results of the Insert Operation When the Constraint Is Enabled: If the not null

constraint on the cust_subset table is enabled, the INSERT statement fails to insert

the new row in this table. Instead user linda receives the following error message

when she enters the INSERT statement:

-292 An implied insert column lname does not accept NULLs.

Results of the Insert Operation When the Constraint Is Disabled: If the not null

constraint on the cust_subset table is disabled, the INSERT statement that user

linda issues successfully inserts the new row in this table. The new row of the

cust_subset table has the following column values.

 ssn fname lname city

973824499 jane NULL los altos

Results of the Insert When Constraint Is in Filtering Mode: If the NOT NULL

constraint on the cust_subset table is set to the filtering mode, the INSERT

statement that user linda issues fails to insert the new row in this table. Instead the

new row is inserted into the violations table, and a diagnostic row that describes

the integrity violation is added to the diagnostics table.

Assume that user joe has started a violations and diagnostics table for the

cust_subset table. The violations table is named cust_subset_vio, and the

diagnostics table is named cust_subset_dia. The new row added to the

cust_subset_vio violations table when user linda issues the INSERT statement on

the cust_subset target table has the following column values.

 ssn fname lname city informix_tupleid informix_optype informix_recowner

973824499 jane NULL los

altos

1 I linda

Chapter 6. Modifying Data 6-27

This new row in the cust_subset_vio violations table has the following

characteristics:

v The first four columns of the violations table exactly match the columns of the

target table. These four columns have the same names and the same data types

as the corresponding columns of the target table, and they have the column

values that were supplied by the INSERT statement that user linda entered.

v The value 1 in the informix_tupleid column is a unique serial identifier that is

assigned to the nonconforming row.

v The value I in the informix_optype column is a code that identifies the type of

operation that has caused this nonconforming row to be created. Specifically, I

stands for an INSERT operation.

v The value linda in the informix_recowner column identifies the user who

issued the statement that caused this nonconforming row to be created.

The INSERT statement that user linda issued on the cust_subset target table also

causes a diagnostic row to be added to the cust_subset_dia diagnostics table. The

new diagnostic row added to the diagnostics table has the following column

values.

 informix_tupleid objtype objowner objname

1 C joe n104_7

This new diagnostic row in the cust_subset_dia diagnostics table has the following

characteristics:

v This row of the diagnostics table is linked to the corresponding row of the

violations table by means of the informix_tupleid column that appears in both

tables. The value 1 appears in this column in both tables.

v The value C in the objtype column identifies the type of integrity violation that

the corresponding row in the violations table caused. Specifically, the value C

stands for a constraint violation.

v The value joe in the objowner column identifies the owner of the constraint for

which an integrity violation was detected.

v The value n104_7 in the objname column gives the name of the constraint for

which an integrity violation was detected.

By joining the violations and diagnostics tables, user joe (who owns the

cust_subset target table and its associated special tables) or the DBA can find out

that the row in the violations table whose informix_tupleid value is 1 was created

after an INSERT statement and that this row is violating a constraint. The table

owner or DBA can query the sysconstraints system catalog table to determine that

this constraint is a NOT NULL constraint. Now that the reason for the failure of

the INSERT statement is known, user joe or the DBA can take corrective action.

Multiple Diagnostic Rows for One Violations Row: In the preceding example,

only one row in the diagnostics table corresponds to the new row in the violations

table. However, more than one diagnostic row can be added to the diagnostics

table when a single new row is added to the violations table. For example, if the

ssn value (973824499) that user linda entered in the INSERT statement had been

the same as an existing value in the ssn column of the cust_subset target table,

only one new row would appear in the violations table, but the following two

diagnostic rows would be present in the cust_subset_dia diagnostics table.

6-28 IBM Informix Guide to SQL: Tutorial

informix_tupleid objtype objowner objname

1 C joe n104_7

1 I joe unq_ssn

Both rows in the diagnostics table correspond to the same row of the violations

table because both of these rows have the value 1 in the informix_tupleid column.

However, the first diagnostic row identifies the constraint violation caused by the

INSERT statement that user linda issued, while the second diagnostic row

identifies the unique-index violation caused by the same INSERT statement. In this

second diagnostic row, the value I in the objtype column stands for a

unique-index violation, and the value unq_ssn in the objname column gives the

name of the index for which the integrity violation was detected.

For more information about how to set database object modes, see the SET

Database object mode statement in the IBM Informix Guide to SQL: Syntax.

Violations and Diagnostics Tables

When you start a violations table for a target table, any rows that violate

constraints and unique indexes during INSERT, UPDATE, and DELETE operations

on the target table do not cause the entire operation to fail, but are filtered out to

the violations table. The diagnostics table contains information about the integrity

violations caused by each row in the violations table. By examining these tables,

you can identify the cause of failure and take corrective action by either fixing the

violation or rolling back the operation.

After you create a violations table for a target table, you cannot alter the columns

or the fragmentation of the base table or the violations table. If you alter the

constraints on a target table after you have started the violations table,

nonconforming rows will be filtered to the violations table.

Extended Parallel Server

When you create a violations table for a target table on Extended Parallel Server,

all constraints are in filtering mode. The violations table contains fields that record

the diagnostic information, thus no separate diagnostics table exists.

End of Extended Parallel Server

 For information about how to start and stop the violations tables, see the START

VIOLATIONS TABLE and STOP VIOLATIONS TABLE statements in the IBM

Informix Guide to SQL: Syntax.

Relationship of Violations Tables and Database Object Modes: If you set the

constraints or unique indexes defined on a table to the filtering mode, but you do

not create the violations and diagnostics tables for this target table, any rows that

violate a constraint or unique-index requirement during an insert, update, or delete

operation are not filtered to a violations table. Instead, you receive an error

message that indicates that you must start a violations table for the target table.

Similarly, if you set a disabled constraint or disabled unique index to the enabled

or filtering mode and you want the ability to identify existing rows that do not

satisfy the constraint or unique-index requirement, you must create the violations

tables before you issue the SET DATABASE OBJECT MODE statement.

Chapter 6. Modifying Data 6-29

Examples of START VIOLATIONS TABLE Statements: The following examples

show different ways to execute the START VIOLATIONS TABLE statement.

Starting Violations and Diagnostics Tables Without Specifying Their Names: To

start a violations and diagnostics table for the target table named customer in the

demonstration database, enter the following statement:

START VIOLATIONS TABLE FOR customer;

Because your START VIOLATIONS TABLE statement does not include a USING

clause, the violations table is named customer_vio by default, and the diagnostics

table is named customer_dia by default. The customer_vio table includes the

following columns:

customer_num

fname

lname

company

address1

address2

city

state

zipcode

phone

informix_tupleid

informix_optype

informix_recowner

The customer_vio table has the same table definition as the customer table except

that the customer_vio table has three additional columns that contain information

about the operation that caused the bad row.

The customer_dia table includes the following columns:

informix_tupleid

objtype

objowner

objname

This list of columns shows an important difference between the diagnostics table

and violations table for a target table. Whereas the violations table has a matching

column for every column in the target table, the columns of the diagnostics table

do not match any columns in the target table. The diagnostics table created by any

START VIOLATIONS TABLE statement always has the same columns with the

same column names and data types.

Starting Violations and Diagnostics Tables and Specifying Their Names: The

following statement starts a violations and diagnostics table for the target table

named items. The USING clause assigns explicit names to the violations and

diagnostics tables. The violations table is to be named exceptions, and the

diagnostics table is to be named reasons.

START VIOLATIONS TABLE FOR items

 USING exceptions, reasons;

Specifying the Maximum Number of Rows in the Diagnostics Table: The

following statement starts violations and diagnostics tables for the target table

named orders. The MAX ROWS clause specifies the maximum number of rows

that can be inserted into the diagnostics table when a single statement, such as an

INSERT or SET DATABASE OBJECT MODE statement, is executed on the target

table.

START VIOLATIONS TABLE FOR orders MAX ROWS 50000;

6-30 IBM Informix Guide to SQL: Tutorial

If you do not specify a value for MAX ROWS when you create a violations table,

no maximum (other than disk space) will be imposed.

Example of Privileges on the Violations Table: The following example illustrates

how the initial set of privileges on a violations table is derived from the current set

of privileges on the target table.

For example, assume that we created a table named cust_subset and that this table

consists of the following columns: ssn (customer’s social security number), fname

(customer’s first name), lname (customer’s last name), and city (city in which the

customer lives).

The following set of privileges exists on the cust_subset table:

v User alvin is the owner of the table.

v User barbara has the Insert and Index privileges on the table. She also has the

Select privilege on the ssn and lname columns.

v User carrie has the Update privilege on the city column. She also has the Select

privilege on the ssn column.

v User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics

table named cust_subset_diags for the cust_subset table, as follows:

START VIOLATIONS TABLE FOR cust_subset

 USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the

cust_subset_viols violations table:

v User alvin is the owner of the violations table, so he has all table-level privileges

on the table.

v User barbara has the Insert, Delete, and Index privileges on the violations table.

She also has the Select privilege on the following columns of the violations table:

the ssn column, the lname column, the informix_tupleid column, the

informix_optype column, and the informix_recowner column.

v User carrie has the Insert and Delete privileges on the violations table. She has

the Update privilege on the following columns of the violations table: the city

column, the informix_tupleid column, the informix_optype column, and the

informix_recowner column. She has the Select privilege on the following

columns of the violations table: the ssn column, the informix_tupleid column,

the informix_optype column, and the informix_recowner column.

v User danny has no privileges on the violations table.

Example of Privileges on the Diagnostics Table: The following example

illustrates how the initial set of privileges on a diagnostics table is derived from

the current set of privileges on the target table.

For example, assume that a table called cust_subset consists of the following

columns: ssn (customer’s social security number), fname (customer’s first name),

lname (customer’s last name), and city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:

v User alvin is the owner of the table.

v User barbara has the Insert and Index privileges on the table. She also has the

Select privilege on the ssn and lname columns.

Chapter 6. Modifying Data 6-31

v User carrie has the Update privilege on the city column. She also has the Select

privilege on the ssn column.

v User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics

table named cust_subset_diags for the cust_subset table, as follows:

START VIOLATIONS TABLE FOR cust_subset

 USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the

cust_subset_diags diagnostics table:

v User alvin is the owner of the diagnostics table, so he has all table-level

privileges on the table.

v User barbara has the Insert, Delete, Select, and Index privileges on the

diagnostics table.

v User carrie has the Insert, Delete, Select, and Update privileges on the

diagnostics table.

v User danny has no privileges on the diagnostics table.

Interrupted Modifications

Even if all the software is error-free and all the hardware is utterly reliable, the

world outside the computer can interfere. Lightning might strike the building,

interrupting the electrical supply and stopping the computer in the middle of your

UPDATE statement. A more likely scenario occurs when a disk fills up or a user

supplies incorrect data, causing your multirow insert to stop early with an error. In

any case, whenever you modify data, you must assume that some unforeseen

event can interrupt the modification.

When an external cause interrupts a modification, you cannot be sure how much

of the operation was completed. Even in a single-row operation, you cannot know

whether the data reached the disk or the indexes were properly updated.

If multirow modifications are a problem, multistatement modifications are worse.

They are usually embedded in programs so you do not see the individual SQL

statements being executed. For example, to enter a new order in the demonstration

database, perform the following steps:

1. Insert a row in the orders table. (This insert generates an order number.)

2. For each item ordered, insert a row in the items table.

Two ways to program an order-entry application exist. One way is to make it

completely interactive so that the program inserts the first row immediately and

then inserts each item as the user enters data. But this approach exposes the

operation to the possibility of many more unforeseen events: the customer’s

telephone disconnecting, the user pressing the wrong key, the user’s terminal or

computer losing power, and so on.

The following list describes the correct way to build an order-entry application:

v Accept all the data interactively.

v Validate the data, and expand it (look up codes in stock and manufact, for

example).

v Display the information on the screen for inspection.

v Wait for the operator to make a final commitment.

6-32 IBM Informix Guide to SQL: Tutorial

v Perform the insertions quickly.

Even with these steps, an unforeseen circumstance can halt the program after it

inserts the order but before it finishes inserting the items. If that happens, the

database is in an unpredictable condition: its data integrity is compromised.

Transactions

The solution to all these potential problems is called the transaction. A transaction

is a sequence of modifications that must be accomplished either completely or not

at all. The database server guarantees that operations performed within the bounds

of a transaction are either completely and perfectly committed to disk, or the

database is restored to the same state as before the transaction started.

The transaction is not merely protection against unforeseen failures; it also offers a

program a way to escape when the program detects a logical error.

Transaction Logging

The database server can keep a record of each change that it makes to the database

during a transaction. If something happens to cancel the transaction, the database

server automatically uses the records to reverse the changes. Many things can

make a transaction fail. For example, the program that issues the SQL statements

can fail or be terminated. As soon as the database server discovers that the

transaction failed, which might be only after the computer and the database server

are restarted, it uses the records from the transaction to return the database to the

same state as before.

The process of keeping records of transactions is called transaction logging or

simply logging. The records of the transactions, called log records, are stored in a

portion of disk space separate from the database. This space is called the logical log

because the log records represent logical units of the transactions.

Dynamic Server

Dynamic Server provides support to:

v Create nonlogging (raw) or logging (standard) tables in a logging database.

v Alter a table from nonlogging to logging and vice-versa using the ALTER TABLE

statement.

Dynamic Server supports nonlogging tables for fast loads of very large tables. It is

recommended that you do not use nonlogging tables within a transaction. To avoid

concurrency problems, use the ALTER TABLE statement to make the table

standard (that is, logging) before you use the table in a transaction.

For more information about nonlogging tables for Dynamic Server, see the IBM

Informix Administrator’s Guide. For the performance advantages of nonlogging

tables, see the IBM Informix Dynamic Server Performance Guide. For information

about the ALTER TABLE statement, see the IBM Informix Guide to SQL: Syntax.

Chapter 6. Modifying Data 6-33

Extended Parallel Server

Only databases on Extended Parallel Server generate transaction records

automatically.

End of Extended Parallel Server

 Most Informix databases do not generate transaction records automatically. The

DBA decides whether to make a database use transaction logging. Without

transaction logging, you cannot roll back transactions.

Transaction Logging for Extended Parallel Server

In addition to logical-log files, Extended Parallel Server allows you to create

logslices and alter them to add logical logs at any time. A logslice is a set of log

files that occupy a dbslice. These log files are owned by multiple coservers, one log

file per dbspace. Logslices simplify the process of adding and deleting log files

because a logslice treats a set of log files as a single entity. You create, alter, and

delete dbslices using the onutil utility. For more information about logslices, see

the IBM Informix Administrator’s Guide.

Databases on Extended Parallel Server must be logged databases and logging

cannot be turned off. However, you can specify that individual tables are logging

or nonlogging tables. To meet the need for both logging and nonlogging tables,

Extended Parallel Server supports the following types of permanent tables and

temporary tables:

v Raw permanent tables (nonlogging)

v Static permanent tables (nonlogging)

v Operational permanent tables (logging)

v Standard permanent tables (logging)

v Scratch temporary tables (nonlogging)

v Temp temporary tables (logging).

For more information about the table types that Extended Parallel Server supports,

see the IBM Informix Database Design and Implementation Guide.

Logging and Cascading Deletes

Logging must be turned on in your database for cascading deletes to work

because, when you specify a cascading delete, the delete is first performed on the

primary key of the parent table. If the system fails after the rows of the primary

key of the parent table are performed but before the rows of the foreign key of the

child table are deleted, referential integrity is violated. If logging is turned off, even

temporarily, deletes do not cascade. After logging is turned back on, however,

deletes can cascade again.

Extended Parallel Server

Databases that you create with Extended Parallel Server are always logging

databases.

6-34 IBM Informix Guide to SQL: Tutorial

Dynamic Server

Dynamic Server allows you to turn on logging with the WITH LOG clause in the

CREATE DATABASE statement.

End of Dynamic Server

Specifying Transactions

You can use two methods to specify the boundaries of transactions with SQL

statements. In the most common method, you specify the start of a multistatement

transaction by executing the BEGIN WORK statement. In databases that are created

with the MODE ANSI option, no need exists to mark the beginning of a

transaction. One is always in effect; you indicate only the end of each transaction.

In both methods, to specify the end of a successful transaction, execute the

COMMIT WORK statement. This statement tells the database server that you

reached the end of a series of statements that must succeed together. The database

server does whatever is necessary to make sure that all modifications are properly

completed and committed to disk.

A program can also cancel a transaction deliberately by executing the ROLLBACK

WORK statement. This statement asks the database server to cancel the current

transaction and undo any changes.

An order-entry application can use a transaction in the following ways when it

creates a new order:

v Accept all data interactively

v Validate and expand it

v Wait for the operator to make a final commitment

v Execute BEGIN WORK

v Insert rows in the orders and items tables, checking the error code that the

database server returns

v If no errors occurred, execute COMMIT WORK; otherwise execute ROLLBACK

WORK

If any external failure prevents the transaction from being completed, the partial

transaction rolls back when the system restarts. In all cases, the database is in a

predictable state. Either the new order is completely entered, or it is not entered at

all.

Backups and Logs with Informix Database Servers

By using transactions, you can ensure that the database is always in a consistent

state and that your modifications are properly recorded on disk. But the disk itself

is not perfectly safe. It is vulnerable to mechanical failures and to flood, fire, and

earthquake. The only safeguard is to keep multiple copies of the data. These

redundant copies are called backup copies.

The transaction log (also called the logical log) complements the backup copy of a

database. Its contents are a history of all modifications that occurred since the last

Chapter 6. Modifying Data 6-35

time the database was backed up. If you ever need to restore the database from the

backup copy, you can use the transaction log to roll the database forward to its

most recent state.

The database server contains elaborate features to support backups and logging.

Your database server archive and backup guide describes these features.

The database server has stringent requirements for performance and reliability (for

example, it supports making backup copies while databases are in use).

The database server manages its own disk space, which is devoted to logging.

The database server performs logging concurrently for all databases using a

limited set of log files. The log files can be copied to another medium (backed up)

while transactions are active.

Database users never have to be concerned with these facilities because the DBA

usually manages them from a central location.

Dynamic Server

Dynamic Server supports the onload and onunload utilities. Use the onunload

utility to make a personal backup copy of a single database or table. This program

copies a table or a database to tape. Its output consists of binary images of the disk

pages as they were stored in the database server. As a result, the copy can be made

quickly, and the corresponding onload program can restore the file quickly.

However, the data format is not meaningful to any other programs. For

information about how to use the onload and onunload utilities, see the IBM

Informix Migration Guide.

End of Dynamic Server

Extended Parallel Server

Extended Parallel Server uses external tables to load or unload data. For information

about how to use external tables to load data, see the IBM Informix Administrator’s

Guide.

End of Extended Parallel Server

 If your DBA uses ON–Bar to create backups and back up logical logs, you might

also be able to create your own backup copies using ON–Bar. For more

information, see your IBM Informix Backup and Restore Guide.

Concurrency and Locks

If your database is contained in a single-user workstation, without a network

connecting it to other computers, concurrency is unimportant. In all other cases,

you must allow for the possibility that, while your program is modifying data,

another program is also reading or modifying the same data. Concurrency involves

two or more independent uses of the same data at the same time.

A high level of concurrency is crucial to good performance in a multiuser database

system. Unless controls exist on the use of data, however, concurrency can lead to

a variety of negative effects. Programs could read obsolete data; modifications

could be lost even though it seems they were entered successfully.

6-36 IBM Informix Guide to SQL: Tutorial

To prevent errors of this kind, the database server imposes a system of locks. A lock

is a claim, or reservation, that a program can place on a piece of data. The

database server guarantees that, as long as the data is locked, no other program

can modify it. When another program requests the data, the database server either

makes the program wait or turns it back with an error.

To control the effect that locks have on your data access, use a combination of SQL

statements: SET LOCK MODE and either SET ISOLATION or SET

TRANSACTION. You can understand the details of these statements after reading

a discussion on the use of cursors from within programs. Cursors are covered in

Chapter 8, “Programming with SQL,” on page 8-1, and Chapter 9, “Modifying Data

Through SQL Programs,” on page 9-1. For more information about locking and

concurrency, see Chapter 10, “Programming for a Multiuser Environment,” on page

10-1.

IBM Informix Data Replication (IDS)

Data replication, in the broadest sense of the term, means that database objects have

more than one representation at more than one distinct site. For example, one way

to replicate data, so that reports can be run against the data without disturbing

client applications that are using the original database, is to copy the database to a

database server on a different computer.

The following list describes the advantages of data replication:

v Clients who access replicated data locally, as opposed to remote data that is not

replicated, experience improved performance because they do not have to use

network services.

v Clients at all sites experience improved availability with replicated data, because

if local replicated data is unavailable, a copy of the data is still available, albeit

remotely.

These advantages do not come without a cost. Data replication obviously requires

more storage for replicated data than for unreplicated data, and updating

replicated data can take more processing time than updating a single object.

Data replication can actually be implemented in the logic of client applications, by

explicitly specifying where data should be found or updated. However, this

method of achieving data replication is costly, error-prone, and difficult to

maintain. Instead, the concept of data replication is often coupled with replication

transparency. Replication transparency is functionality built into a database server

(instead of client applications) to handle the details of locating and maintaining

data replicas automatically.

Within the broad framework of data replication, an Informix database server

implements nearly transparent data replication of entire database servers. All the

data that one Informix database server manages is replicated and dynamically

updated on another Informix database server, usually at a remote site. Data

replication of an Informix database server is sometimes called hot-site backup,

because it provides a means of maintaining a backup copy of the entire database

server that can be used quickly in the event of a catastrophic failure.

Because the database server provides replication transparency, you generally do

not need to be concerned with or aware of data replication; the DBA takes care of

it. However, if your organization decides to use data replication, you should be

Chapter 6. Modifying Data 6-37

aware that special connectivity considerations exist for client applications in a data

replication environment. These considerations are described in the IBM Informix

Administrator’s Guide.

The IBM Informix Enterprise Replication feature provides a different method of

data replication. For information on this feature, see the IBM Informix Dynamic

Server Enterprise Replication Guide.

Summary

Database access is regulated by the privileges that the database owner grants to

you. The privileges that let you query data are often granted automatically, but the

ability to modify data is regulated by specific Insert, Delete, and Update privileges

that are granted on a table-by-table basis.

If data integrity constraints are imposed on the database, your ability to modify

data is restricted by those constraints. Your database- and table-level privileges and

any data constraints control how and when you can modify data. In addition, the

object modes and violation detection features of the database affect how you can

modify data and help to preserve the integrity of your data.

You can delete one or more rows from a table with the DELETE statement. Its

WHERE clause selects the rows; use a SELECT statement with the same clause to

preview the deletes.

The TRUNCATE statement deletes all the rows of a table.

Rows are added to a table with the INSERT statement. You can insert a single row

that contains specified column values, or you can insert a block of rows that a

SELECT statement generates.

Use the UPDATE statement to modify the contents of existing rows. You specify

the new contents with expressions that can include subqueries, so that you can use

data that is based on other tables or the updated table itself. The statement has two

forms. In the first form, you specify new values column by column. In the second

form, a SELECT statement or a record variable generates a set of new values.

Use the REFERENCES clause of the CREATE TABLE and ALTER TABLE

statements to create relationships between tables. The ON DELETE CASCADE

option of the REFERENCES clause allows you to delete rows from parent and

associated child tables with one DELETE statement.

Use transactions to prevent unforeseen interruptions in a modification from leaving

the database in an indeterminate state. When modifications are performed within a

transaction, they are rolled back after an error occurs. The transaction log also

extends the periodically made backup copy of the database. If the database must

be restored, it can be brought back to its most recent state.

Data replication, which is transparent to users, offers another type of protection

from catastrophic failures.

6-38 IBM Informix Guide to SQL: Tutorial

Chapter 7. Accessing and Modifying Data in an External

Database

In This Chapter . 7-1

Accessing Other Database Servers . 7-1

Accessing ANSI Databases . 7-1

Creating Joins Between External Database Servers . 7-2

Accessing External Routines (IDS) . 7-2

Restrictions for Remote Database Access . 7-2

SQL Statements and Logging Modes . 7-2

Accessing External Database Objects . 7-3

In This Chapter

This chapter summarizes accessing tables and routines that are not in the current

database.

Accessing Other Database Servers

You can access any table or routine in an external database by qualifying the name

of the database object (table, view, synonym, or routine).

When the external database is on the same database server as the current database,

you must qualify the object name with the database name and a colon. For

example, to refer to a table in a database other than the local database, the

following SELECT statement accesses information from an external database:

SELECT name, number FROM salesdb:contacts

In this example, the query returns data from the table, contacts, that is in the

database, salesdb.

A remote database server is any database server that is not the current database

server. When the external database is on a remote database server, you must

qualify the name of the database object with the database server name and the

database name, as the following example illustrates:

SELECT name, number FROM salesdb@distantserver:contacts

In this example, the query returns data from the table, contacts, that is in the

database, salesdb on the remote database server, distantserver.

For the syntax and rules on how to specify database object names in an external

database, see the IBM Informix Guide to SQL: Syntax.

Accessing ANSI Databases

In ANSI databases, the owner of the object is part of the object name:

ownername.objectname. When both the current and external databases are ANSI

databases, unless you are the owner of the object, you must include the owner

name. The following SELECT statement shows a fully-qualified table name:

SELECT name, number FROM salesdb@aserver:ownername.contacts

© Copyright IBM Corp. 1996, 2008 7-1

Tip: You can always over-qualify an object name. That is, you can specify the full

object name, database@servername:ownername.objectname, even in situations

that do not require the full object name.

For more information about ANSI-compliant databases, refer to the IBM Informix

Database Design and Implementation Guide.

Creating Joins Between External Database Servers

You can use the same notation in a join. When you specify the database name

explicitly, the long table names can become cumbersome unless you use aliases to

shorten them, as the following example shows:

SELECT O.order_num, C.fname, C.lname

 FROM masterdb@central:customer C, sales@boston:orders O

 WHERE C.customer_num = O.Customer_num

Accessing External Routines (IDS)

To refer to a routine on a database server other than the current database server,

qualify the routine name with the database server name and database name (and

the owner name if the remote database is ANSI compliant), as the following

SELECT statement illustrates:

SELECT name, salesdb@boston:how_long()

 FROM salesdb@boston:contacts

Restrictions for Remote Database Access

This section summarizes the restrictions for remote database access.

SQL Statements and Logging Modes

You can run the following SQL statements across databases and across database

servers.

 SELECT CREATE VIEW UNLOAD

INSERT CREATE SYNONYM LOCK TABLE

UPDATE DROP DATABASE UNLOCK TABLE

DELETE EXECUTE FUNCTION (IDS only) INFO

DATABASE EXECUTE PROCEDURE (IDS only)

CREATE DATABASE LOAD

To run each statement successfully across databases or database servers, the local

and external databases must have the same logging mode.

Distributed operations that use SQL statements or UDRs to access other databases

of the local Dynamic Server instance, however, can also return the opaque built-in

data types BLOB, BOOLEAN, CLOB, and LVARCHAR. They can also access

DISTINCT types based on built-in types, as well as UDTs that can be cast to

built-in types, provided that the DISTINCT or UDT values are explicitly cast to

built-in types, and that all the DISTINCT types, UDTs, and casts are defined in all

of the participating databases.

Distributed operations that access databases of other Dynamic Server instances can

access or return values of the following data types:

v Built-in data types that are not opaque

7-2 IBM Informix Guide to SQL: Tutorial

v BOOLEAN

v LVARCHAR

v DISTINCT of built-in types that are not opaque

v DISTINCT of BOOLEAN

v DISTINCT of LVARCHAR

v DISTINCT of the DISTINCT data types in this list.

These data types can be returned by SPL, C, and Java-language UDRs as

parameters or as return values, if the UDRs are defined in all of the participating

databases. Any implicit or explicit casts defined over these data types must be

duplicated across all the participating Dynamic Server instances. The DISTINCT

data types must have exactly the same data type hierarchy defined in all databases

that participate in the distributed query.

Extended Parallel Server

Note: For INSERT, UPDATE, DELETE, LOAD, the target table cannot be on a

remote server.

Note: EXECUTE FUNCTION and EXECUTE PROCEDURE for remote functions

and remote procedures are not supported on XPS.

End of Extended Parallel Server

Accessing External Database Objects

To access external database objects:

v You must have the appropriate permissions on these objects.

v Both databases must be set to the same locale.

Important: For database servers that communicate with other database servers,

you must define a TCP/IP connection in DBSERVERNAME or

DBSERVERALIAS even when both instances reside on the same

machine.

Chapter 7. Accessing and Modifying Data in an External Database 7-3

7-4 IBM Informix Guide to SQL: Tutorial

Chapter 8. Programming with SQL

In This Chapter . 8-1

SQL in Programs . 8-2

SQL in SQL APIs . 8-2

SQL in Application Languages . 8-3

Static Embedding . 8-3

Dynamic Statements . 8-3

Program Variables and Host Variables . 8-3

Calling the Database Server . 8-4

SQL Communications Area . 8-5

SQLCODE Field . 8-5

End of Data . 8-5

Negative Codes . 8-6

SQLERRD Array . 8-6

SQLWARN Array . 8-7

SQLERRM Character String . 8-8

SQLSTATE Value . 8-8

Retrieving Single Rows . 8-9

Data Type Conversion . 8-10

Working with NULL Data . 8-10

Dealing with Errors . 8-11

End of Data . 8-11

End of Data with Databases That Are Not ANSI Compliant 8-11

Serious Errors . 8-11

Interpreting End of Data with Aggregate Functions 8-11

Using Default Values . 8-12

Retrieving Multiple Rows . 8-12

Declaring a Cursor . 8-13

Opening a Cursor . 8-13

Fetching Rows . 8-13

Detecting End of Data . 8-14

Locating the INTO Clause . 8-14

Cursor Input Modes . 8-14

Active Set of a Cursor . 8-15

Creating the Active Set . 8-15

Active Set for a Sequential Cursor . 8-16

Active Set for a SCROLL Cursor . 8-16

Active Set and Concurrency . 8-16

Using a Cursor: A Parts Explosion . 8-17

Dynamic SQL . 8-19

Preparing a Statement . 8-19

Executing Prepared SQL . 8-20

Dynamic Host Variables . 8-20

Freeing Prepared Statements . 8-21

Quick Execution . 8-21

Embedding Data-Definition Statements . 8-21

Granting and Revoking Privileges in Applications . 8-22

Assigning Roles . 8-23

Summary . 8-24

In This Chapter

The examples in the previous chapters treat SQL as if it were an interactive

computer language; that is, as if you could type a SELECT statement directly into

the database server and see rows of data rolling back to you.

© Copyright IBM Corp. 1996, 2008 8-1

Of course, that is not the case. Many layers of software stand between you and the

database server. The database server retains data in a binary form that must be

formatted before it can be displayed. It does not return a mass of data at once; it

returns one row at a time, as a program requests it.

You can access information in your database through interactive access with

DB–Access, through application programs written with an SQL API such as

Informix ESQL/C, or through an application language such as SPL.

Almost any program can contain SQL statements, execute them, and retrieve data

from a database server. This chapter explains how these activities are performed

and indicates how you can write programs that perform them.

This chapter introduces concepts that are common to SQL programming in any

language. Before you can write a successful program in a particular programming

language, you must first become fluent in that language. Then, because the details

of the process are different in every language, you must become familiar with the

publication for the IBM Informix SQL API specific to that language.

SQL in Programs

You can write a program in any of several languages and mix SQL statements

among the other statements of the program, just as if they were ordinary

statements of that programming language. These SQL statements are embedded in

the program, and the program contains embedded SQL, which is often abbreviated

as ESQL.

SQL in SQL APIs

ESQL products are IBM Informix SQL APIs (application programming interfaces).

IBM produces an SQL API for the C programming language.

Figure 8-1 shows how an SQL API product works. You write a source program in

which you treat SQL statements as executable code. Your source program is

processed by an embedded SQL preprocessor, a program that locates the embedded

SQL statements and converts them into a series of procedure calls and special data

structures.

The converted source program then passes through the programming language

compiler. The compiler output becomes an executable program after it is linked

with a static or dynamic library of SQL API procedures. When the program runs,

the SQL API library procedures are called; they set up communication with the

database server to carry out the SQL operations.

If you link your executable program to a threading library package, you can

develop Informix ESQL/C multithreaded applications. A multithreaded application

can have many threads of control. It separates a process into multiple execution

ESQL source
program

Source program
with procedure calls

Language
compiler

Executable
program

ESQL
preprocessor

Figure 8-1. Overview of Processing a Program with Embedded SQL Statements

8-2 IBM Informix Guide to SQL: Tutorial

threads, each of which runs independently. The major advantage of a

multithreaded Informix ESQL/C application is that each thread can have many

active connections to a database server simultaneously. While a nonthreaded

Informix ESQL/C application can establish many connections to one or more

databases, it can have only one connection active at a time. A multithreaded

Informix ESQL/C application can have one active connection per thread and many

threads per application.

For more information on multithreaded applications, see the IBM Informix ESQL/C

Programmer’s Manual.

SQL in Application Languages

Whereas an SQL API product allows you to embed SQL in the host language, some

languages include SQL as a natural part of their statement set. IBM Informix

Stored Procedure Language (SPL) uses SQL as a natural part of its statement set.

You use an SQL API product to write application programs. You use SPL to write

routines that are stored with a database and called from an application program.

Static Embedding

You can introduce SQL statements into a program through static embedding or

dynamic statements. The simpler and more common way is by static embedding,

which means that the SQL statements are written as part of the code. The

statements are static because they are a fixed part of the source text. For more

information on static embedding, see “Retrieving Single Rows” on page 8-9 and

“Retrieving Multiple Rows” on page 8-12.

Dynamic Statements

Some applications require the ability to compose SQL statements dynamically, in

response to user input. For example, a program might have to select different

columns or apply different criteria to rows, depending on what the user wants.

With dynamic SQL, the program composes an SQL statement as a string of

characters in memory and passes it to the database server to be executed. Dynamic

statements are not part of the code; they are constructed in memory during

execution. For more information, see “Dynamic SQL” on page 8-19.

Program Variables and Host Variables

Application programs can use program variables within SQL statements. In SPL,

you put the program variable in the SQL statement as syntax allows. For example,

a DELETE statement can use a program variable in its WHERE clause.

The following code example shows a program variable in SPL:

In applications that use embedded SQL statements, the SQL statements can refer to

the contents of program variables. A program variable that is named in an

embedded SQL statement is called a host variable because the SQL statement is

thought of as a guest in the program.

CREATE PROCEDURE delete_item (drop_number INT) ...
DELETE FROM items WHERE order_num = drop_number ...

Chapter 8. Programming with SQL 8-3

The following example shows a DELETE statement as it might appear when it is

embedded in an IBM Informix ESQL/C source program:

EXEC SQL delete FROM items

 WHERE order_num = :onum;

In this program, you see an ordinary DELETE statement, as Chapter 6 describes.

When the Informix ESQL/C program is executed, a row of the items table is

deleted; multiple rows can also be deleted.

The statement contains one new feature. It compares the order_num column to an

item written as :onum, which is the name of a host variable.

An SQL API product provides a way to delimit the names of host variables when

they appear in the context of an SQL statement. In Informix ESQL/C, a host

variable can be introduced with either a dollar sign ($) or a colon (:). The colon is

the ANSI-compatible format. The example statement asks the database server to

delete rows in which the order number equals the current contents of the host

variable named :onum. This numeric variable was declared and assigned a value

earlier in the program.

In IBM Informix ESQL/C, an SQL statement can be introduced with either a

leading dollar sign ($) or the words EXEC SQL.

The differences of syntax as illustrated in the preceding examples are trivial; the

essential point is that the SQL API and SPL languages let you perform the

following tasks:

v Embed SQL statements in a source program as if they were executable

statements of the host language.

v Use program variables in SQL expressions the way literal values are used.

If you have programming experience, you can immediately see the possibilities. In

the example, the order number to be deleted is passed in the variable onum. That

value comes from any source that a program can use. It can be read from a file, the

program can prompt a user to enter it, or it can be read from the database. The

DELETE statement itself can be part of a subroutine (in which case onum can be a

parameter of the subroutine); the subroutine can be called once or repetitively.

In short, when you embed SQL statements in a program, you can apply to them all

the power of the host language. You can hide the SQL statements under many

interfaces, and you can embellish the SQL functions in many ways.

Calling the Database Server

Executing an SQL statement is essentially calling the database server as a

subroutine. Information must pass from the program to the database server, and

information must be returned from the database server to the program.

Some of this communication is done through host variables. You can think of the

host variables named in an SQL statement as the parameters of the procedure call

to the database server. In the preceding example, a host variable acts as a

parameter of the WHERE clause. Host variables receive data that the database

server returns, as “Retrieving Multiple Rows” on page 8-12 describes.

8-4 IBM Informix Guide to SQL: Tutorial

SQL Communications Area

The database server always returns a result code, and possibly other information

about the effect of an operation, in a data structure known as the SQL

Communications Area (SQLCA). If the database server executes an SQL statement

in a user-defined routine, the SQLCA of the calling application contains the values

that the SQL statement triggers in the routine.

The principal fields of the SQLCA are listed in Table 8-1 through Table 8-3 on page

8-7. The syntax that you use to describe a data structure such as the SQLCA, as

well as the syntax that you use to refer to a field in it, differs among programming

languages. For details, see your SQL API publication.

In particular, the subscript by which you name one element of the SQLERRD and

SQLWARN arrays differs. Array elements are numbered starting with zero in IBM

Informix ESQL/C, but starting with one in other languages. In this discussion, the

fields are named with specific words such as third, and you must translate these

words into the syntax of your programming language.

You can also use the SQLSTATE variable of the GET DIAGNOSTICS statement to

detect, handle, and diagnose errors. See “SQLSTATE Value” on page 8-8.

SQLCODE Field

The SQLCODE field is the primary return code of the database server. After every

SQL statement, SQLCODE is set to an integer value as Table 8-1 shows. When that

value is zero, the statement is performed without error. In particular, when a

statement is supposed to return data into a host variable, a code of zero means that

the data has been returned and can be used. Any nonzero code means the

opposite. No useful data was returned to host variables.

 Table 8-1. Values of SQLCODE

Return value Interpretation

value < 0 Specifies an error code.

value = 0 Indicates success.

0 < value < 100 After a DESCRIBE statement, an integer value that represents the type

of SQL statement that is described.

100 After a successful query that returns no rows, indicates the NOT

FOUND condition. NOT FOUND can also occur in an ANSI-compliant

database after an INSERT INTO/SELECT, UPDATE, DELETE, or

SELECT... INTO TEMP statement fails to access any rows.

End of Data

The database server sets SQLCODE to 100 when the statement is performed

correctly but no rows are found. This condition can occur in two situations.

The first situation involves a query that uses a cursor. (“Retrieving Multiple Rows”

on page 8-12 describes queries that use cursors.) In these queries, the FETCH

statement retrieves each value from the active set into memory. After the last row

is retrieved, a subsequent FETCH statement cannot return any data. When this

condition occurs, the database server sets SQLCODE to 100, which indicates end of

data, no rows found.

The second situation involves a query that does not use a cursor. In this case, the

database server sets SQLCODE to 100 when no rows satisfy the query condition. In

Chapter 8. Programming with SQL 8-5

databases that are not ANSI compliant, only a SELECT statement that returns no

rows causes SQLCODE to be set to 100.

American National Standards Institute

In ANSI-compliant databases, SELECT, DELETE, UPDATE, and INSERT statements

all set SQLCODE to 100 if no rows are returned.

End of American National Standards Institute

Negative Codes

When something unexpected goes wrong during a statement, the database server

returns a negative number in SQLCODE to explain the problem. The meanings of

these codes are documented in the online error message file.

SQLERRD Array

Some error codes that can be reported in SQLCODE reflect general problems. The

database server can set a more detailed code in the second field of SQLERRD that

reveals the error that the database server I/O routines or the operating system

encountered.

The integers in the SQLERRD array are set to different values following different

statements. The first and fourth elements of the array are used only in IBM

Informix ESQL/C. Table 8-2 on page 8-7 shows how the fields are used.

These additional details can be useful. For example, you can use the value in the

third field to report how many rows were deleted or updated. When your program

prepares an SQL statement that the user enters and an error is found, the value in

the fifth field enables you to display the exact point of error to the user.

(DB–Access uses this feature to position the cursor when you ask to modify a

statement after an error.)

8-6 IBM Informix Guide to SQL: Tutorial

Table 8-2. Fields of SQLERRD

Field Interpretation

First After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or

DELETE statement, or after a select cursor is opened, this field contains the

estimated number of rows affected.

Second When SQLCODE contains an error code, this field contains either zero or an

additional error code, called the ISAM error code, that explains the cause of

the main error. After a successful insert operation of a single row, this field

contains the value of any SERIAL value generated for that row.

Third After a successful multirow insert, update, or delete operation, this field

contains the number of rows that were processed. After a multirow insert,

update, or delete operation that ends with an error, this field contains the

number of rows that were successfully processed before the error was detected.

Fourth After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or

DELETE statement, or after a select cursor has been opened, this field contains

the estimated weighted sum of disk accesses and total rows processed.

Fifth After a syntax error in a PREPARE, EXECUTE IMMEDIATE, DECLARE, or

static SQL statement, this field contains the offset in the statement text where

the error was detected.

Sixth After a successful fetch of a selected row, or a successful insert, update, or

delete operation, this field contains the rowid (physical address) of the last row

that was processed. Whether this rowid value corresponds to a row that the

database server returns to the user depends on how the database server

processes a query, particularly for SELECT statements.

Seventh The SQL is not executed because SET EXPLAIN ON AVOID_EXECUTE is set.

SQLWARN Array

The eight character fields in the SQLWARN array are set to either a blank or to W

to indicate a variety of special conditions. Their meanings depend on the statement

just executed.

A set of warning flags appears when a database opens, that is, following a

CONNECT, DATABASE, or CREATE DATABASE statement. These flags tell you

some characteristics of the database as a whole.

A second set of flags appears following any other statement. These flags reflect

unusual events that occur during the statement, which are usually not serious

enough to be reflected by SQLCODE.

Both sets of SQLWARN values are summarized in Table 8-3.

 Table 8-3. Fields of SQLWARN

Field

When Opening or Connecting to a

Database All Other Operations

First Set to W when any other warning

field is set to W. If blank, others need

not be checked.

Set to W when any other warning field is

set to W.

Second Set to W when the database now

open uses a transaction log.

Set to W if a column value is truncated

when it is fetched into a host variable

using a FETCH or a SELECT...INTO

statement. On a REVOKE ALL statement,

set to W when not all seven table-level

privileges are revoked.

Chapter 8. Programming with SQL 8-7

Table 8-3. Fields of SQLWARN (continued)

Field

When Opening or Connecting to a

Database All Other Operations

Third Set to W when the database now

open is ANSI compliant.

Set to W when a FETCH or SELECT

statement returns an aggregate function

(SUM, AVG, MIN, MAX) value that is

null.

Fourth Set to W when the database server is

Dynamic Server.

On a SELECT...INTO, FETCH...INTO, or

EXECUTE...INTO statement, set to W

when the number of items in the select

list is not the same as the number of host

variables given in the INTO clause to

receive them. On a GRANT ALL

statement, set to W when not all seven

table-level privileges are granted.

Fifth Set to W when the database server

stores the FLOAT data type in

DECIMAL form (done when the

host system lacks support for

FLOAT types).

Set to W after a DESCRIBE statement if the

prepared statement contains a DELETE

statement or an UPDATE statement

without a WHERE clause.

Sixth Reserved. Set to W following execution of a

statement that does not use

ANSI-standard SQL syntax (provided the

DBANSIWARN environment variable is

set).

Seventh Set to W when the application is

connected to a database server that

is the secondary server in a

data-replication pair. That is, the

server is available only for read

operations.

Set to W when a data fragment (a dbspace)

has been skipped during query

processing (when the DATASKIP feature

is on).

Eighth Set to W when client DB_LOCALE

does not match the database locale.

For more information, see the IBM

Informix GLS User’s Guide.

Reserved.

SQLERRM Character String

SQLERRM can store a character string of up to 72 bytes. The SQLERRM character

string contains identifiers, such as a table names, that are placed in the error

message. For some networked applications, it contains an error message that the

networking software generates.

If an INSERT operation fails because a constraint is violated, the name of the

constraint that failed is written to SQLERRM.

Tip: If an error string is longer than 72 bytes, the overflow is silently discarded. In

some contexts, this can result in the loss of information about runtime errors.

SQLSTATE Value

Certain IBM Informix products, such as IBM Informix ESQL/C, support the

SQLSTATE value in compliance with X/Open and ANSI SQL standards. The GET

DIAGNOSTICS statement reads the SQLSTATE value to diagnose errors after you

run an SQL statement. The database server returns a result code in a five-character

8-8 IBM Informix Guide to SQL: Tutorial

string that is stored in a variable called SQLSTATE. The SQLSTATE error code, or

value, tells you the following information about the most recently executed SQL

statement:

v If the statement was successful

v If the statement was successful but generated warnings

v If the statement was successful but generated no data

v If the statement failed

For more information on the GET DIAGNOSTICS statement, the SQLSTATE

variable, and the meaning of the SQLSTATE return codes, see the GET

DIAGNOSTICS statement in the IBM Informix Guide to SQL: Syntax.

Tip: If your IBM Informix product supports GET DIAGNOSTICS and SQLSTATE,

it is recommended that you use them as the primary structure to detect,

handle, and diagnose errors. Using SQLSTATE allows you to detect multiple

errors, and it is ANSI compliant.

Retrieving Single Rows

The set of rows that a SELECT statement returns is its active set. A singleton

SELECT statement returns a single row. You can use embedded SELECT statements

to retrieve single rows from the database into host variables. When a SELECT

statement returns more than one row of data, however, a program must use a

cursor to retrieve rows one at a time. Multiple-row select operations are discussed

in “Retrieving Multiple Rows” on page 8-12.

To retrieve a single row of data, simply embed a SELECT statement in your

program. The following example shows how you can write the embedded SELECT

statement using IBM Informix ESQL/C:

EXEC SQL SELECT avg (total_price)

 INTO :avg_price

 FROM items

 WHERE order_num in

 (SELECT order_num from orders

 WHERE order_date < date(’6/1/98’));

The INTO clause is the only detail that distinguishes this statement from any

example in Chapter 2 or Chapter 5. This clause specifies the host variables that are

to receive the data that is produced.

When the program executes an embedded SELECT statement, the database server

performs the query. The example statement selects an aggregate value so that it

produces exactly one row of data. The row has only a single column, and its value

is deposited in the host variable named avg_price. Subsequent lines of the

program can use that variable.

You can use statements of this kind to retrieve single rows of data into host

variables. The single row can have as many columns as desired. If a query

produces more than one row of data, the database server cannot return any data. It

returns an error code instead.

You should list as many host variables in the INTO clause as there are items in the

select list. If, by accident, these lists are of different lengths, the database server

returns as many values as it can and sets the warning flag in the fourth field of

SQLWARN.

Chapter 8. Programming with SQL 8-9

Data Type Conversion

The following Informix ESQL/C example retrieves the average of a DECIMAL

column, which is itself a DECIMAL value. However, the host variable into which

the average of the DECIMAL column is placed is not required to have that data

type.

EXEC SQL SELECT avg (total_price) into :avg_price

 FROM items;

The declaration of the receiving variable avg_price in the previous example of

Informix ESQL/C code is not shown. The declaration could be any one of the

following definitions:

int avg_price;

double avg_price;

char avg_price[16];

dec_t avg_price; /* typedef of decimal number structure */

The data type of each host variable that is used in a statement is noted and passed

to the database server with the statement. The database server does its best to

convert column data into the form that the receiving variables use. Almost any

conversion is allowed, although some conversions cause a precision loss. The

results of the preceding example differ, depending on the data type of the

receiving host variable, as the following table shows.

 Data Type Result

FLOAT The database server converts the decimal result to FLOAT, possibly

truncating some fractional digits. If the magnitude of a decimal exceeds

the maximum magnitude of the FLOAT format, an error is returned.

INTEGER The database server converts the result to INTEGER, truncating

fractional digits if necessary. If the integer part of the converted number

does not fit the receiving variable, an error occurs.

CHARACTER The database server converts the decimal value to a CHARACTER

string. If the string is too long for the receiving variable, it is truncated.

The second field of SQLWARN is set to W and the value in the

SQLSTATE variable is 01004.

Working with NULL Data

What if the program retrieves a NULL value? NULL values can be stored in the

database, but the data types that programming languages support do not recognize

a NULL state. A program must have some way to recognize a NULL item to avoid

processing it as data.

Indicator variables meet this need in SQL APIs. An indicator variable is an

additional variable that is associated with a host variable that might receive a

NULL item. When the database server puts data in the main variable, it also puts a

special value in the indicator variable to show whether the data is NULL. In the

following IBM Informix ESQL/C example, a single row is selected, and a single

value is retrieved into the host variable op_date:

EXEC SQL SELECT paid_date

 INTO :op_date:op_d_ind

 FROM orders

 WHERE order_num = $the_order;

if (op_d_ind < 0) /* data was null */

 rstrdate (’01/01/1900’, :op_date);

8-10 IBM Informix Guide to SQL: Tutorial

Because the value might be NULL, an indicator variable named op_d_ind is

associated with the host variable. (It must be declared as a short integer elsewhere

in the program.)

Following execution of the SELECT statement, the program tests the indicator

variable for a negative value. A negative number (usually -1) means that the value

retrieved into the main variable is NULL. If the variable is NULL, this program

uses an Informix ESQL/C library function to assign a default value to the host

variable. (The function rstrdate is part of the IBM Informix ESQL/C product.)

The syntax that you use to associate an indicator variable with a host variable

differs with the language you are using, but the principle is the same in all

languages.

Dealing with Errors

Although the database server automatically handles conversion between data

types, several things still can go wrong with a SELECT statement. In SQL

programming, as in any kind of programming, you must anticipate errors and

provide for them at every point.

End of Data

One common event is that no rows satisfy a query. This event is signalled by an

SQLSTATE code of 02000 and by a code of 100 in SQLCODE after a SELECT

statement. This code indicates an error or a normal event, depending entirely on

your application. If you are sure a row or rows should satisfy the query (for

example, if you are reading a row using a key value that you just read from a row

of another table), then the end-of-data code represents a serious failure in the logic

of the program. On the other hand, if you select a row based on a key that a user

supplies or some other source supplies that is less reliable than a program, a lack

of data can be a normal event.

End of Data with Databases That Are Not ANSI Compliant

If your database is not ANSI compliant, the end-of-data return code, 100, is set in

SQLCODE following SELECT statements only. In addition, the SQLSTATE value is

set to 02000. (Other statements, such as INSERT, UPDATE, and DELETE, set the

third element of SQLERRD to show how many rows they affected; Chapter 9

covers this topic.)

Serious Errors

Errors that set SQLCODE to a negative value or SQLSTATE to a value that begins

with anything other than 00, 01, or 02 are usually serious. Programs that you have

developed and that are in production should rarely report these errors.

Nevertheless, it is difficult to anticipate every problematic situation, so your

program must be able to deal with these errors.

For example, a query can return error -206, which means that a table specified in

the query is not in the database. This condition occurs if someone dropped the

table after the program was written, or if the program opened the wrong database

through some error of logic or mistake in input.

Interpreting End of Data with Aggregate Functions

A SELECT statement that uses an aggregate function such as SUM, MIN, or AVG

always succeeds in returning at least one row of data, even when no rows satisfy

the WHERE clause. An aggregate value based on an empty set of rows is null, but

it exists nonetheless.

Chapter 8. Programming with SQL 8-11

However, an aggregate value is also null if it is based on one or more rows that all

contain null values. If you must be able to detect the difference between an

aggregate value that is based on no rows and one that is based on some rows that

are all null, you must include a COUNT function in the statement and an indicator

variable on the aggregate value. You can then work out the following cases.

 Count Value Indicator Case

0 -1 Zero rows selected

>0 -1 Some rows selected; all were null

>0 0 Some non-null rows selected

Using Default Values

You can handle these inevitable errors in many ways. In some applications, more

lines of code are used to handle errors than to execute functionality. In the

examples in this section, however, one of the simplest solutions, the default value,

should work, as the following example shows:

avg_price = 0; /* set default for errors */

EXEC SQL SELECT avg (total_price)

 INTO :avg_price:null_flag

 FROM items;

if (null_flag < 0) /* probably no rows */

 avg_price = 0; /* set default for 0 rows */

The previous example deals with the following considerations:

v If the query selects some non-null rows, the correct value is returned and used.

This result is the expected and most frequent one.

v If the query selects no rows, or in the much less likely event, selects only rows

that have null values in the total_price column (a column that should never be

null), the indicator variable is set, and the default value is assigned.

v If any serious error occurs, the host variable is left unchanged; it contains the

default value initially set. At this point in the program, the programmer sees no

need to trap such errors and report them.

Retrieving Multiple Rows

When any chance exists that a query could return more than one row, the program

must execute the query differently. Multirow queries are handled in two stages.

First, the program starts the query. (No data is returned immediately.) Then the

program requests the rows of data one at a time.

These operations are performed using a special data object called a cursor. A cursor

is a data structure that represents the current state of a query. The following list

shows the general sequence of program operations:

1. The program declares the cursor and its associated SELECT statement, which

merely allocates storage to hold the cursor.

2. The program opens the cursor, which starts the execution of the associated

SELECT statement and detects any errors in it.

3. The program fetches a row of data into host variables and processes it.

4. The program closes the cursor after the last row is fetched.

5. When the cursor is no longer needed, the program frees the cursor to deallocate

the resources it uses.

8-12 IBM Informix Guide to SQL: Tutorial

These operations are performed with SQL statements named DECLARE, OPEN,

FETCH, CLOSE, and FREE.

Declaring a Cursor

You use the DECLARE statement to declare a cursor. This statement gives the

cursor a name, specifies its use, and associates it with a statement. The following

example is written in IBM Informix ESQL/C:

EXEC SQL DECLARE the_item CURSOR FOR

 SELECT order_num, item_num, stock_num

 INTO :o_num, :i_num, :s_num

 FROM items

 FOR READ ONLY;

The declaration gives the cursor a name (the_item in this case) and associates it

with a SELECT statement. (Chapter 9 discusses how a cursor can also be associated

with an INSERT statement.)

The SELECT statement in this example contains an INTO clause. The INTO clause

specifies which variables receive data. You can also use the FETCH statement to

specify which variables receive data, as “Locating the INTO Clause” on page 8-14

discusses.

The DECLARE statement is not an active statement; it merely establishes the

features of the cursor and allocates storage for it. You can use the cursor declared

in the preceding example to read through the items table once. Cursors can be

declared to read backward and forward (see “Cursor Input Modes” on page 8-14).

This cursor, because it lacks a FOR UPDATE clause and because it is designated

FOR READ ONLY, is used only to read data, not to modify it. Chapter 9 covers the

use of cursors to modify data.

Opening a Cursor

The program opens the cursor when it is ready to use it. The OPEN statement

activates the cursor. It passes the associated SELECT statement to the database

server, which begins the search for matching rows. The database server processes

the query to the point of locating or constructing the first row of output. It does

not actually return that row of data, but it does set a return code in SQLSTATE

and in SQLCODE for SQL APIs. The following example shows the OPEN

statement in Informix ESQL/C:

EXEC SQL OPEN the_item;

Because the database server is seeing the query for the first time, it might detect a

number of errors. After the program opens the cursor, it should test SQLSTATE or

SQLCODE. If the SQLSTATE value is greater than 02000 or the SQLCODE contains

a negative number, the cursor is not usable. An error might be present in the

SELECT statement, or some other problem might prevent the database server from

executing the statement.

If SQLSTATE is equal to 00000, or SQLCODE contains a zero, the SELECT

statement is syntactically valid, and the cursor is ready to use. At this point,

however, the program does not know if the cursor can produce any rows.

Fetching Rows

The program uses the FETCH statement to retrieve each row of output. This

statement names a cursor and can also name the host variables that receive the

data. The following example shows the completed IBM Informix ESQL/C code:

Chapter 8. Programming with SQL 8-13

EXEC SQL DECLARE the_item CURSOR FOR

 SELECT order_num, item_num, stock_num

 INTO :o_num, :i_num, :s_num

 FROM items;

EXEC SQL OPEN the_item;

while(SQLCODE == 0)

{

 EXEC SQL FETCH the_item;

 if(SQLCODE == 0)

 printf("%d, %d, %d", o_num, i_num, s_num);

}

Detecting End of Data

In the previous example, the WHILE condition prevents execution of the loop in

case the OPEN statement returns an error. The same condition terminates the loop

when SQLCODE is set to 100 to signal the end of data. However, the loop contains

a test of SQLCODE. This test is necessary because, if the SELECT statement is

valid yet finds no matching rows, the OPEN statement returns a zero, but the first

fetch returns 100 (end of data) and no data. The following example shows another

way to write the same loop:

EXEC SQL DECLARE the_item CURSOR FOR

 SELECT order_num, item_num, stock_num

 INTO :o_num, :i_num, :s_num

 FROM items;

EXEC SQL OPEN the_item;

if(SQLCODE == 0)

 EXEC SQL FETCH the_item; /* fetch 1st row*/

while(SQLCODE == 0)

{

 printf("%d, %d, %d", o_num, i_num, s_num);

 EXEC SQL FETCH the_item;

}

In this version, the case of no returned rows is handled early, so no second test of

SQLCODE exists within the loop. These versions have no measurable difference in

performance because the time cost of a test of SQLCODE is a tiny fraction of the

cost of a fetch.

Locating the INTO Clause

The INTO clause names the host variables that are to receive the data that the

database server returns. The INTO clause must appear in either the SELECT or the

FETCH statement. However it cannot appear in both statements. The following

example specifies host variables in the FETCH statement:

EXEC SQL DECLARE the_item CURSOR FOR

 SELECT order_num, item_num, stock_num

 FROM items;

EXEC SQL OPEN the_item;

while(SQLCODE == 0)

{

 EXEC SQL FETCH the_item INTO :o_num, :i_num, :s_num;

 if(SQLCODE == 0)

 printf("%d, %d, %d", o_num, i_num, s_num);

}

This form lets you fetch different rows into different locations. For example, you

could use this form to fetch successive rows into successive elements of an array.

Cursor Input Modes

For purposes of input, a cursor operates in one of two modes, sequential or

scrolling. A sequential cursor can fetch only the next row in sequence, so a

8-14 IBM Informix Guide to SQL: Tutorial

sequential cursor can read through a table only once each time the cursor is

opened. A scroll cursor can fetch the next row or any of the output rows, so a

scroll cursor can read the same rows multiple times. The following example shows

a sequential cursor declared in IBM Informix ESQL/C:

EXEC SQL DECLARE pcurs cursor for

 SELECT customer_num, lname, city

 FROM customer;

After the cursor is opened, it can be used only with a sequential fetch that

retrieves the next row of data, as the following example shows:

EXEC SQL FETCH p_curs into:cnum, :clname, :ccity;

Each sequential fetch returns a new row.

A scroll cursor is declared with the keywords SCROLL CURSOR, as the following

example from IBM Informix ESQL/C shows:

EXEC SQL DECLARE s_curs SCROLL CURSOR FOR

 SELECT order_num, order_date FROM orders

 WHERE customer_num > 104

Use the scroll cursor with a variety of fetch options. For example, the ABSOLUTE

option specifies the absolute row position of the row to fetch.

EXEC SQL FETCH ABSOLUTE :numrow s_curs

 INTO :nordr, :nodat

This statement fetches the row whose position is given in the host variable

numrow. You can also fetch the current row again, or you can fetch the first row

and then scan through all the rows again. However, these features can cause the

application to run more slowly, as the next section describes. For additional options

that apply to scroll cursors, see the FETCH statement in the IBM Informix Guide to

SQL: Syntax.

Active Set of a Cursor

Once a cursor is opened, it stands for some selection of rows. The set of all rows

that the query produces is called the active set of the cursor. It is easy to think of

the active set as a well-defined collection of rows and to think of the cursor as

pointing to one row of the collection. This situation is true as long as no other

programs are modifying the same data concurrently.

Creating the Active Set

When a cursor is opened, the database server does whatever is necessary to locate

the first row of selected data. Depending on how the query is phrased, this action

can be easy, or it can require a great deal of work and time. Consider the following

declaration of a cursor:

EXEC SQL DECLARE easy CURSOR FOR

 SELECT fname, lname FROM customer

 WHERE state = ’NJ’

Because this cursor queries only a single table in a simple way, the database server

quickly determines whether any rows satisfy the query and identifies the first one.

The first row is the only row the cursor finds at this time. The rest of the rows in

the active set remain unknown. As a contrast, consider the following declaration of

a cursor:

EXEC SQL DECLARE hard SCROLL CURSOR FOR

 SELECT C.customer_num, O.order_num, sum (items.total_price)

 FROM customer C, orders O, items I

Chapter 8. Programming with SQL 8-15

WHERE C.customer_num = O.customer_num

 AND O.order_num = I.order_num

 AND O.paid_date is null

 GROUP BY C.customer_num, O.order_num

The active set of this cursor is generated by joining three tables and grouping the

output rows. The optimizer might be able to use indexes to produce the rows in

the correct order, but generally the use of ORDER BY or GROUP BY clauses

requires the database server to generate all the rows, copy them to a temporary

table, and sort the table, before it can determine which row to present first.

In cases where the active set is entirely generated and saved in a temporary table,

the database server can take quite some time to open the cursor. Afterwards, the

database server could tell the program exactly how many rows the active set

contains. However, this information is not made available. One reason is that you

can never be sure which method the optimizer uses. If the optimizer can avoid

sorts and temporary tables, it does so; but small changes in the query, in the sizes

of the tables, or in the available indexes can change the methods of the optimizer.

Active Set for a Sequential Cursor

The database server attempts to use as few resources as possible to maintain the

active set of a cursor. If it can do so, the database server never retains more than

the single row that is fetched next. It can do this for most sequential cursors. On

each fetch, it returns the contents of the current row and locates the next one.

Active Set for a SCROLL Cursor

All the rows in the active set for a SCROLL cursor must be retained until the

cursor closes because the database server cannot be sure which row the program

will ask for next.

Most frequently, the database server implements the active set of a scroll cursor as

a temporary table. The database server might not fill this table immediately,

however (unless it created a temporary table to process the query). Usually it

creates the temporary table when the cursor is opened. Then, the first time a row is

fetched, the database server copies it into the temporary table and returns it to the

program. When a row is fetched for a second time, it can be taken from the

temporary table. This scheme uses the fewest resources, in the event that the

program abandons the query before it fetches all the rows. Rows that are never

fetched are not created or saved.

Active Set and Concurrency

When only one program is using a database, the members of the active set cannot

change. This situation describes most personal computers, and it is the easiest

situation to think about. But some programs must be designed for use in a

multiprogramming system, where two, three, or dozens of different programs can

work on the same tables simultaneously.

When other programs can update the tables while your cursor is open, the idea of

the active set becomes less useful. Your program can see only one row of data at a

time, but all other rows in the table can be changing.

In the case of a simple query, when the database server holds only one row of the

active set, any other row can change. The instant after your program fetches a row,

another program can delete the same row, or update it so that if it is examined

again, it is no longer part of the active set.

8-16 IBM Informix Guide to SQL: Tutorial

When the active set, or part of it, is saved in a temporary table, stale data can

present a problem. That is, the rows in the actual tables from which the active-set

rows are derived can change. If they do, some of the active-set rows no longer

reflect the current table contents.

These ideas seem unsettling at first, but as long as your program only reads the

data, stale data does not exist, or rather, all data is equally stale. The active set is a

snapshot of the data as it is at one moment. A row is different the next day; it does

not matter if it is also different in the next millisecond. To put it another way, no

practical difference exists between changes that occur while the program is running

and changes that are saved and applied the instant that the program terminates.

The only time that stale data can cause a problem is when the program intends to

use the input data to modify the same database; for example, when a banking

application must read an account balance, change it, and write it back. Chapter 9

discusses programs that modify data.

Using a Cursor: A Parts Explosion

When you use a cursor supplemented by program logic, you can solve problems

that plain SQL cannot solve. One of these problems is the parts-explosion problem,

sometimes called bill-of-materials processing. At the heart of this problem is a

recursive relationship among objects; one object contains other objects, which

contain yet others.

The problem is usually stated in terms of a manufacturing inventory. A company

makes a variety of parts, for example. Some parts are discrete, but some are

assemblages of other parts.

These relationships are documented in a single table, which might be called

contains. The column contains.parent holds the part numbers of parts that are

assemblages. The column contains.child has the part number of a part that is a

component of the parent. If part number 123400 is an assembly of nine parts, nine

rows exist with 123400 in the first column and other part numbers in the second.

Figure 8-2 shows one of the rows that describe part number 123400.

Here is the parts-explosion problem: given a part number, produce a list of all

parts that are components of that part. The following example is a sketch of one

solution, as implemented in IBM Informix ESQL/C:

int part_list[200];

boom(top_part)

int top_part;

{

 long this_part, child_part;

PARENT

FKNN

CONTAINS

432100
765899

FKNN

CHILD

123400
432100

Figure 8-2. Parts-Explosion Problem

Chapter 8. Programming with SQL 8-17

int next_to_do = 0, next_free = 1;

 part_list[next_to_do] = top_part;

 EXEC SQL DECLARE part_scan CURSOR FOR

 SELECT child INTO child_part FROM contains

 WHERE parent = this_part;

 while(next_to_do < next_free)

 {

 this_part = part_list[next_to_do];

 EXEC SQL OPEN part_scan;

 while(SQLCODE == 0)

 {

 EXEC SQL FETCH part_scan;

 if(SQLCODE == 0)

 {

 part_list[next_free] = child_part;

 next_free += 1;

 }

 }

 EXEC SQL CLOSE part_scan;

 next_to_do += 1;

 }

 return (next_free - 1);

}

Technically speaking, each row of the contains table is the head node of a directed

acyclic graph, or tree. The function performs a breadth-first search of the tree

whose root is the part number passed as its parameter. The function uses a cursor

named part_scan to return all the rows with a particular value in the parent

column. The innermost while loop opens the part_scan cursor, fetches each row in

the selection set, and closes the cursor when the part number of each component

has been retrieved.

This function addresses the heart of the parts-explosion problem, but the function

is not a complete solution. For example, it does not allow for components that

appear at more than one level in the tree. Furthermore, a practical contains table

would also have a column count, giving the count of child parts used in each

parent. A program that returns a total count of each component part is much more

complicated.

The iterative approach described previously is not the only way to approach the

parts-explosion problem. If the number of generations has a fixed limit, you can

solve the problem with a single SELECT statement using nested, outer self-joins.

If up to four generations of parts can be contained within one top-level part, the

following SELECT statement returns all of them:

SELECT a.parent, a.child, b.child, c.child, d.child

 FROM contains a

 OUTER (contains b,

 OUTER (contains c, outer contains d))

 WHERE a.parent = top_part_number

 AND a.child = b.parent

 AND b.child = c.parent

 AND c.child = d.parent

This SELECT statement returns one row for each line of descent rooted in the part

given as top_part_number. Null values are returned for levels that do not exist.

(Use indicator variables to detect them.) To extend this solution to more levels,

select additional nested outer joins of the contains table. You can also revise this

solution to return counts of the number of parts at each level.

8-18 IBM Informix Guide to SQL: Tutorial

Dynamic SQL

Although static SQL is useful, it requires that you know the exact content of every

SQL statement at the time you write the program. For example, you must state

exactly which columns are tested in any WHERE clause and exactly which

columns are named in any select list.

No problem exists when you write a program to perform a well-defined task. But

the database tasks of some programs cannot be perfectly defined in advance. In

particular, a program that must respond to an interactive user might need to

compose SQL statements in response to what the user enters.

Dynamic SQL allows a program to form an SQL statement during execution, so

that user input determines the contents of the statement. This action is performed

in the following steps:

1. The program assembles the text of an SQL statement as a character string,

which is stored in a program variable.

2. It executes a PREPARE statement, which asks the database server to examine

the statement text and prepare it for execution.

3. It uses the EXECUTE statement to execute the prepared statement.

In this way, a program can construct and then use any SQL statement, based on

user input of any kind. For example, it can read a file of SQL statements and

prepare and execute each one.

DB–Access, a utility that you can use to explore SQL interactively, is an IBM

Informix ESQL/C program that constructs, prepares, and executes SQL statements

dynamically. For example, DB–Access lets you use simple, interactive menus to

specify the columns of a table. When you are finished, DB–Access builds the

necessary CREATE TABLE or ALTER TABLE statement dynamically and prepares

and executes it.

Preparing a Statement

In form, a dynamic SQL statement is like any other SQL statement that is written

into a program, except that it cannot contain the names of any host variables.

A prepared SQL statement has two restrictions. First, if it is a SELECT statement, it

cannot include the INTO variable clause. The INTO variable clause specifies host

variables into which column data is placed, and host variables are not allowed in

the text of a prepared object. Second, wherever the name of a host variable

normally appears in an expression, a question mark (?) is written as a placeholder

in the PREPARE statement. Only the PREPARE statement can specify question

mark (?) placeholders.

You can prepare a statement in this form for execution with the PREPARE

statement. The following example is written in IBM Informix ESQL/C:

EXEC SQL prepare query_2 from

 ’SELECT * from orders

 WHERE customer_num = ? and order_date > ?’;

The two question marks in this example indicate that when the statement is

executed, the values of host variables are used at those two points.

You can prepare almost any SQL statement dynamically. The only statements that

you cannot prepare are the ones directly concerned with dynamic SQL and cursor

Chapter 8. Programming with SQL 8-19

management, such as the PREPARE and OPEN statements. After you prepare an

UPDATE or DELETE statement, it is a good idea to test the fifth field of

SQLWARN to see if you used a WHERE clause (see “SQLWARN Array” on page

8-7).

The result of preparing a statement is a data structure that represents the

statement. This data structure is not the same as the string of characters that

produced it. In the PREPARE statement, you give a name to the data structure; it is

query_2 in the preceding example. This name is used to execute the prepared SQL

statement.

The PREPARE statement does not limit the character string to one statement. It can

contain multiple SQL statements, separated by semicolons. The following example

shows a fairly complex transaction in IBM Informix ESQL/C:

strcpy(big_query, "UPDATE account SET balance = balance + ?

WHERE customer_id = ?; \ UPDATE teller SET balance =

balance + ? WHERE teller_id = ?;");

EXEC SQL PREPARE big1 FROM :big_query;

When this list of statements is executed, host variables must provide values for six

place-holding question marks. Although it is more complicated to set up a

multistatement list, performance is often better because fewer exchanges take place

between the program and the database server.

Executing Prepared SQL

After you prepare a statement, you can execute it multiple times. Statements other

than SELECT statements, and SELECT statements that return only a single row, are

executed with the EXECUTE statement.

The following IBM Informix ESQL/C code prepares and executes a multistatement

update of a bank account:

EXEC SQL BEGIN DECLARE SECTION;

char bigquery[270] = "begin work;";

EXEC SQL END DECLARE SECTION;

stcat ("update account set balance = balance + ? where ", bigquery);

stcat ("acct_number = ?;’, bigquery);

stcat ("update teller set balance = balance + ? where ", bigquery);

stcat ("teller_number = ?;’, bigquery);

stcat ("update branch set balance = balance + ? where ", bigquery);

stcat ("branch_number = ?;’, bigquery);

stcat ("insert into history values(timestamp, values);", bigquery);

EXEC SQL prepare bigq from :bigquery;

EXEC SQL execute bigq using :delta, :acct_number, :delta,

 :teller_number, :delta, :branch_number;

EXEC SQL commit work;

The USING clause of the EXECUTE statement supplies a list of host variables

whose values are to take the place of the question marks in the prepared

statement. If a SELECT (or EXECUTE FUNCTION) returns only one row, you can

use the INTO clause of EXECUTE to specify the host variables that receive the

values.

Dynamic Host Variables

SQL APIs, which support dynamically allocated data objects, take dynamic

statements one step further. They let you dynamically allocate the host variables

that receive column data.

8-20 IBM Informix Guide to SQL: Tutorial

Dynamic allocation of variables makes it possible to take an arbitrary SELECT

statement from program input, determine how many values it produces and their

data types, and allocate the host variables of the appropriate types to hold them.

The key to this ability is the DESCRIBE statement. It takes the name of a prepared

SQL statement and returns information about the statement and its contents. It sets

SQLCODE to specify the type of statement; that is, the verb with which it begins.

If the prepared statement is a SELECT statement, the DESCRIBE statement also

returns information about the selected output data. If the prepared statement is an

INSERT statement, the DESCRIBE statement returns information about the input

parameters. The data structure to which a DESCRIBE statement returns

information is a predefined data structure that is allocated for this purpose and is

known as a system-descriptor area. If you are using IBM Informix ESQL/C, you

can use a system-descriptor area or, as an alternative, an sqlda structure.

The data structure that a DESCRIBE statement returns or references for a SELECT

statement includes an array of structures. Each structure describes the data that is

returned for one item in the select list. The program can examine the array and

discover that a row of data includes a decimal value, a character value of a certain

length, and an integer.

With this information, the program can allocate memory to hold the retrieved

values and put the necessary pointers in the data structure for the database server

to use.

Freeing Prepared Statements

A prepared SQL statement occupies space in memory. With some database servers,

it can consume space that the database server owns as well as space that belongs

to the program. This space is released when the program terminates, but in

general, you should free this space when you finish with it.

You can use the FREE statement to release this space. The FREE statement takes

either the name of a statement or the name of a cursor that was declared for a

statement name, and releases the space allocated to the prepared statement. If more

than one cursor is defined on the statement, freeing the statement does not free the

cursor.

Quick Execution

For simple statements that do not require a cursor or host variables, you can

combine the actions of the PREPARE, EXECUTE, and FREE statements into a

single operation. The following example shows how the EXECUTE IMMEDIATE

statement takes a character string, prepares it, executes it, and frees the storage in

one operation:

EXEC SQL execute immediate ’drop index my_temp_index’;

This capability makes it easy to write simple SQL operations. However, because no

USING clause is allowed, the EXECUTE IMMEDIATE statement cannot be used for

SELECT statements.

Embedding Data-Definition Statements

Data-definition statements, the SQL statements that create databases and modify

the definitions of tables, are not usually put into programs. The reason is that they

are rarely performed. A database is created once, but it is queried and updated

many times.

Chapter 8. Programming with SQL 8-21

The creation of a database and its tables is generally done interactively, using

DB–Access. These tools can also be run from a file of statements, so that the

creation of a database can be done with one operating-system command. The

data-definition statements are documented in the IBM Informix Guide to SQL:

Syntax and the IBM Informix Database Design and Implementation Guide.

Granting and Revoking Privileges in Applications

One task related to data definition is performed repeatedly: granting and revoking

privileges. Because privileges must be granted and revoked frequently, possibly by

users who are not skilled in SQL, one strategy is to package the GRANT and

REVOKE statements in programs to give them a simpler, more convenient user

interface.

The GRANT and REVOKE statements are especially good candidates for dynamic

SQL. Each statement takes the following parameters:

v A list of one or more privileges

v A table name

v The name of a user

You probably need to supply at least some of these values based on program input

(from the user, command-line parameters, or a file) but none can be supplied in

the form of a host variable. The syntax of these statements does not allow host

variables at any point.

An alternative is to assemble the parts of a statement into a character string and to

prepare and execute the assembled statement. Program input can be incorporated

into the prepared statement as characters.

The following IBM Informix ESQL/C function assembles a GRANT statement from

parameters, and then prepares and executes it:

char priv_to_grant[100];

char table_name[20];

char user_id[20];

table_grant(priv_to_grant, table_name, user_id)

char *priv_to_grant;

char *table_name;

char *user_id;

{

 EXEC SQL BEGIN DECLARE SECTION;

 char grant_stmt[200];

 EXEC SQL END DECLARE SECTION;

 sprintf(grant_stmt, " GRANT %s ON %s TO %s",

 priv_to_grant, table_name, user_id);

 PREPARE the_grant FROM :grant_stmt;

 if(SQLCODE == 0)

 EXEC SQL EXECUTE the_grant;

 else

 printf("Sorry, got error # %d attempting %s",

 SQLCODE, grant_stmt);

 EXEC SQL FREE the_grant;

}

8-22 IBM Informix Guide to SQL: Tutorial

The opening statement of the function that the following example shows specifies

its name and its three parameters. The three parameters specify the privileges to

grant, the name of the table on which to grant privileges, and the ID of the user to

receive them.

table_grant(priv_to_grant, table_name, user_id)

char *priv_to_grant;

char *table_name;

char *user_id;

The function uses the statements in the following example to define a local

variable, grant_stmt, which is used to assemble and hold the GRANT statement:

EXEC SQL BEGIN DECLARE SECTION;

 char grant_stmt[200];

EXEC SQL END DECLARE SECTION;

As the following example illustrates, the GRANT statement is created by

concatenating the constant parts of the statement and the function parameters:

sprintf(grant_stmt, " GRANT %s ON %s TO %s",priv_to_grant,

 table_name, user_id);

This statement concatenates the following six character strings:

v ’GRANT’

v The parameter that specifies the privileges to be granted

v ’ON’

v The parameter that specifies the table name

v ’TO’

v The parameter that specifies the user

The result is a complete GRANT statement composed partly of program input. The

PREPARE statement passes the assembled statement text to the database server for

parsing.

If the database server returns an error code in SQLCODE following the PREPARE

statement, the function displays an error message. If the database server approves

the form of the statement, it sets a zero return code. This action does not guarantee

that the statement is executed properly; it means only that the statement has

correct syntax. It might refer to a nonexistent table or contain many other kinds of

errors that can be detected only during execution. The following portion of the

example checks that the_grant was prepared successfully before executing it:

if(SQLCODE == 0)

 EXEC SQL EXECUTE the_grant;

else

 printf("Sorry, got error # %d attempting %s", SQLCODE, grant_stmt);

If the preparation is successful, SQLCODE = = 0, the next step executes the prepared

statement.

Assigning Roles

Alternatively, the DBA can define a role with the CREATE ROLE statement, and

use the GRANT and REVOKE statements to cancel or assign roles to users, and to

grant and revoke privileges of roles. For example:

GRANT engineer TO nmartin;

The SET ROLE statement is needed to activate a non-default role. For more

information on roles and privileges, see “Access-Management Strategies” on page

1-5

Chapter 8. Programming with SQL 8-23

1-5 and “Privileges on a Database and on its Objects” on page 6-20. For more

information on the GRANT and REVOKE statements, see the IBM Informix

Database Design and Implementation Guide. For more information about the syntax of

these statements, see IBM Informix Guide to SQL: Syntax.

Summary

SQL statements can be written into programs as if they were normal statements of

the programming language. Program variables can be used in WHERE clauses, and

data from the database can be fetched into them. A preprocessor translates the SQL

code into procedure calls and data structures.

Statements that do not return data, or queries that return only one row of data, are

written like ordinary imperative statements of the language. Queries that can

return more than one row are associated with a cursor that represents the current

row of data. Through the cursor, the program can fetch each row of data as it is

needed.

Static SQL statements are written into the text of the program. However, the

program can form new SQL statements dynamically, as it runs, and execute them

also. In the most advanced cases, the program can obtain information about the

number and types of columns that a query returns and dynamically allocate the

memory space to hold them.

8-24 IBM Informix Guide to SQL: Tutorial

Chapter 9. Modifying Data Through SQL Programs

In This Chapter . 9-1

Using DELETE . 9-1

Direct Deletions . 9-2

Errors During Direct Deletions . 9-2

Using Transaction Logging . 9-2

Coordinated Deletions . 9-3

Deleting with a Cursor . 9-3

Using INSERT . 9-5

Using an Insert Cursor . 9-5

Declaring an Insert Cursor . 9-5

Inserting with a Cursor . 9-5

Status Codes After PUT and FLUSH . 9-6

Rows of Constants . 9-7

An Insert Example . 9-7

How Many Rows Were Affected? . 9-8

Using UPDATE . 9-9

Using an Update Cursor . 9-9

The Purpose of the Keyword UPDATE . 9-9

Updating Specific Columns . 9-9

UPDATE Keyword Not Always Needed . 9-10

Cleaning Up a Table . 9-10

Summary . 9-11

In This Chapter

The previous chapter describes how to insert or embed SQL statements, especially

the SELECT statement, into programs written in other languages. Embedded SQL

enables a program to retrieve rows of data from a database.

This chapter discusses the issues that arise when a program needs to delete, insert,

or update rows to modify the database. As in Chapter 8, “Programming with

SQL,” on page 8-1, this chapter prepares you for reading your IBM Informix

embedded language publication.

The general use of the INSERT, UPDATE, and DELETE statements is discussed in

Chapter 6, “Modifying Data,” on page 6-1 This chapter examines their use from

within a program. You can easily embed the statements in a program, but it can be

difficult to handle errors and to deal with concurrent modifications from multiple

programs.

Using DELETE

To delete rows from a table, a program executes a DELETE statement. The DELETE

statement can specify rows in the usual way, with a WHERE clause, or it can refer

to a single row, the last one fetched through a specified cursor.

Whenever you delete rows, you must consider whether rows in other tables

depend on the deleted rows. This problem of coordinated deletions is covered in

Chapter 6. The problem is the same when deletions are made from within a

program.

© Copyright IBM Corp. 1996, 2008 9-1

Direct Deletions

You can embed a DELETE statement in a program. The following example uses

IBM Informix ESQL/C:

EXEC SQL delete from items

 WHERE order_num = :onum;

You can also prepare and execute a statement of the same form dynamically. In

either case, the statement works directly on the database to affect one or more

rows.

The WHERE clause in the example uses the value of a host variable named onum.

Following the operation, results are posted in SQLSTATE and in the sqlca

structure, as usual. The third element of the SQLERRD array contains the count of

rows deleted even if an error occurs. The value in SQLCODE shows the overall

success of the operation. If the value is not negative, no errors occurred and the

third element of SQLERRD is the count of all rows that satisfied the WHERE

clause and were deleted.

Errors During Direct Deletions

When an error occurs, the statement ends prematurely. The values in SQLSTATE

and in SQLCODE and the second element of SQLERRD explain its cause, and the

count of rows reveals how many rows were deleted. For many errors, that count is

zero because the errors prevented the database server from beginning the

operation. For example, if the named table does not exist, or if a column tested in

the WHERE clause is renamed, no deletions are attempted.

However, certain errors can be discovered after the operation begins and some

rows are processed. The most common of these errors is a lock conflict. The

database server must obtain an exclusive lock on a row before it can delete that

row. Other programs might be using the rows from the table, preventing the

database server from locking a row. Because the issue of locking affects all types of

modifications, Chapter 10, “Programming for a Multiuser Environment,” on page

10-1, discusses it.

Other, rarer types of errors can strike after deletions begin. For example, hardware

errors that occur while the database is being updated.

Using Transaction Logging

The best way to prepare for any kind of error during a modification is to use

transaction logging. In the event of an error, you can tell the database server to put

the database back the way it was. The following example is based on the example

in the section “Direct Deletions” on page 9-2, which is extended to use

transactions:

EXEC SQL begin work; /* start the transaction*/

EXEC SQL delete from items

 where order_num = :onum;

del_result = sqlca.sqlcode; /* save two error */

del_isamno = sqlca.sqlerrd[1]; /* code numbers */

del_rowcnt = sqlca.sqlerrd[2]; /* and count of rows */

if (del_result < 0) /* problem found: */

 EXEC SQL rollback work; /* put everything back */

else /* everything worked OK:*/

 EXEC SQL commit work; /* finish transaction */

A key point in this example is that the program saves the important return values

in the sqlca structure before it ends the transaction. Both the ROLLBACK WORK

and COMMIT WORK statements, like other SQL statements, set return codes in the

9-2 IBM Informix Guide to SQL: Tutorial

sqlca structure. However, if you want to report the codes that the error generated,

you must save them before executing ROLLBACK WORK. The ROLLBACK

WORK statement removes all of the pending transaction, including its error codes.

The advantage of using transactions is that the database is left in a known,

predictable state no matter what goes wrong. No question remains about how

much of the modification is completed; either all of it or none of it is completed.

In a database with logging, if a user does not start an explicit transaction, the

database server initiates an internal transaction prior to execution of the statement

and terminates the transaction after execution completes or fails. If the statement

execution succeeds, the internal transaction is committed. If the statement fails, the

internal transaction is rolled back.

Coordinated Deletions

The usefulness of transaction logging is particularly clear when you must modify

more than one table. For example, consider the problem of deleting an order from

the demonstration database. In the simplest form of the problem, you must delete

rows from two tables, orders and items, as the following example of IBM Informix

ESQL/C shows:

EXEC SQL BEGIN WORK;

EXEC SQL DELETE FROM items

 WHERE order_num = :o_num;

if (SQLCODE >= 0)

{

 EXEC SQL DELETE FROM orders

 WHERE order_num == :o_num;

{

 if (SQLCODE >= 0)

 EXEC SQL COMMIT WORK;

{

 else

{

 printf("Error %d on DELETE", SQLCODE);

 EXEC SQL ROLLBACK WORK;

}

The logic of this program is much the same whether or not transactions are used.

If they are not used, the person who sees the error message has a much more

difficult set of decisions to make. Depending on when the error occurred, one of

the following situations applies:

v No deletions were performed; all rows with this order number remain in the

database.

v Some, but not all, item rows were deleted; an order record with only some items

remains.

v All item rows were deleted, but the order row remains.

v All rows were deleted.

In the second and third cases, the database is corrupted to some extent; it contains

partial information that can cause some queries to produce wrong answers. You

must take careful action to restore consistency to the information. When

transactions are used, all these uncertainties are prevented.

Deleting with a Cursor

You can also write a DELETE statement with a cursor to delete the row that was

last fetched. Deleting rows in this manner lets you program deletions based on

Chapter 9. Modifying Data Through SQL Programs 9-3

conditions that cannot be tested in a WHERE clause, as the following example

shows. The following example applies only to databases that are not ANSI

compliant because of the way that the beginning and ending of the transaction are

set up.

Warning: The design of the Informix ESQL/C function in this example is unsafe. It

depends on the current isolation level for correct operation. Isolation

levels are discussed later in the chapter. For more information on

isolation levels, see Chapter 10. Even when the function works as

intended, its effects depend on the physical order of rows in the table,

which is not generally a good idea.

int delDupOrder()

{

 int ord_num;

 int dup_cnt, ret_code;

 EXEC SQL declare scan_ord cursor for

 select order_num, order_date

 into :ord_num, :ord_date

 from orders for update;

 EXEC SQL open scan_ord;

 if (sqlca.sqlcode != 0)

 return (sqlca.sqlcode);

 EXEC SQL begin work;

 for(;;)

 {

 EXEC SQL fetch next scan_ord;

 if (sqlca.sqlcode != 0) break;

 dup_cnt = 0; /* default in case of error */

 EXEC SQL select count(*) into dup_cnt from orders

 where order_num = :ord_num;

 if (dup_cnt > 1)

 {

 EXEC SQL delete from orders

 where current of scan_ord;

 if (sqlca.sqlcode != 0)

 break;

 }

 }

 ret_code = sqlca.sqlcode;

 if (ret_code == 100) /* merely end of data */

 EXEC SQL commit work;

 else /* error on fetch or on delete */

 EXEC SQL rollback work;

 return (ret_code);

}

The purpose of the function is to delete rows that contain duplicate order numbers.

In fact, in the demonstration database, the orders.order_num column has a unique

index, so duplicate rows cannot occur in it. However, a similar function can be

written for another database; this one uses familiar column names.

The function declares scan_ord, a cursor to scan all rows in the orders table. It is

declared with the FOR UPDATE clause, which states that the cursor can modify

data. If the cursor opens properly, the function begins a transaction and then loops

over rows of the table. For each row, it uses an embedded SELECT statement to

determine how many rows of the table have the order number of the current row.

(This step fails without the correct isolation level, as Chapter 10 describes.)

9-4 IBM Informix Guide to SQL: Tutorial

In the demonstration database, with its unique index on this table, the count

returned to dup_cnt is always one. However, if it is greater, the function deletes

the current row of the table, reducing the count of duplicates by one.

Clean-up functions of this sort are sometimes needed, but they generally need

more sophisticated design. This function deletes all duplicate rows except the last

one that the database server returns. That order has nothing to do with the content

of the rows or their meanings. You can improve the function in the previous

example by adding, perhaps, an ORDER BY clause to the cursor declaration.

However, you cannot use ORDER BY and FOR UPDATE together. “An Insert

Example” on page 9-7 presents a better approach.

Using INSERT

You can embed the INSERT statement in programs. Its form and use in a program

are the same as described in Chapter 6 with the additional feature that you can use

host variables in expressions, both in the VALUES and WHERE clauses. Moreover,

in a program you have the additional ability to insert rows with a cursor.

Using an Insert Cursor

The DECLARE CURSOR statement has many variations. Most are used to create

cursors for different kinds of scans over data, but one variation creates a special

kind of cursor, called an insert cursor. You use an insert cursor with the PUT and

FLUSH statements to efficiently insert rows into a table in bulk.

Declaring an Insert Cursor

To create an insert cursor, declare a cursor to be for an INSERT statement instead

of a SELECT statement. You cannot use such a cursor to fetch rows of data; you

can use it only to insert them. The following 4GL code fragment shows the

declaration of an insert cursor:

DEFINE the_company LIKE customer.company,

 the_fname LIKE customer.fname,

 the_lname LIKE customer.lname

DECLARE new_custs CURSOR FOR

 INSERT INTO customer (company, fname, lname)

 VALUES (the_company, the_fname, the_lname)

When you open an insert cursor, a buffer is created in memory to hold a block of

rows. The buffer receives rows of data as the program produces them; then they

are passed to the database server in a block when the buffer is full. The buffer

reduces the amount of communication between the program and the database

server, and it lets the database server insert the rows with less difficulty. As a

result, the insertions go faster.

The buffer is always made large enough to hold at least two rows of inserted

values. It is large enough to hold more than two rows when the rows are shorter

than the minimum buffer size.

Inserting with a Cursor

The code in the previous example prepares an insert cursor for use. The

continuation, as the following example shows, demonstrates how the cursor can be

used. For simplicity, this example assumes that a function named next_cust returns

either information about a new customer or null data to signal the end of input.

EXEC SQL BEGIN WORK;

EXEC SQL OPEN new_custs;

while(SQLCODE == 0)

{

Chapter 9. Modifying Data Through SQL Programs 9-5

next_cust();

 if(the_company == NULL)

 break;

 EXEC SQL PUT new_custs;

}

if(SQLCODE == 0) /* if no problem with PUT */

{

 EXEC SQL FLUSH new_custs; /* write any rows left */

 if(SQLCODE == 0) /* if no problem with FLUSH */

 EXEC SQL COMMIT WORK; /* commit changes */

}

else

 EXEC SQL ROLLBACK WORK; /* else undo changes */

The code in this example calls next_cust repeatedly. When it returns non-null data,

the PUT statement sends the returned data to the row buffer. When the buffer fills,

the rows it contains are automatically sent to the database server. The loop

normally ends when next_cust has no more data to return. Then the FLUSH

statement writes any rows that remain in the buffer, after which the transaction

terminates.

Re-examine the information about the INSERT statement. See “Using INSERT” on

page 9-5. The statement by itself, not part of a cursor definition, inserts a single

row into the customer table. In fact, the whole apparatus of the insert cursor can

be dropped from the example code, and the INSERT statement can be written into

the code where the PUT statement now stands. The difference is that an insert

cursor causes a program to run somewhat faster.

Status Codes After PUT and FLUSH

When a program executes a PUT statement, the program should test whether the

row is placed in the buffer successfully. If the new row fits in the buffer, the only

action of PUT is to copy the row to the buffer. No errors can occur in this case.

However, if the row does not fit, the entire buffer load is passed to the database

server for insertion, and an error can occur.

The values returned into the SQL Communications Area (SQLCA) give the

program the information it needs to sort out each case. SQLCODE and SQLSTATE

are set to zero after every PUT statement if no error occurs and to a negative error

code if an error occurs.

The database server sets the third element of SQLERRD to the number of rows

actually inserted into the table, as follows:

v Zero, if the new row is merely moved to the buffer

v The number of rows that are in the buffer, if the buffer load is inserted without

error

v The number of rows inserted before an error occurs, if one did occur

Read the code once again to see how SQLCODE is used (see the previous

example). First, if the OPEN statement yields an error, the loop is not executed

because the WHILE condition fails, the FLUSH operation is not performed, and the

transaction rolls back. Second, if the PUT statement returns an error, the loop ends

because of the WHILE condition, the FLUSH operation is not performed, and the

transaction rolls back. This condition can occur only if the loop generates enough

rows to fill the buffer at least once; otherwise, the PUT statement cannot generate

an error.

9-6 IBM Informix Guide to SQL: Tutorial

The program might end the loop with rows still in the buffer, possibly without

inserting any rows. At this point, the SQL status is zero, and the FLUSH operation

occurs. If the FLUSH operation produces an error code, the transaction rolls back.

Only when all inserts are successfully performed is the transaction committed.

Rows of Constants

The insert cursor mechanism supports one special case where high performance is

easy to obtain. In this case, all the values listed in the INSERT statement are

constants: no expressions and no host variables are listed, just literal numbers and

strings of characters. No matter how many times such an INSERT operation

occurs, the rows it produces are identical. When the rows are identical, copying,

buffering, and transmitting each identical row is pointless.

Instead, for this kind of INSERT operation, the PUT statement does nothing except

to increment a counter. When a FLUSH operation is finally performed, a single

copy of the row and the count of inserts are passed to the database server. The

database server creates and inserts that many rows in one operation.

You do not usually insert a quantity of identical rows. You can insert identical

rows when you first establish a database to populate a large table with null data.

An Insert Example

“Deleting with a Cursor” on page 9-3 contains an example of the DELETE

statement whose purpose is to look for and delete duplicate rows of a table. A

better way to perform this task is to select the desired rows instead of deleting the

undesired ones. The code in the following IBM Informix ESQL/C example shows

one way to do this task:

EXEC SQL BEGIN DECLARE SECTION;

 long last_ord = 1;

 struct {

 long int o_num;

 date o_date;

 long c_num;

 char o_shipinst[40];

 char o_backlog;

 char o_po[10];

 date o_shipdate;

 decimal o_shipwt;

 decimal o_shipchg;

 date o_paiddate;

 } ord_row;

EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN WORK;

EXEC SQL INSERT INTO new_orders

 SELECT * FROM orders main

 WHERE 1 = (SELECT COUNT(*) FROM orders minor

 WHERE main.order_num = minor.order_num);

EXEC SQL COMMIT WORK;

EXEC SQL DECLARE dup_row CURSOR FOR

 SELECT * FROM orders main INTO :ord_row

 WHERE 1 < (SELECT COUNT(*) FROM orders minor

 WHERE main.order_num = minor.order_num)

 ORDER BY order_date;

EXEC SQL DECLARE ins_row CURSOR FOR

 INSERT INTO new_orders VALUES (:ord_row);

EXEC SQL BEGIN WORK;

EXEC SQL OPEN ins_row;

Chapter 9. Modifying Data Through SQL Programs 9-7

EXEC SQL OPEN dup_row;

while(SQLCODE == 0)

{

 EXEC SQL FETCH dup_row;

 if(SQLCODE == 0)

 {

 if(ord_row.o_num != last_ord)

 EXEC SQL PUT ins_row;

 last_ord = ord_row.o_num

 continue;

 }

 break;

}

if(SQLCODE != 0 && SQLCODE != 100)

 EXEC SQL ROLLBACK WORK;

else

 EXEC SQL COMMIT WORK;

EXEC SQL CLOSE ins_row;

EXEC SQL CLOSE dup_row;

This example begins with an ordinary INSERT statement, which finds all the

nonduplicated rows of the table and inserts them into another table, presumably

created before the program started. That action leaves only the duplicate rows. (In

the demonstration database, the orders table has a unique index and cannot have

duplicate rows. Assume that this example deals with some other database.)

The code in the previous example then declares two cursors. The first, called

dup_row, returns the duplicate rows in the table. Because dup_row is for input

only, it can use the ORDER BY clause to impose some order on the duplicates

other than the physical record order used in the example on page 9-3. In this

example, the duplicate rows are ordered by their dates (the oldest one remains),

but you can use any other order based on the data.

The second cursor, ins_row, is an insert cursor. This cursor takes advantage of the

ability to use a C structure, ord_row, to supply values for all columns in the row.

The remainder of the code examines the rows that are returned through dup_row.

It inserts the first one from each group of duplicates into the new table and

disregards the rest.

For the sake of brevity, the preceding example uses the simplest kind of error

handling. If an error occurs before all rows have been processed, the sample code

rolls back the active transaction.

How Many Rows Were Affected?

When your program uses a cursor to select rows, it can test SQLCODE for 100 (or

SQLSTATE for 02000), the end-of-data return code. This code is set to indicate that

no rows, or no more rows, satisfy the query conditions. For databases that are not

ANSI compliant, the end-of-data return code is set in SQLCODE or SQLSTATE

only following SELECT statements; it is not used following DELETE, INSERT, or

UPDATE statements. For ANSI-compliant databases, SQLCODE is also set to 100

for updates, deletes, and inserts that affect zero rows.

A query that finds no data is not a success. However, an UPDATE or DELETE

statement that happens to update or delete no rows is still considered a success. It

updated or deleted the set of rows that its WHERE clause said it should; however,

the set was empty.

9-8 IBM Informix Guide to SQL: Tutorial

In the same way, the INSERT statement does not set the end-of-data return code

even when the source of the inserted rows is a SELECT statement, and the SELECT

statement selected no rows. The INSERT statement is a success because it inserted

as many rows as it was asked to (that is, zero).

To find out how many rows are inserted, updated, or deleted, a program can test

the third element of SQLERRD. The count of rows is there, regardless of the value

(zero or negative) in SQLCODE.

Using UPDATE

You can embed the UPDATE statement in a program in any of the forms that

Chapter 6 describes with the additional feature that you can name host variables in

expressions, both in the SET and WHERE clauses. Moreover, a program can update

the row that a cursor addresses.

Using an Update Cursor

An update cursor permits you to delete or update the current row; that is, the most

recently fetched row. The following example in IBM Informix ESQL/C shows the

declaration of an update cursor:

EXEC SQL

 DECLARE names CURSOR FOR

 SELECT fname, lname, company

 FROM customer

 FOR UPDATE;

The program that uses this cursor can fetch rows in the usual way.

EXEC SQL

 FETCH names INTO :FNAME, :LNAME, :COMPANY;

If the program then decides that the row needs to be changed, it can do so.

if (strcmp(COMPANY, "SONY") ==0)

 {

 EXEC SQL

 UPDATE customer

 SET fname = ’Midori’, lname = ’Tokugawa’

 WHERE CURRENT OF names;

 }

The words CURRENT OF names take the place of the usual test expressions in the

WHERE clause. In other respects, the UPDATE statement is the same as usual,

even including the specification of the table name, which is implicit in the cursor

name but still required.

The Purpose of the Keyword UPDATE

The purpose of the keyword UPDATE in a cursor is to let the database server

know that the program can update (or delete) any row that it fetches. The database

server places a more demanding lock on rows that are fetched through an update

cursor and a less demanding lock when it fetches a row for a cursor that is not

declared with that keyword. This action results in better performance for ordinary

cursors and a higher level of concurrent use in a multiprocessing system.

(Chapter 10 discusses levels of locks and concurrent use.)

Updating Specific Columns

The following example has updated specific columns of the preceding example of

an update cursor:

Chapter 9. Modifying Data Through SQL Programs 9-9

EXEC SQL

 DECLARE names CURSOR FOR

 SELECT fname, lname, company, phone

 INTO :FNAME,:LNAME,:COMPANY,:PHONE FROM customer

 FOR UPDATE OF fname, lname

END-EXEC.

Only the fname and lname columns can be updated through this cursor. A

statement such as the following one is rejected as an error:

EXEC SQL

 UPDATE customer

 SET company = ’Siemens’

 WHERE CURRENT OF names

END-EXEC.

If the program attempts such an update, an error code is returned and no update

occurs. An attempt to delete with WHERE CURRENT OF is also rejected, because

deletion affects all columns.

UPDATE Keyword Not Always Needed

The ANSI standard for SQL does not provide for the FOR UPDATE clause in a

cursor definition. When a program uses an ANSI-compliant database, it can update

or delete with any cursor.

Cleaning Up a Table

A final, hypothetical example of how to use an update cursor presents a problem

that should never arise with an established database but could arise in the initial

design phases of an application.

In the example, a large table named target is created and populated. A character

column, dactyl, inadvertently acquires some null values. These rows should be

deleted. Furthermore, a new column, serials, is added to the table with the ALTER

TABLE statement. This column is to have unique integer values installed. The

following example shows the IBM Informix ESQL/C code you use to accomplish

these tasks:

EXEC SQL BEGIN DECLARE SECTION;

char dcol[80];

short dcolint;

int sequence;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE target_row CURSOR FOR

 SELECT datcol

 INTO :dcol:dcolint

 FROM target

 FOR UPDATE OF serials;

EXEC SQL BEGIN WORK;

EXEC SQL OPEN target_row;

if (sqlca.sqlcode == 0) EXEC SQL FETCH NEXT target_row;

for(sequence = 1; sqlca.sqlcode == 0; ++sequence)

{

 if (dcolint < 0) /* null datcol */

 EXEC SQL DELETE WHERE CURRENT OF target_row;

 else

 EXEC SQL UPDATE target SET serials = :sequence

 WHERE CURRENT OF target_row;

}

if (sqlca.sqlcode >= 0)

 EXEC SQL COMMIT WORK;

else EXEC SQL ROLLBACK WORK;

9-10 IBM Informix Guide to SQL: Tutorial

Summary

A program can execute the INSERT, DELETE, and UPDATE statements, as

Chapter 6 describes. A program can also scan through a table with a cursor,

updating or deleting selected rows. It can also use a cursor to insert rows, with the

benefit that the rows are buffered and sent to the database server in blocks.

In all these activities, you must make sure that the program detects errors and

returns the database to a known state when an error occurs. The most important

tool for doing this is transaction logging. Without transaction logging, it is more

difficult to write programs that can recover from errors.

Chapter 9. Modifying Data Through SQL Programs 9-11

9-12 IBM Informix Guide to SQL: Tutorial

Chapter 10. Programming for a Multiuser Environment

In This Chapter . 10-1

Concurrency and Performance . 10-2

Locking and Integrity . 10-2

Locking and Performance . 10-2

Concurrency Issues . 10-2

How Locks Work . 10-3

Kinds of Locks . 10-3

Lock Scope . 10-4

Database Locks . 10-4

Table Locks . 10-5

Row and Key Locks . 10-6

Page Locks . 10-8

Coarse Index Locks . 10-9

Smart-Large-Object Locks (IDS) . 10-9

Duration of a Lock . 10-9

Locks While Modifying . 10-10

Locking with the SELECT Statement . 10-10

Setting the Isolation Level . 10-10

Comparing SET TRANSACTION with SET ISOLATION 10-11

ANSI Read Uncommitted and Informix Dirty Read Isolation 10-11

ANSI Read Committed and Informix Committed Read Isolation 10-12

Informix Cursor Stability Isolation . 10-12

ANSI Serializable, ANSI Repeatable Read, and Informix Repeatable Read Isolation 10-14

Update Cursors . 10-14

Retaining Update Locks . 10-15

Locks Placed with INSERT, UPDATE, and DELETE . 10-16

Understanding the Behavior of the Lock Types . 10-16

Controlling Data Modification with Access Modes . 10-17

Setting the Lock Mode . 10-17

Waiting for Locks . 10-18

Not Waiting for Locks . 10-18

Waiting a Limited Time . 10-18

Handling a Deadlock . 10-18

Handling External Deadlock . 10-19

Simple Concurrency . 10-19

Hold Cursors . 10-19

Using the SQL Statement Cache . 10-20

Summary . 10-21

In This Chapter

This chapter describes several programming issues you need to be aware of when

you work in a multiuser environment.

If your database is contained in a single-user workstation and does not access data

from another computer, your programs can modify data freely. In all other cases,

you must allow for the possibility that, while your program is modifying data,

another program is reading or modifying the same data. This situation is described

as concurrency: two or more independent uses of the same data at the same time.

This chapter addresses concurrency, locking, and isolation levels.

© Copyright IBM Corp. 1996, 2008 10-1

This chapter also describes the statement cache feature, which can reduce

per-session memory allocation and speed up query processing. The statement

cache stores statements that can then be shared among different user sessions that

use identical SQL statements.

Concurrency and Performance

Concurrency is crucial to good performance in a multiprogramming system. When

access to the data is serialized so that only one program at a time can use it,

processing slows dramatically.

Locking and Integrity

Unless controls are placed on the use of data, concurrency can lead to a variety of

negative effects. Programs can read obsolete data, or modifications can be lost even

though they were apparently completed.

To prevent errors of this kind, the database server imposes a system of locks. A lock

is a claim, or reservation, that a program can place on a piece of data. The

database server guarantees that, as long as the data is locked, no other program

can modify it. When another program requests the data, the database server either

makes the program wait or turns it back with an error.

Locking and Performance

Because a lock serializes access to one piece of data, it reduces concurrency; any

other programs that want access to that data must wait. The database server can

place a lock on a single row, a disk page, a whole table, or an entire database. (A

disk page might hold multiple rows and a row might require multiple disk pages.)

The more locks it places and the larger the objects it locks, the more concurrency is

reduced. The fewer the locks and the smaller the locked objects, the greater

concurrency and performance can be.

The following sections discuss how you can achieve the following goals with your

program:

v Place all the locks necessary to ensure data integrity.

v Lock the fewest, smallest pieces of data possible consistent with the preceding

goal.

Concurrency Issues

To understand the hazards of concurrency, you must think in terms of multiple

programs, each executing at its own speed. Suppose that your program is fetching

rows through the following cursor:

EXEC SQL DECLARE sto_curse CURSOR FOR

 SELECT * FROM stock

 WHERE manu_code = ’ANZ’;

The transfer of each row from the database server to the program takes time.

During and between transfers, other programs can perform other database

operations. At about the same time that your program fetches the rows produced

by that query, another user’s program might execute the following update:

EXEC SQL UPDATE stock

 SET unit_price = 1.15 * unit_price

 WHERE manu_code = ’ANZ’;

10-2 IBM Informix Guide to SQL: Tutorial

In other words, both programs are reading through the same table, one fetching

certain rows and the other changing the same rows. The following scenarios are

possible:

1. The other program finishes its update before your program fetches its first row.

Your program shows you only updated rows.

2. Your program fetches every row before the other program has a chance to

update it.

Your program shows you only original rows.

3. After your program fetches some original rows, the other program catches up

and goes on to update some rows that your program has yet to read; then it

executes the COMMIT WORK statement.

Your program might return a mixture of original rows and updated rows.

4. Same as number 3, except that after updating the table, the other program

issues a ROLLBACK WORK statement.

Your program can show you a mixture of original rows and updated rows that

no longer exist in the database.

The first two possibilities are harmless. In possibility number 1, the update is

complete before your query begins. It makes no difference whether the update

finished a microsecond ago or a week ago.

In possibility number 2, your query is, in effect, complete before the update begins.

The other program might have been working just one row behind yours, or it

might not start until tomorrow night; it does not matter.

The last two possibilities, however, can be important to the design of some

applications. In possibility number 3, the query returns a mix of updated and

original data. That result can be detrimental in some applications. In others, such

as one that is taking an average of all prices, it might not matter at all.

Possibility number 4 can be disastrous if a program returns some rows of data

that, because their transaction was cancelled, can no longer be found in the table.

Another concern arises when your program uses a cursor to update or delete the

last-fetched row. Erroneous results occur with the following sequence of events:

v Your program fetches the row.

v Another program updates or deletes the row.

v Your program updates or deletes WHERE CURRENT OF cursor_name.

To control concurrent events such as these, use the locking and isolation level

features of the database server.

How Locks Work

Informix database servers support a complex, flexible set of locking features that

this section describes. For a summary of locking features, see your IBM Informix

Dynamic Server Getting Started Guide.

Kinds of Locks

The following table shows the types of locks that Informix database servers

support for different situations.

Lock Type Use

Chapter 10. Programming for a Multiuser Environment 10-3

Shared A shared lock reserves its object for reading only. It

prevents the object from changing while the lock

remains. More than one program can place a

shared lock on the same object. More than one

object can read the record while it is locked in

shared mode.

Exclusive An exclusive lock reserves its object for the use of

a single program. This lock is used when the

program intends to change the object.

 You cannot place an exclusive lock where any

other kind of lock exists. After you place an

exclusive lock, you cannot place another lock on

the same object.

Promotable/Update A promotable (or update) lock establishes the

intent to update. You can only place it where no

other promotable or exclusive lock exists. You can

place promotable locks on records that already

have shared locks. When the program is about to

change the locked object, you can promote the

promotable lock to an exclusive lock, but only if no

other locks, including shared locks, are on the

record at the time the lock would change from

promotable to exclusive. If a shared lock was on

the record when the promotable lock was set, you

must drop the shared lock before the promotable

lock can be promoted to an exclusive lock.

Lock Scope

You can apply locks to entire databases, entire tables, disk pages, single rows, or

index-key values. The size of the object that is being locked is referred to as the

scope of the lock (also called the lock granularity). In general, the larger the scope of

a lock, the more concurrency is reduced, but the simpler programming becomes.

Database Locks

You can lock an entire database. The act of opening a database places a shared lock

on the name of the database. A database is opened with the CONNECT,

DATABASE, or CREATE DATABASE statements. As long as a program has a

database open, the shared lock on the name prevents any other program from

dropping the database or putting an exclusive lock on it.

The following statement shows how you might lock an entire database exclusively:

DATABASE database_one EXCLUSIVE

This statement succeeds if no other program has opened that database. After the

lock is placed, no other program can open the database, even for reading, because

its attempt to place a shared lock on the database name fails.

A database lock is released only when the database closes. That action can be

performed explicitly with the DISCONNECT or CLOSE DATABASE statements or

implicitly by executing another DATABASE statement.

Because locking a database reduces concurrency in that database to zero, it makes

programming simple; concurrent effects cannot happen. However, you should lock

10-4 IBM Informix Guide to SQL: Tutorial

a database only when no other programs need access. Database locking is often

used before applying massive changes to data during off-peak hours.

Table Locks

You can lock entire tables. In some cases, the database server performs this action

automatically. You can also use the LOCK TABLE statement to lock an entire table

explicitly.

The LOCK TABLE statement or the database server can place the following types

of table locks:

v Shared lock

No users can write to the table. In shared mode, the database server places one

shared lock on the table, which informs other users that no updates can be

performed. In addition, the database server adds locks for every row updated,

deleted, or inserted.

v Exclusive lock

No other users can read from or write to the table. In exclusive mode, the

database server places only one exclusive lock on the table, no matter how many

rows it updates. An exclusive table lock prevents any concurrent use of the table

and, therefore, can have a serious effect on performance if many other programs

are contending for the use of the table. However, when you need to update most

of the rows in a table, place an exclusive lock on the table.

Locking a Table with the LOCK TABLE Statement: A transaction tells the

database server to use table-level locking for a table with the LOCK TABLE

statement. The following example shows how to place an exclusive lock on a table:

LOCK TABLE tab1 IN EXCLUSIVE MODE

The following example shows how to place a shared lock on a table:

LOCK TABLE tab2 IN SHARE MODE

Tip: You can set the isolation level for your database server to achieve the same

degree of protection as the shared table lock while providing greater

concurrency.

When the Database Server Automatically Locks a Table: The database server

always locks an entire table while it performs operations for any of the following

statements:

v ALTER FRAGMENT

Dynamic Server

v ALTER INDEX

End of Dynamic Server

v ALTER TABLE

v CREATE INDEX

v DROP INDEX

v RENAME COLUMN

v RENAME TABLE

Completion of the statement (or end of the transaction) releases the lock. An entire

table can also be locked automatically during certain queries.

Chapter 10. Programming for a Multiuser Environment 10-5

Avoiding Table Locking with the ONLINE Keyword (IDS): You can avoid table

locking when you CREATE or DROP an index using the ONLINE keyword. While

the index is being created or dropped online, no DDL operations on the table are

supported, but operations that were concurrent when the CREATE INDEX or

DROP INDEX statement was issued can be completed. The specified index is not

created or dropped until no other processes are concurrently accessing the table.

Then locks are held briefly to write the system catalog data associated with the

index. This increases the availability of the system, since the table is still readable

by ongoing and new sessions. The following statement shows how to use the

ONLINE keyword to avoid automatic table locking with a CREATE INDEX

statement:

CREATE INDEX idx_1 ON customer (lname) ONLINE;

Placing a Table Lock with the LOCK MODE Clause (XPS): Extended Parallel

Server allows you to lock a table with either the LOCK TABLE statement or the

TABLE lock mode of a LOCK MODE clause in a CREATE TABLE statement. All

transactions that access a table whose lock mode is set to TABLE acquire a table

lock for that table, if the isolation level for the transaction requires the transaction

to acquire any locks at all. The following statement shows how to use the TABLE

lock mode when you create a table:

CREATE TABLE tab1

(

 col1 ...

) LOCK MODE TABLE

You can use the ALTER TABLE statement to switch a table from one lock mode to

any other lock mode (TABLE, PAGE, or ROW).

Whether you specify the TABLE lock mode for the LOCK MODE clause of a

CREATE TABLE or ALTER TABLE statement, or use a LOCK TABLE statement to

acquire a table lock, the effect is the same.

The TABLE lock mode is particularly useful in a data-warehousing environment

where query efficiency increases because, instead of acquiring (or trying to acquire,

depending on the isolation level) page- or row-level locks, the transaction acquires

table locks. Table-level locks can significantly reduce the number of lock requests.

The disadvantage of table locks is that they radically reduce update concurrency,

but in a data warehousing environment this reduction is generally not a problem.

Row and Key Locks

You can lock one row of a table. A program can lock one row or a selection of

rows while other programs continue to work on other rows of the same table.

Row and key locking are not the default behaviors. You must specify row-level

locking when you create the table. The following example creates a table with

row-level locking:

CREATE TABLE tab1

(

col1...

) LOCK MODE ROW;

If you specify a LOCK MODE clause when you create a table, you can later change

the lock mode with the ALTER TABLE statement. The following statement changes

the lock mode on the reservations table to page-level locking:

ALTER TABLE tab1 LOCK MODE PAGE

10-6 IBM Informix Guide to SQL: Tutorial

In certain cases, the database server has to lock a row that does not exist. To do

this, the database server places a lock on an index-key value. Key locks are used

identically to row locks. When the table uses row locking, key locks are

implemented as locks on imaginary rows. When the table uses page locking, a key

lock is placed on the index page that contains the key or that would contain the

key if it existed.

When you insert, update, or delete a key (performed automatically when you

insert, update, or delete a row), the database server creates a lock on the key in the

index.

Row and key locks generally provide the best performance overall when you

update a relatively small number of rows because they increase concurrency.

However, the database server incurs some overhead in obtaining a lock.

When one or more rows in a table are locked by an exclusive lock, the effect on

other users partly depends on their transaction isolation level. Other users whose

isolation levels is not Dirty Read might encounter transactions that fail because the

exclusive lock was not released within a specified time limit.

For Committed Read or Dirty Read isolation level operations that attempt to access

tables on which a concurrent session has set exclusive row-level locks, the risk of

locking conflicts can be reduced by enabling transactions to read the most recently

committed version of the data in the locked rows, rather than waiting for the

transaction that set the lock to be committed or rolled back. Enabling access to the

last committed version of exclusively locked rows can be accomplished in several

ways:

v For an individual session, issue this SQL statement

 SET ISOLATION TO COMMITTED READ LAST COMMITTED;

v For all sessions using the Committed Read or Read Committed isolation level,

the DBA can set the USELASTCOMMITTED configuration parameter to 'ALL' or

to 'COMMITTED READ'.

v For an individual session using the Committed Read or Read Committed

isolation level, any user can issue the SET ENVIRONMENT

USELASTCOMMITTED statement with ’ALL’ or 'COMMITTED READ' as the value

of this session environment option.

v For all sessions using Dirty Read or Read Uncommitted isolation levels, the DBA

can set the USELASTCOMMITTED configuration parameter to 'ALL' or to

'DIRTY READ'.

v For an individual session using the Dirty Read or Read Uncommitted isolation

levels, any user can issue the SET ENVIRONMENT USELASTCOMMITTED

statement with ’ALL’ or 'DIRTY READ' as the value of this session environment

option.

This LAST COMMITTED feature is useful only when row-level locking is in effect,

rather than when another session holds an exclusive lock on the entire table. This

feature is disabled for any table on which the LOCK TABLE statement applies a

table-level lock. See the description of the SET ENVIRONMENT statement in the

IBM Informix Guide to SQL: Syntax and the description of the

USELASTCOMMITTED configuration parameter inIBM Informix Administrator’s

Reference for more information about this feature for concurrent access to tables in

which some rows are locked by exclusive locks, and for restrictions on the kinds of

tables that can support this feature.

Chapter 10. Programming for a Multiuser Environment 10-7

Page Locks

The database server stores data in units called disk pages. A disk page contains one

or more rows. In some cases, it is better to lock a disk page than to lock individual

rows on it. For example, with operations that require changing a large number of

rows, you might choose page-level locking because row-level locking (one lock per

row) might not be cost effective.

If you do not specify a LOCK MODE clause when you create a table, the default

behavior for the database server is page-level locking. With page locking, the

database server locks the entire page that contains the row. If you update several

rows that are stored on the same page, the database server uses only one lock for

the page.

Setting the Row or Page Lock Mode for all CREATE TABLE statements (IDS):

 Dynamic Server allows you to set the lock mode to page-level locking or row-level

locking for all newly created tables for a single user (per session) or for multiple

users (per server). You no longer need to specify the lock mode every time that

you create a new table with the CREATE TABLE statement.

If you want every new table created within your session to be created with a

particular lock mode, you have to set the IFX_DEF_TABLE_LOCKMODE

environment variable. For example, for every new table created within your

session to be created with lock mode row, set IFX_DEF_TABLE_LOCKMODE to

ROW. To override this behavior, use the CREATE TABLE or ALTER TABLE

statements and redefine the LOCK MODE clause.

Single-User Lock Mode: Set the single-user lock mode if all of the new tables that

you create in your session require the same lock mode. Set the single-user lock

mode with the IFX_DEF_TABLE_LOCKMODE environment variable. For example,

for every new table created within your session to be created with row-level

locking, set IFX_DEF_TABLE_LOCKMODE to ROW. To override this behavior, use

the CREATE TABLE or ALTER TABLE statements and redefine the LOCK MODE

clause. For more information on setting environment variables, see the IBM

Informix Guide to SQL: Reference.

Multiple-User Lock Mode: Database administrators can use the multiple-user lock

mode to create greater concurrency by designating the lock mode for all users on

the same server. All tables that any user creates on that server will then have the

same lock mode. To enable multiple-user lock mode, set the

IFX_DEF_TABLE_LOCKMODE environment variable before starting the database

server or set the DEF_TABLES_LOCKMODE configuration parameter.

Rules of Precedence: Locking mode for CREATE TABLE or ALTER TABLE has the

following rules of precedence, listed in order of highest precedence to lowest:

1. CREATE TABLE or ALTER TABLE SQL statements that use the LOCK MODE

clause

2. Single-user environment variable setting

3. Multi-user environment variable setting in the server environment

4. Configuration parameters in the ONCONFIG file

5. Default behavior (page-level locking)

10-8 IBM Informix Guide to SQL: Tutorial

Coarse Index Locks

When you change the lock mode of an index from normal to coarse lock mode,

index-level locks are acquired on the index instead of item-level or page-level

locks, which are the normal locks. This mode reduces the number of lock calls on

an index.

Use the coarse lock mode when you know the index is not going to change; that is,

when read-only operations are performed on the index.

Use the normal lock mode to have the database server place item-level or

page-level locks on the index as necessary. Use this mode when the index gets

updated frequently.

When the database server executes the command to change the lock mode to

coarse, it acquires an exclusive lock on the table for the duration of the command.

Any transactions that are currently using a lock of finer granularity must complete

before the database server switches to the coarse lock mode.

Smart-Large-Object Locks (IDS)

Locks on a CLOB or BLOB column are separate from the lock on the row. Smart

large objects are locked only when they are accessed. When you lock a table that

contains a CLOB or BLOB column, no smart large objects are locked. If accessed

for writing, the smart large object is locked in update mode, and the lock is

promoted to exclusive when the actual write occurs. If accessed for reading, the

smart large object is locked in shared mode. The database server recognizes the

transaction isolation mode, so if Repeatable Read isolation level is set, the database

server does not release smart-large-object read locks before end of transaction.

When the database server retrieves a row and updates a smart large object that the

row points to, only the smart large object is exclusively locked during the time it is

being updated.

Byte-Range Locks: You can lock a range of bytes for a smart large object.

Byte-range locks allow a transaction to selectively lock only those bytes that are

accessed so that writers and readers simultaneously can access different byte

ranges in the same smart large object.

For information about how to use byte-range locks, see your IBM Informix

Performance Guide.

Byte-range locks support deadlock detection. For information about deadlock

detection, see “Handling a Deadlock” on page 10-18.

Duration of a Lock

The program controls the duration of a database lock. A database lock is released

when the database closes.

Depending on whether the database uses transactions, table lock durations vary. If

the database does not use transactions (that is, if no transaction log exists and you

do not use a COMMIT WORK statement), a table lock remains until it is removed

by the execution of the UNLOCK TABLE statement.

The duration of table, row, and index locks depends on what SQL statements you

use and on whether transactions are in use.

Chapter 10. Programming for a Multiuser Environment 10-9

When you use transactions, the end of a transaction releases all table, row, page,

and index locks. When a transaction ends, all locks are released.

Locks While Modifying

When the database server fetches a row through an update cursor, it places a

promotable lock on the fetched row. If this action succeeds, the database server

knows that no other program can alter that row. Because a promotable lock is not

exclusive, other programs can continue to read the row. A promotable lock can

improve performance because the program that fetched the row can take some

time before it issues the UPDATE or DELETE statement, or it can simply fetch the

next row. When it is time to modify a row, the database server obtains an exclusive

lock on the row. If it already has a promotable lock, it changes that lock to

exclusive status.

The duration of an exclusive row lock depends on whether transactions are in use.

If they are not in use, the lock is released as soon as the modified row is written to

disk. When transactions are in use, all such locks are held until the end of the

transaction. This action prevents other programs from using rows that might be

rolled back to their original state.

When transactions are in use, a key lock is used whenever a row is deleted. Using

a key lock prevents the following error from occurring:

v Program A deletes a row.

v Program B inserts a row that has the same key.

v Program A rolls back its transaction, forcing the database server to restore its

deleted row.

What is to be done with the row inserted by Program B?

By locking the index, the database server prevents a second program from

inserting a row until the first program commits its transaction.

The locks placed while the database server reads various rows are controlled by

the current isolation level, as discussed in the next section.

Locking with the SELECT Statement

The type and duration of locks that the database server places depend on the

isolation set in the application and whether the SELECT statement is within an

update cursor. This section describes the different isolation levels and update

cursors.

Setting the Isolation Level

The isolation level is the degree to which your program is isolated from the

concurrent actions of other programs. The database server offers a choice of

isolation levels that reflect a different set of rules for how a program uses locks

when it reads data.

To set the isolation level, use either the SET ISOLATION or SET TRANSACTION

statement. The SET TRANSACTION statement also lets you set access modes. For

more information about access modes, see “Controlling Data Modification with

Access Modes” on page 10-17.

10-10 IBM Informix Guide to SQL: Tutorial

Comparing SET TRANSACTION with SET ISOLATION

The SET TRANSACTION statement complies with ANSI SQL-92. This statement is

similar to the Informix SET ISOLATION statement; however, the SET ISOLATION

statement is not ANSI compliant and does not provide access modes.

The following table shows the relationships between the isolation levels that you

set with the SET TRANSACTION and SET ISOLATION statements.

 SET TRANSACTION correlates with SET ISOLATION

Read Uncommitted Dirty Read

Read Committed Committed Read

Not Supported Cursor Stability

(ANSI) Repeatable Read

Serializable

(Informix) Repeatable Read

(Informix) Repeatable Read

The major difference between the SET TRANSACTION and SET ISOLATION

statements is the behavior of the isolation levels within transactions. The SET

TRANSACTION statement can be issued only once for a transaction. Any cursors

opened during that transaction are guaranteed to have that isolation level (or

access mode if you are defining an access mode). With the SET ISOLATION

statement, after a transaction is started, you can change the isolation level more

than once within the transaction. The following examples illustrate the difference

between the use of SET ISOLATION and the use of SET TRANSACTION.

SET ISOLATION:

EXEC SQL BEGIN WORK;

EXEC SQL SET ISOLATION TO DIRTY READ;

EXEC SQL SELECT ... ;

EXEC SQL SET ISOLATION TO REPEATABLE READ;

EXEC SQL INSERT ... ;

EXEC SQL COMMIT WORK;

 -- Executes without error

SET TRANSACTION:

EXEC SQL BEGIN WORK;

EXEC SQL SET TRANSACTION ISOLATION LEVEL TO SERIALIZABLE;

EXEC SQL SELECT ... ;

EXEC SQL SET TRANSACTION ISOLATION LEVEL TO READ COMMITTED;

Error -876: Cannot issue SET TRANSACTION once a transaction has started.

ANSI Read Uncommitted and Informix Dirty Read Isolation

The simplest isolation level, ANSI Read Uncommitted and Dirty Read, amounts to

virtually no isolation. When a program fetches a row, it places no locks, and it

respects none; it simply copies rows from the database without regard to what

other programs are doing.

A program always receives complete rows of data. Even under ANSI Read

Uncommitted or Informix Dirty Read isolation, a program never sees a row in

which some columns are updated and some are not. However, a program that uses

ANSI Read Uncommitted or Informix Dirty Read isolation sometimes reads

updated rows before the updating program ends its transaction. If the updating

program later rolls back its transaction, the reading program processes data that

never really existed (possibility number 4 in the list of concurrency issues on page

10-3).

Chapter 10. Programming for a Multiuser Environment 10-11

ANSI Read Uncommitted or Informix Dirty Read is the most efficient isolation

level. The reading program never waits and never makes another program wait. It

is the preferred level in any of the following cases:

v All tables are static; that is, concurrent programs only read and never modify

data.

v The table is held in an exclusive lock.

v Only one program is using the table.

ANSI Read Committed and Informix Committed Read Isolation

When a program requests the ANSI Read Committed or Informix Committed Read

isolation level, the database server guarantees that it never returns a row that is

not committed to the database. This action prevents reading data that is not

committed and that is subsequently rolled back.

ANSI Read Committed or Informix Committed Read is implemented simply.

Before it fetches a row, the database server tests to determine whether an updating

process placed a lock on the row; if not, it returns the row. Because rows that have

been updated (but that are not yet committed) have locks on them, this test

ensures that the program does not read uncommitted data.

ANSI Read Committed or Informix Committed Read does not actually place a lock

on the fetched row, so this isolation level is almost as efficient as ANSI Read

Uncommitted or Informix Dirty Read. This isolation level is appropriate to use

when each row of data is processed as an independent unit, without reference to

other rows in the same or other tables.

Locking conflicts can occur in ANSI Read Committed or Informix Committed Read

sessions, however, if the attempt to place the test lock is not successful because a

concurrent session holds a shared lock on the row. To avoid waiting for concurrent

transactions to release shared locks (by committing or rolling back), Dynamic

Server supports the Last Committed option to the Committed Read isolation level.

When this Last Committed option is in effect, a shared lock by another session

causes the query to return the most recently committed version of the row.

The Last Committed feature can also be activated by setting the

USELASTCOMMITTED configuration parameter to ’COMMITTED READ’ or to ’ALL’,

or by setting USELASTCOMMITTED session environment option in the SET

ENVIRONMENT statement in the sysdbopen() procedure when the user connects

to the database. For more information about the Last Committed option to the

ANSI Read Committed or Informix Committed Read isolation levels, see the

description of the SET ISOLATION statement in the IBM Informix Guide to SQL:

Syntax. For information about the USELASTCOMMITTED configuration parameter,

see the IBM Informix Administrator’s Reference.

Informix Cursor Stability Isolation

The next level, Cursor Stability, is available only with the Informix SQL statement

SET ISOLATION.

When Cursor Stability is in effect, Dynamic Server places a lock on the latest row

fetched. It places a shared lock for an ordinary cursor or a promotable lock for an

update cursor. Only one row is locked at a time; that is, each time a row is fetched,

the lock on the previous row is released (unless that row is updated, in which case

the lock holds until the end of the transaction).

10-12 IBM Informix Guide to SQL: Tutorial

When Cursor Stability is in effect, Extended Parallel Server places a lock on one or

more rows. It places a shared lock for an ordinary cursor or a promotable lock for

an update cursor. Use the ISOLATION_LOCKS configuration parameter to specify

the maximum number of rows to be locked at any given time on any given scan.

The database server includes the user’s current row in the set of rows currently

locked. As the next row is read from the cursor, the previous row might or might

not be released. The user does not have control over which rows are locked or

when those rows are released. The database server guarantees only that a

maximum of n rows are locked at any given time for any given cursor and that the

current row is in the set of rows currently locked. (The default value is one row.)

For more information about the ISOLATION_LOCKS parameter, see your IBM

Informix Performance Guide and IBM Informix Administrator’s Guide.

Because Cursor Stability locks only one row (Dynamic Server) or a specified

number of rows (Extended Parallel Server) at a time, it restricts concurrency less

than a table lock or database lock.

Cursor Stability ensures that a row does not change while the program examines

it. Such row stability is important when the program updates some other table

based on the data it reads from the row. Because of Cursor Stability, the program is

assured that the update is based on current information. It prevents the use of stale

data.

The following example illustrates effective use of Cursor Stability isolation. In

terms of the demonstration database, Program A wants to insert a new stock item

for manufacturer Hero (HRO). Concurrently, Program B wants to delete

manufacturer HRO and all stock associated with it. The following sequence of

events can occur:

1. Program A, operating under Cursor Stability, fetches the HRO row from the

manufact table to learn the manufacturer code. This action places a shared lock

on the row.

2. Program B issues a DELETE statement for that row. Because of the lock, the

database server makes the program wait.

3. Program A inserts a new row in the stock table using the manufacturer code it

obtained from the manufact table.

4. Program A closes its cursor on the manufact table or reads a different row of it,

releasing its lock.

5. Program B, released from its wait, completes the deletion of the row and goes

on to delete the rows of stock that use manufacturer code HRO, including the

row that Program A just inserted.

If Program A used a lesser level of isolation, the following sequence could occur:

1. Program A reads the HRO row of the manufact table to learn the manufacturer

code. No lock is placed.

2. Program B issues a DELETE statement for that row. It succeeds.

3. Program B deletes all rows of stock that use manufacturer code HRO.

4. Program B ends.

5. Program A, not aware that its copy of the HRO row is now invalid, inserts a

new row of stock using the manufacturer code HRO.

6. Program A ends.

Chapter 10. Programming for a Multiuser Environment 10-13

At the end, a row occurs in stock that has no matching manufacturer code in

manufact. Furthermore, Program B apparently has a bug; it did not delete the rows

that it was supposed to delete. Use of the Cursor Stability isolation level prevents

these effects.

The preceding scenario could be rearranged to fail even with Cursor Stability. All

that is required is for Program B to operate on tables in the reverse sequence to

Program A. If Program B deletes from stock before it removes the row of

manufact, no degree of isolation can prevent an error. Whenever this kind of error

is possible, all programs that are involved must use the same sequence of access.

ANSI Serializable, ANSI Repeatable Read, and Informix

Repeatable Read Isolation

Where ANSI Serializable or ANSI Repeatable Read are required, a single isolation

level is provided, called Informix Repeatable Read. This is logically equivalent to

ANSI Serializable. Because ANSI Serializable is more restrictive than ANSI

Repeatable Read, Informix Repeatable Read can be used when ANSI Repeatable

Read is desired (although Informix Repeatable Read is more restrictive than is

necessary in such contexts).

The Repeatable Read isolation level asks the database server to put a lock on every

row the program examines and fetches. The locks that are placed are shareable for

an ordinary cursor and promotable for an update cursor. The locks are placed

individually as each row is examined. They are not released until the cursor closes

or a transaction ends.

Repeatable Read allows a program that uses a scroll cursor to read selected rows

more than once and to be sure that they are not modified or deleted between

readings. (Chapter 8 describes scroll cursors.) No lower isolation level guarantees

that rows still exist and are unchanged the second time they are read.

Repeatable Read isolation places the largest number of locks and holds them the

longest. Therefore, it is the level that reduces concurrency the most. If your

program uses this level of isolation, think carefully about how many locks it

places, how long they are held, and what the effect can be on other programs.

In addition to the effect on concurrency, the large number of locks can be a

problem. The database server records the number of locks by each program in a

lock table. If the maximum number of locks is exceeded, the lock table fills up, and

the database server cannot place a lock. An error code is returned. The person who

administers an Informix database server system can monitor the lock table and tell

you when it is heavily used.

The isolation level in an ANSI-compliant database is set to Serializable by default.

The Serializable isolation level is required to ensure that operations behave

according to the ANSI standard for SQL.

Update Cursors

An update cursor is a special kind of cursor that applications can use when the

row might potentially be updated. To use an update cursor, execute SELECT FOR

UPDATE in your application. Update cursors use promotable locks; that is, the

database server places an update lock (meaning other users can still view the row)

when the application fetches the row, but the lock is changed to an exclusive lock

when the application updates the row using an update cursor and

UPDATE...WHERE CURRENT OF.

10-14 IBM Informix Guide to SQL: Tutorial

The advantage of using an update cursor is that you can view the row with the

confidence that other users cannot change it or view it with an update cursor

while you are viewing it and before you update it.

Tip: In an ANSI-compliant database, update cursors are unnecessary because any

select cursor behaves the same as an update cursor.

The pseudocode in Figure 10-1 shows when the database server places and releases

locks with a cursor.

Retaining Update Locks

If a user has the isolation level set lower than repeatable read, the database server

releases update locks placed on rows as soon as the next row is fetched from a

cursor. With this feature, you can use the RETAIN UPDATE LOCKS clause to

retain an update lock until the end of a transaction when you set any of the

following isolation levels:

v Dirty Read

v Committed Read

v Cursor Stability

This feature lets you avoid the overhead of Repeatable Read isolation level or

workarounds such as dummy updates on a row. When the RETAIN UPDATE

LOCKS feature is turned on and an update lock is implicitly placed on a row

during a fetch of a SELECT...FOR UPDATE statement, the update lock is not

released until the end of the transaction. With the RETAIN UPDATE LOCKS

feature, only update locks are held until end of transaction, whereas the Repeatable

Read isolation level holds both update locks and shared locks until end of

transaction.

The following example shows how to use the RETAIN UPDATE LOCKS clause

when you set the isolation level to Committed Read:

SET ISOLATION TO COMMITTED READ RETAIN UPDATE LOCKS

To turn off the RETAIN UPDATE LOCKS feature, set the isolation level without

the RETAIN UPDATE LOCKS clause. When you turn off the feature, update locks

are not released directly. However, from this point on, a subsequent fetch releases

the update lock of the immediately preceding fetch but not of earlier fetch

operations. A close cursor releases the update lock on the current row.

For more information about how to use the RETAIN UPDATE LOCKS feature

when you specify an isolation level, see the IBM Informix Guide to SQL: Syntax.

declare update cursor
begin work
open the cursor
fetch the row
do stuff
update the row (use WHERE CURRENT OF)
commit work

Add an update lock for this row..

Promote lock to
exclusive.Release lock.

Figure 10-1. Locks Placed for Update

Chapter 10. Programming for a Multiuser Environment 10-15

Locks Placed with INSERT, UPDATE, and DELETE

When you execute an INSERT, UPDATE, or DELETE statement, the database

server uses exclusive locks. An exclusive lock means that no other users can view

the row unless they are using the Dirty Read isolation level. In addition, no other

users can update or delete the item until the database server removes the lock.

When the database server removes the exclusive lock depends on the type of

logging set for the database. If the database has logging, the database server

removes all exclusive locks when the transaction completes (commits or rolls back).

If the database does not have logging, the database server removes all exclusive

locks immediately after the INSERT, UPDATE, or DELETE statement completes.

Understanding the Behavior of the Lock Types

Informix database servers store locks in an internal lock table. When the database

server reads a row, it checks if the row or its associated page, table, or database is

listed in the lock table. If it is in the lock table, the database server must also check

the lock type. The lock table can contain the following types of locks.

 Lock Name Description Statement Usually Placing the Lock

S Shared lock SELECT

X Exclusive lock INSERT, UPDATE, DELETE

U Update lock SELECT in an update cursor

B Byte lock Any statement that updates VARCHAR columns

In addition, the lock table might store intent locks. An intent lock can be an intent

shared (IS), intent exclusive (IX), or intent shared exclusive (SIX). An intent lock is

the lock the database server (lock manager) places on a higher granularity object

when a lower granularity object needs to be locked. For example, when a user

locks a row or page in Shared lock mode, the database server places an IS (intent

shared) lock on the table to provide an instant check that no other user holds an X

lock on the table. In this case, intent locks are placed on the table only and not on

the row or page. Intent locks can be placed at the level of a row, page, or table

only.

The user does not have direct control over intent locks; the lock manager internally

manages all intent locks.

The following table shows what locks a user (or the database server) can place if

another user (or the database server) holds a certain type of lock. For example, if

one user holds an exclusive lock on an item, another user requesting any kind of

lock (exclusive, update or shared) receives an error. In addition, the database

server is unable to place any intent locks on an item if a user holds an exclusive

lock on the item.

10-16 IBM Informix Guide to SQL: Tutorial

Hold X

Lock

Hold U

Lock

Hold S

Lock

Hold IS

Lock

Hold SIX

Lock

Hold IX

Lock

Request X lock No No No No No No

Request U lock No No Yes Yes No No

Request S lock No Yes Yes Yes No No

Request IS lock No Yes Yes Yes Yes Yes

Request SIX lock No No No Yes No No

Request IX lock No No No Yes No Yes

For information about how locking affects performance, see your IBM Informix

Performance Guide.

Controlling Data Modification with Access Modes

Informix database servers support access modes. Access modes affect read and

write concurrency for rows within transactions and are set with the SET

TRANSACTION statement. You can use access modes to control data modification

among shared files.

Transactions are read-write by default. If you specify that a transaction is read-only,

that transaction cannot perform the following tasks:

v Insert, delete, or update table rows

v Create, alter, or drop any database object such as a schema, table, temporary

table, index, or stored routine

v Grant or revoke privileges

v Update statistics

v Rename columns or tables

Read-only access mode prohibits updates.

You can execute stored routines in a read-only transaction as long as the routine

does not try to perform any restricted operations.

For information about how to use the SET TRANSACTION statement to specify an

access mode, see the IBM Informix Guide to SQL: Syntax.

Setting the Lock Mode

The lock mode determines what happens when your program encounters locked

data. One of the following situations occurs when a program attempts to fetch or

modify a locked row:

v The database server immediately returns an error code in SQLCODE or

SQLSTATE to the program.

v The database server suspends the program until the program that placed the

lock removes the lock.

v The database server suspends the program for a time and then, if the lock is not

removed, the database server sends an error-return code to the program.

You choose among these results with the SET LOCK MODE statement.

Chapter 10. Programming for a Multiuser Environment 10-17

Waiting for Locks

When a user encounters a lock, the default behavior of a database server is to

return an error to the application. If you prefer to wait indefinitely for a lock (this

choice is best for many applications), you can execute the following SQL statement:

SET LOCK MODE TO WAIT

When this lock mode is set, your program usually ignores the existence of other

concurrent programs. When your program needs to access a row that another

program has locked, it waits until the lock is removed, then proceeds. In most

cases, the delays are imperceptible.

You can also wait for a specific number of seconds, as in the following example:

SET LOCK MODE TO WAIT 20

Not Waiting for Locks

The disadvantage of waiting for locks is that the wait might become long

(although properly designed applications should hold their locks briefly). When

the possibility of a long delay is not acceptable, a program can execute the

following statement:

SET LOCK MODE TO NOT WAIT

When the program requests a locked row, it immediately receives an error code

(for example, error -107 Record is locked), and the current SQL statement

terminates. The program must roll back its current transaction and try again.

The initial setting is not waiting when a program starts up. If you are using SQL

interactively and see an error related to locking, set the lock mode to wait. If you

are writing a program, consider making that one of the first embedded SQL

statements that the program executes.

Waiting a Limited Time

You can ask the database server to set an upper limit on a wait with the following

statement:

SET LOCK MODE TO WAIT 17

This statement places an upper limit of 17 seconds on the length of any wait. If a

lock is not removed in that time, the error code is returned.

Handling a Deadlock

A deadlock is a situation in which a pair of programs blocks the progress of each

other. Each program has a lock on some object that the other program wants to

access. A deadlock arises only when all programs concerned set their lock modes

to wait for locks.

An Informix database server detects deadlocks immediately when they only

involve data at a single network server. It prevents the deadlock from occurring by

returning an error code (error -143 ISAM error: deadlock detected) to the second

program to request a lock. The error code is the one the program receives if it sets

its lock mode to not wait for locks. If your program receives an error code related

to locks even after it sets lock mode to wait, you know the cause is an impending

deadlock.

10-18 IBM Informix Guide to SQL: Tutorial

Handling External Deadlock

A deadlock can also occur between programs on different database servers. In this

case, the database server cannot instantly detect the deadlock. (Perfect deadlock

detection requires excessive communications traffic among all database servers in a

network.) Instead, each database server sets an upper limit on the amount of time

that a program can wait to obtain a lock on data at a different database server. If

the time expires, the database server assumes that a deadlock was the cause and

returns a lock-related error code.

In other words, when external databases are involved, every program runs with a

maximum lock-waiting time. The DBA can set or modify the maximum for the

database server.

Simple Concurrency

If you are not sure which choice to make concerning locking and concurrency, you

can use the following guideline: If your application accesses non-static tables, and

there is no risk of deadlock, have your program execute the following statements

when it starts up (immediately after the first CONNECT or DATABASE statement):

SET LOCK MODE TO WAIT

SET ISOLATION TO REPEATABLE READ

Ignore the return codes from both statements. Proceed as if no other programs

exist. If no performance problems arise, you do not need to read this section again.

Hold Cursors

Dynamic Server

When transaction logging is used, Dynamic Server guarantees that anything done

within a transaction can be rolled back at the end of it. To handle transactions

reliably, the database server normally applies the following rules:

v When a transaction ends, all cursors are closed.

v When a transaction ends, all locks are released.

End of Dynamic Server

Extended Parallel Server

Extended Parallel Server might not release locks at the end of a transaction. To

demonstrate how to acquire a table lock, suppose the database server acquires a

lock on all coservers that store a part of the table. If a transaction first acquires a

SHARED mode table lock and tries to upgrade to EXCLUSIVE mode table lock,

locks might not be released at the end of the transaction. This can happen if the

transaction performs a SELECT and then performs an INSERT on a table with lock

mode TABLE. In this case, the upgrade might succeed on some coservers and fail

on other coservers. No attempt is made to roll back the successful upgrades, which

means that the transaction might end with EXCLUSIVE locks on the table for some

coservers.

End of Extended Parallel Server

 The rules that are used to handle transactions reliably are normal with most

database systems that support transactions, and they do not cause any trouble for

Chapter 10. Programming for a Multiuser Environment 10-19

most applications. However, circumstances exist in which using standard

transactions with cursors is not possible. For example, the following code works

fine without transactions. However, when transactions are added, closing the

cursor conflicts with using two cursors simultaneously.

EXEC SQL DECLARE master CURSOR FOR

EXEC SQL DECLARE detail CURSOR FOR FOR UPDATE

EXEC SQL OPEN master;

while(SQLCODE == 0)

{

 EXEC SQL FETCH master INTO

 if(SQLCODE == 0)

 {

 EXEC SQL BEGIN WORK;

 EXEC SQL OPEN detail USING

 EXEC SQL FETCH detail

 EXEC SQL UPDATE WHERE CURRENT OF detail

 EXEC SQL COMMIT WORK;

 }

}

EXEC SQL CLOSE master;

In this design, one cursor is used to scan a table. Selected records are used as the

basis for updating a different table. The problem is that when each update is

treated as a separate transaction (as the pseudocode in the previous example

shows), the COMMIT WORK statement following the UPDATE closes all cursors,

including the master cursor.

The simplest alternative is to move the COMMIT WORK and BEGIN WORK

statements to be the last and first statements, respectively, so that the entire scan

over the master table is one large transaction. Treating the scan of the master table

as one large transaction is sometimes possible, but it can become impractical if

many rows need to be updated. The number of locks can be too large, and they are

held for the duration of the program.

A solution that Informix database servers support is to add the keywords WITH

HOLD to the declaration of the master cursor. Such a cursor is referred to as a hold

cursor and is not closed at the end of a transaction. The database server still closes

all other cursors, and it still releases all locks, but the hold cursor remains open

until it is explicitly closed.

Before you attempt to use a hold cursor, you must be sure that you understand the

locking mechanism described here, and you must also understand the programs

that are running concurrently. Whenever COMMIT WORK is executed, all locks are

released, including any locks placed on rows fetched through the hold cursor.

The removal of locks has little importance if the cursor is used as intended, for a

single forward scan over a table. However, you can specify WITH HOLD for any

cursor, including update cursors and scroll cursors. Before you do this, you must

understand the implications of the fact that all locks (including locks on entire

tables) are released at the end of a transaction.

Using the SQL Statement Cache

The SQL statement cache is a feature that lets you store in a buffer identical SQL

statements that are executed repeatedly so the statements can be reused among

different user sessions without the need for per-session memory allocation.

Statement caching can dramatically improve performance for applications that

contain a large number of prepared statements. However, performance

10-20 IBM Informix Guide to SQL: Tutorial

improvements are less dramatic when statement caching is used to cache

statements that are prepared once and executed many times.

Use SQL to turn on or turn off statement caching for an individual database

session when statement caching is enabled for the database server. The following

statement shows how to use SQL to turn on caching for the current database

session:

SET STATEMENT CACHE ON

The following statement shows how to use SQL to turn off caching for the current

database session:

SET STATEMENT CACHE OFF

If you attempt to turn on or turn off statement caching when caching is disabled,

the database server returns an error.

For information about syntax for the SET STATEMENT CACHE statement, see the

IBM Informix Guide to SQL: Syntax. For information about the STMT_CACHE and

STMT_CACHE_SIZE configuration parameters, see the IBM Informix

Administrator’s Reference and your IBM Informix Performance Guide. For information

about the STMT_CACHE environment variable, see the IBM Informix Guide to SQL:

Reference.

Summary

Whenever multiple programs have access to a database concurrently (and when at

least one of them can modify data), all programs must allow for the possibility that

another program can change the data even as they read it. The database server

provides a mechanism of locks and isolation levels that usually allow programs to

run as if they were alone with the data.

The SET STATEMENT CACHE statement allows you to store in a buffer identical

SQL statements that are used repeatedly. When statement caching is turned on, the

database server stores the identical statements so they can be reused among

different user sessions without the need for per-session memory allocation.

Chapter 10. Programming for a Multiuser Environment 10-21

10-22 IBM Informix Guide to SQL: Tutorial

Chapter 11. Creating and Using SPL Routines

In This Chapter . 11-2

Introduction to SPL Routines . 11-3

What You Can Do with SPL Routines . 11-3

SPL Routine Behavior for Extended Parallel Server . 11-4

Writing SPL Routines . 11-4

Using the CREATE PROCEDURE or CREATE FUNCTION Statement 11-4

Beginning and Ending the Routine . 11-4

Specifying a Routine Name . 11-5

Adding a Specific Name (IDS) . 11-6

Adding a Parameter List . 11-7

Adding a Return Clause . 11-8

Adding Display Labels (IDS) . 11-9

Specifying Whether the SPL Function is Variant . 11-10

Adding a Modifier (IDS) . 11-10

Specifying a Document Clause . 11-11

Specifying a Listing File . 11-11

Adding Comments . 11-12

Example of a Complete Routine . 11-13

Creating an SPL Routine in a Program . 11-13

Routines in Distributed Operation . 11-14

Defining and Using Variables . 11-15

Declaring Local Variables . 11-15

Scope of Local Variables . 11-16

Declaring Built-In Type Variables . 11-16

Declaring Variables for Smart Large Objects (IDS) 11-16

Declaring Variables for Simple Large Objects . 11-17

Declaring Collection Variables (IDS) . 11-17

Declaring Row-Type Variables (IDS) . 11-18

Declaring Opaque- and Distinct-Type Variables (IDS) 11-19

Declaring Variables for Column Data with the LIKE Clause 11-19

Declaring PROCEDURE Type Variables . 11-19

Using Subscripts with Variables . 11-20

Variable and Keyword Ambiguity . 11-20

Declaring Global Variables . 11-22

Assigning Values to Variables . 11-23

The LET Statement . 11-23

Other Ways to Assign Values to Variables . 11-24

Expressions in SPL Routines . 11-25

Writing the Statement Block . 11-25

Implicit and Explicit Statement Blocks . 11-25

Using Cursors . 11-26

Using the FOREACH Loop to Define Cursors . 11-26

Restriction for FOREACH Loops . 11-28

Using an IF - ELIF - ELSE Structure . 11-28

Adding WHILE and FOR Loops . 11-30

Exiting a Loop . 11-32

Returning Values from an SPL Function . 11-33

Returning a Single Value . 11-33

Returning Multiple Values . 11-34

Handling Row-Type Data (IDS) . 11-36

Precedence of Dot Notation . 11-36

Updating a Row-Type Expression . 11-36

Handling Collections (IDS) . 11-37

Using Collection Data Types . 11-37

Preparing for Collection Data Types (IDS) . 11-38

© Copyright IBM Corp. 1996, 2008 11-1

Declaring a Collection Variable . 11-38

Declaring an Element Variable . 11-39

Selecting a Collection into a Collection Variable . 11-39

Inserting Elements into a Collection Variable . 11-39

Inserting into a SET or MULTISET . 11-40

Inserting into a LIST . 11-40

Checking the Cardinality of a LIST Collection . 11-41

Syntax of the VALUES Clause . 11-42

Selecting Elements from a Collection . 11-42

The Collection Query . 11-43

Adding the Collection Query to the SPL Routine . 11-43

Deleting a Collection Element . 11-44

Updating the Collection in the Database . 11-45

Deleting the Entire Collection . 11-46

Updating a Collection Element . 11-47

Updating a Collection with a Variable . 11-48

Updating the Entire Collection . 11-48

Updating a Collection of Row Types . 11-49

Updating a Nested Collection . 11-50

Inserting into a Collection . 11-51

Inserting into a Nested Collection . 11-52

Executing Routines . 11-55

Using the EXECUTE Statements . 11-56

Using the CALL Statement . 11-57

Executing Routines in Expressions . 11-58

Executing an External Function with the RETURN Statement 11-58

Executing Cursor Functions from an SPL Routine . 11-59

Dynamic Routine-Name Specification . 11-59

Rules for Dynamic Routine-Name Specification . 11-60

Privileges on Routines . 11-61

Privileges for Registering a Routine . 11-61

Privileges for Executing a Routine . 11-61

Granting and Revoking the Execute Privilege . 11-62

Execute Privileges with COMMUTATOR and NEGATOR Functions (IDS) 11-62

Privileges on Objects Associated with a Routine . 11-63

DBA Privileges for Executing a Routine . 11-63

Finding Errors in an SPL Routine . 11-65

Looking at Compile-Time Warnings . 11-65

Generating the Text of the Routine . 11-65

Debugging an SPL Routine . 11-66

Exception Handling . 11-68

Trapping an Error and Recovering . 11-68

Scope of Control of an ON EXCEPTION Statement . 11-69

User-Generated Exceptions . 11-69

Simulating SQL Errors . 11-70

Using RAISE EXCEPTION to Exit Nested Code . 11-70

Checking the Number of Rows Processed in an SPL Routine 11-71

Summary . 11-71

In This Chapter

This chapter describes how to create and use SPL routines. An SPL routine is a

user-defined routine written in IBM Informix Stored Procedure Language (SPL).

IBM Informix SPL is an extension to SQL that provides flow control, such as

looping and branching. Anyone who has the Resource privilege on a database can

create an SPL routine.

Routines written in SQL are parsed, optimized as far as possible, and then stored

in the system catalog tables in executable format. An SPL routine might be a good

11-2 IBM Informix Guide to SQL: Tutorial

choice for SQL-intensive tasks. SPL routines can execute routines written in C or

other external languages, and external routines can execute SPL routines.

You can use SPL routines to perform any task that you can perform in SQL and to

expand what you can accomplish with SQL alone. Because SPL is a language

native to the database, and because SPL routines are parsed and optimized when

they are created rather than at runtime, SPL routines can improve performance for

some tasks. SPL routines can also reduce traffic between a client application and

the database server and reduce program complexity.

The syntax for each SPL statement is described in the IBM Informix Guide to SQL:

Syntax. Examples accompany the syntax for each statement.

Introduction to SPL Routines

SPL routine is a generic term that includes SPL procedures and SPL functions. An

SPL procedure is a routine written in SPL and SQL that does not return a value. An

SPL function is a routine written in SPL and SQL that returns a single value, a

value with a complex data type, or multiple values. Generally, a routine written in

SPL that returns a value is an SPL function.

You use SQL and SPL statements to write an SPL routine. SPL statements can be

used only inside the CREATE PROCEDURE, CREATE PROCEDURE FROM,

CREATE FUNCTION, and CREATE FUNCTION FROM statements. All these

statements are available with SQL APIs such as IBM Informix ESQL/C. The

CREATE PROCEDURE and CREATE FUNCTION statements are available with

DB–Access.

What You Can Do with SPL Routines

You can accomplish a wide range of objectives with SPL routines, including

improving database performance, simplifying writing applications, and limiting or

monitoring access to data.

Because an SPL routine is stored in an executable format, you can use it to execute

frequently repeated tasks to improve performance. When you execute an SPL

routine rather than straight SQL code, you can bypass repeated parsing, validity

checking, and query optimization.

You can use an SPL routine in a data-manipulation SQL statement to supply values

to that statement. For example, you can use a routine to perform the following

actions:

v Supply values to be inserted into a table

v Supply a value that makes up part of a condition clause in a SELECT, DELETE,

or UPDATE statement

These actions are two possible uses of a routine in a data-manipulation statement,

but others exist. In fact, any expression in a data-manipulation SQL statement can

consist of a routine call.

You can also issue SQL statements in an SPL routine to hide those SQL statements

from a database user. Rather than having all users learn how to use SQL, one

experienced SQL user can write an SPL routine to encapsulate an SQL activity and

let others know that the routine is stored in the database so that they can execute

it.

Chapter 11. Creating and Using SPL Routines 11-3

You can write an SPL routine to be run with the DBA privilege by a user who does

not have the DBA privilege. This feature allows you to limit and control access to

data in the database. Alternatively, an SPL routine can monitor the users who

access certain tables or data. For more information about how to use SPL routines

to control access to data, see the IBM Informix Database Design and Implementation

Guide.

SPL Routine Behavior for Extended Parallel Server

Extended Parallel Server supports SPL procedures but not SPL functions.

With Extended Parallel Server, the following SPL procedure features behave

differently than they do in Dynamic Server:

v SYSPROCPLAN system catalog table

All Informix database servers modify the SYSPROCPLAN system catalog table

whenever an SPL procedure is created. For Dynamic Server, the SYSPROCPLAN

system catalog table is also modified during execution of an SPL procedure, if

the SPL procedure generates any new query-execution plans during execution.

However, Extended Parallel Server does not modify the SYSPROCPLAN table

when execution of an SPL procedure results in new query-execution plans. For

example, if plans are deleted from the SYSPROCPLAN system catalog table and

the procedure is executed from any coserver, the plans are not restored in

SYSPROCPLAN. However, an UPDATE STATISTICS FOR PROCEDURE

statement that is executed from any coserver updates the plans in

SYSPROCPLAN.

v SPL procedure calls

An SPL procedure call can be made only to SPL procedures that are in the

current database and the current database server.

Writing SPL Routines

An SPL routine consists of a beginning statement, a statement block, and an

ending statement. Within the statement block, you can use SQL or SPL statements.

The maximum size of an SPL routine is 64 kilobytes. The maximum size includes

any SPL global variables in the database and the routine itself.

Using the CREATE PROCEDURE or CREATE FUNCTION

Statement

You must first decide if the routine that you are creating returns values or not. If

the routine does not return a value, use the CREATE PROCEDURE statement to

create an SPL procedure. If the routine returns a value, use the CREATE

FUNCTION statement to create an SPL function.

To create an SPL routine, use one CREATE PROCEDURE or CREATE FUNCTION

statement to write the body of the routine and register it.

Beginning and Ending the Routine

To create an SPL routine that does not return values, start with the CREATE

PROCEDURE statement and end with the END PROCEDURE keyword.

Figure 11-1 shows how to begin and end an SPL procedure.

11-4 IBM Informix Guide to SQL: Tutorial

For more information about naming conventions, see the Identifier segment in the

IBM Informix Guide to SQL: Syntax.

To create an SPL function that returns one or more values, start with the CREATE

FUNCTION statement and end with the END FUNCTION keyword. Figure 11-2

shows how to begin and end an SPL function.

The entire text of an SPL routine, including spaces and tabs, must not exceed 64

kilobytes. In SPL routines, the END PROCEDURE or END FUNCTION keywords

are required.

Important: For compatibility with earlier IBM Informix products, you can use

CREATE PROCEDURE with a RETURNING clause to create a

user-defined routine that returns a value. Your code will be easier to

read and to maintain, however, it you use CREATE PROCEDURE for

SPL routines that do not return values (SPL procedures) and CREATE

FUNCTION for SPL routines that return one or more values (SPL

functions).

Specifying a Routine Name

You specify a name for the SPL routine immediately following the CREATE

PROCEDURE or CREATE FUNCTION statement and before the parameter list, as

Figure 11-3 shows.

Dynamic Server

Dynamic Server allows you to create more than one SPL routine with the same

name but with different parameters. This feature is known as routine overloading.

For example, you might create each of the following SPL routines in your database:

CREATE PROCEDURE multiply (a INT, b FLOAT)

CREATE PROCEDURE multiply (a INT, b SMALLINT)

CREATE PROCEDURE multiply (a REAL, b REAL)

CREATE PROCEDURE new_price(per_cent REAL)

. . .

END PROCEDURE;

Figure 11-1.

CREATE FUNCTION discount_price(per_cent REAL)

 RETURNING MONEY;

. . .

END FUNCTION;

Figure 11-2.

CREATE PROCEDURE add_price (arg INT)

Figure 11-3.

Chapter 11. Creating and Using SPL Routines 11-5

If you call a routine with the name multiply(), the database server evaluates the

name of the routine and its arguments to determine which routine to execute.

End of Dynamic Server

 Routine resolution is the process in which the database server searches for a routine

signature that it can use, given the name of the routine and a list of arguments.

Every routine has a signature that uniquely identifies the routine based on the

following information:

v The type of routine (procedure or function)

v The routine name

v The number of parameters

v The data types of the parameters

v The order of the parameters

The routine signature is used in a CREATE, DROP, or EXECUTE statement if you

enter the full parameter list of the routine. For example, each statement in

Figure 11-4 uses a routine signature.

Adding a Specific Name (IDS)

Because Dynamic Server supports routine overloading, an SPL routine might not

be uniquely identified by its name alone. However, a routine can be uniquely

identified by a specific name. A specific name is a unique identifier that you define in

the CREATE PROCEDURE or CREATE FUNCTION statement, in addition to the

routine name. A specific name is defined with the SPECIFIC keyword and is

unique in the database. Two routines in the same database cannot have the same

specific name, even if they have different owners.

A specific name can be up to 128 bytes long. Figure 11-5 shows how to define the

specific name calc in a CREATE FUNCTION statement that creates the calculate()

function.

Because the owner bsmith has given the SPL function the specific name calc1, no

other user can define a routine—SPL or external—with the specific name calc1.

Now you can refer to the routine as bsmith.calculate or with the SPECIFIC

keyword calc1 in any statement that requires the SPECIFIC keyword.

CREATE FUNCTION multiply(a INT, b INT);

DROP PROCEDURE end_of_list(n SET, row_id INT);

EXECUTE FUNCTION compare_point(m point, n point);

Figure 11-4.

CREATE FUNCTION calculate(a INT, b INT, c INT)

 RETURNING INT

 SPECIFIC calc1;

. . .

END FUNCTION;

Figure 11-5.

11-6 IBM Informix Guide to SQL: Tutorial

Adding a Parameter List

When you create an SPL routine, you can define a parameter list so that the

routine accepts one or more arguments when it is invoked. The parameter list is

optional.

A parameter to an SPL routine must have a name and can be defined with a

default value. The following table lists the categories of data types that a

parameter can specify for the different Informix database servers.

Dynamic Server Extended Parallel Server

Built-in data types Built-in data types

Opaque data types

Distinct data types

Row types

Collection types

Smart large objects

(CLOB and BLOB)

 For all Informix database servers, a parameter cannot specify any of the following

data types:

v SERIAL

v SERIAL8

v TEXT

v BYTE

Figure 11-6 shows examples of different parameter lists.

When you define a parameter, you accomplish two tasks at once:

v You request that the user supply a value when the routine is executed.

v You implicitly define a variable (with the same name as the parameter name)

that you can use as a local variable in the body of the routine.

If you define a parameter with a default value, the user can execute the SPL

routine with or without the corresponding argument. If the user executes the SPL

routine without the argument, the database server assigns the parameter the

default value as an argument.

When you invoke an SPL routine, you can give an argument a NULL value. SPL

routines handle NULL values by default. However, you cannot give an argument a

NULL value if the argument is a collection element.

CREATE PROCEDURE raise_price(per_cent INT)

CREATE FUNCTION raise_price(per_cent INT DEFAULT 5)

CREATE PROCEDURE update_emp(n employee_t)

CREATE FUNCTION update_nums(list1 LIST (ROW a varchar(10),

 b varchar(10),

 c int) NOT NULL)

Figure 11-6.

Chapter 11. Creating and Using SPL Routines 11-7

Using Simple Large Objects as Parameters: Although you cannot define a

parameter with a simple large object (a large object that contains TEXT or BYTE

data types), you can use the REFERENCES keyword to define a parameter that

points to a simple large object, as Figure 11-7 shows.

The REFERENCES keyword means that the SPL routine is passed a descriptor that

contains a pointer to the simple large object, not the object itself.

Undefined Arguments: When you invoke an SPL routine, you can specify all,

some, or none of the defined arguments. If you do not specify an argument, and if

its corresponding parameter does not have a default value, the argument, which is

used as a variable within the SPL routine, is given a status of undefined.

Undefined is a special status used for SPL variables that have no value. The SPL

routine executes without error, as long as you do not attempt to use the variable

that has the status undefined in the body of the routine.

The undefined status is not the same as a NULL value. (The NULL value means

that the value is not known, or does not exist, or is not applicable.)

Adding a Return Clause

If you use CREATE FUNCTION to create an SPL routine, you must specify a

return clause that returns one or more values.

Tip: If you use the CREATE PROCEDURE statement to create an SPL routine, you

have the option of specifying a return clause. Your code will be easier to read

and to maintain, however, it you instead use the CREATE FUNCTION

statement to create a routine that returns values.

To specify a return clause, use the RETURNING or RETURNS keyword with a list

of data types the routine will return. The data types can be any SQL data types

except SERIAL, SERIAL8, TEXT, or BYTE.

The return clause in Figure 11-8 specifies that the SPL routine will return an INT

value and a REAL value.

After you specify a return clause, you must also specify a RETURN statement in

the body of the routine that explicitly returns the values to the calling routine. For

more information on writing the RETURN statement, see “Returning Values from

an SPL Function” on page 11-33.

CREATE PROCEDURE proc1(lo_text REFERENCES TEXT)

CREATE FUNCTION proc2(lo_byte REFERENCES BYTE DEFAULT NULL)

Figure 11-7.

NCTION find_group(id INT)

 RETURNING INT, REAL;

. . .

END FUNCTION;

Figure 11-8.

11-8 IBM Informix Guide to SQL: Tutorial

To specify that the function should return a simple large object (a TEXT or BYTE

value), you must use the REFERENCES clause, as in Figure 11-9, because an SPL

routine returns only a pointer to the object, not the object itself.

Adding Display Labels (IDS)

You can use CREATE FUNCTION to create a routine that specifies names for the

display labels for the values returned. If you do not specify names for the display

labels, the labels will display as expression.

In addition, although using CREATE FUNCTION for routines that return values is

recommended, you can use CREATE PROCEDURE to create a routine that returns

values and specifies display labels for the values returned.

If you choose to specify a display label for one return value, you must specify a

display label for every return value. In addition, each return value must have a

unique display label.

To add display labels, you must specify a return clause, use the RETURNING

keyword. The return clause in Figure 11-10 specifies that the routine will return an

INT value with a serial_num display label, a CHAR value with a name display

label, and an INT value with a points display label. You could use either CREATE

FUNCTION or CREATE PROCEDURE in Figure 11-10.

The returned values and their display labels are shown in Figure 11-11.

Tip: Because you can specify display labels for return values directly in a SELECT

statement, when a SPL routine is used in a SELECT statement, the labels will

display as expression. For more information on specifying display labels for

return values in a SELECT statement, see Chapter 2, “Composing SELECT

Statements,” on page 2-1.

CREATE FUNCTION find_obj(id INT)

 RETURNING REFERENCES BYTE;

Figure 11-9.

CREATE FUNCTION p(inval INT DEFAULT 0)

 RETURNING INT AS serial_num, CHAR (10) AS name, INT AS points;

 RETURN (inval + 1002), "Newton", 100;

END FUNCTION;

Figure 11-10.

serial_num name points

1002 Newton 100

Figure 11-11.

Chapter 11. Creating and Using SPL Routines 11-9

Specifying Whether the SPL Function is Variant

When you create an SPL function, the function is variant by default. A function is

variant if it returns different results when it is invoked with the same arguments or

if it modifies a database or variable state. For example, a function that returns the

current date or time is a variant function.

Although SPL functions are variant by default, if you specify WITH NOT

VARIANT when you create a function, the function cannot contain any SQL

statements. You can create a functional index on a nonvariant function.

Adding a Modifier (IDS)

When you write SPL functions, you can use the WITH clause to add a modifier to

the CREATE FUNCTION statement. In the WITH clause, you can specify the

COMMUTATOR or NEGATOR functions. The other modifiers are for external

routines.

Important: You can use the COMMUTATOR or NEGATOR modifiers with SPL

functions only. You cannot use any modifiers with SPL procedures.

The COMMUTATOR Modifier: The COMMUTATOR modifier allows you to

specify an SPL function that is the commutator function of the SPL function you are

creating. A commutator function accepts the same arguments as the SPL function

you are creating, but in opposite order, and returns the same value. The

commutator function might be more cost effective for the SQL optimizer to

execute.

For example, the functions lessthan(a,b), which returns TRUE if a is less than b,

and greaterthan(b,a), which returns TRUE if b is greater than or equal to a, are

commutator functions. Figure 11-12 uses the WITH clause to define a commutator

function.

The optimizer might use greaterthan(b,a) if it is less expensive to execute than

lessthan(a,b). To specify a commutator function, you must own both the

commutator function and the SPL function you are writing. You must also grant

the user of your SPL function the Execute privilege on both functions.

For a detailed description of granting privileges, see the description of the GRANT

statement in the IBM Informix Guide to SQL: Syntax.

The NEGATOR Modifier: The NEGATOR modifier is available for Boolean

functions. Two Boolean functions are negator functions if they take the same

arguments, in the same order, and return complementary Boolean values.

For example, the functions equal(a,b), which returns TRUE if a is equal to b, and

notequal(a,b), which returns FALSE if a is equal to b, are negator functions. The

optimizer might choose to execute the negator function you specify if it is less

expensive than the original function.

CREATE FUNCTION lessthan(a dtype1, b dtype2)

 RETURNING BOOLEAN

 WITH (COMMUTATOR = greaterthan);

. . .

END FUNCTION;

Figure 11-12.

11-10 IBM Informix Guide to SQL: Tutorial

Figure 11-13 shows how to use the WITH clause of a CREATE FUNCTION

statement to specify a negator function.

Tip: By default, any SPL routine can handle NULL values that are passed to it in

the argument list. In other words, the HANDLESNULLS modifier is set to

YES for SPL routines, and you cannot change its value.

For more information on the COMMUTATOR and NEGATOR modifiers, see the

Routine Modifier segment in the IBM Informix Guide to SQL: Syntax.

Specifying a Document Clause

The DOCUMENT and WITH LISTING IN clauses follow END PROCEDURE or

END FUNCTION statements.

The DOCUMENT clause lets you add comments to your SPL routine that another

routine can select from the system catalog tables, if needed. The DOCUMENT

clause in Figure 11-14 contains a usage statement that shows a user how to run the

SPL routine.

Remember to place single or double quotation marks around the literal clause. If

the literal clause extends past one line, place quotation marks around each line.

Specifying a Listing File

The WITH LISTING IN option allows you to direct any compile-time warnings

that might occur to a file.

UNIX Only

Figure 11-15 shows how to log the compile-time warnings in /tmp/warn_file when

you work on UNIX.

CREATE FUNCTION equal(a dtype1, b dtype2)

 RETURNING BOOLEAN

 WITH (NEGATOR = notequal);

. . .

END FUNCTION;

Figure 11-13.

CREATE FUNCTION raise_prices(per_cent INT)

. . .

END FUNCTION

 DOCUMENT "USAGE: EXECUTE FUNCTION raise_prices (xxx)",

 "xxx = percentage from 1 - 100";

Figure 11-14.

CREATE FUNCTION raise_prices(per_cent INT)

. . .

END FUNCTION

 WITH LISTING IN ’/tmp/warn_file’

Figure 11-15.

Chapter 11. Creating and Using SPL Routines 11-11

End of UNIX Only

Windows Only

Figure 11-16 shows how to log the compile-time warnings in \tmp\listfile when

you work on Windows.

End of Windows Only

Always remember to place single or double quotation marks around the filename

or pathname.

Adding Comments

You can add a comment to any line of an SPL routine, even a blank line.

To add a comment, place a double hyphen (--) before the comment or enclose the

comment in braces ({ }). Double hyphen complies with the ANSI/ISO standard

for SQL. Braces are an Informix extension to the ANSI/ISO standard.

To add a multiple-line comment, take either of the following actions:

v Place a double hyphen before each line of the comment

v Enclose the entire comment within braces.

All the examples in Figure 11-17 are valid comments.

Warning: Braces ({ }) can be used to delimit comments and also to delimit the list

of elements in a collection. To ensure that the parser correctly recognizes

the end of a comment or list of elements in a collection, use the double

hyphen (--) for comments in an SPL routine that handles collection

types.

CREATE FUNCTION raise_prices(per_cent INT)

. . .

END FUNCTION

 WITH LISTING IN ’C:\tmp\listfile’

Figure 11-16.

SELECT * FROM customer -- Selects all columns and rows

SELECT * FROM customer

 -- Selects all columns and rows

 -- from the customer table

SELECT * FROM customer

 { Selects all columns and rows

 from the customer table }

Figure 11-17.

11-12 IBM Informix Guide to SQL: Tutorial

Example of a Complete Routine

The following CREATE FUNCTION statement creates a routine that reads a

customer address:

CREATE FUNCTION read_address (lastname CHAR(15)) -- one argument

 RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2)

 CHAR(5); -- 6 items

 DEFINE p_lname,p_fname, p_city CHAR(15);

 --define each routine variable

 DEFINE p_add CHAR(20);

 DEFINE p_state CHAR(2);

 DEFINE p_zip CHAR(5);

 SELECT fname, address1, city, state, zipcode

 INTO p_fname, p_add, p_city, p_state, p_zip

 FROM customer

 WHERE lname = lastname;

 RETURN p_fname, lastname, p_add, p_city, p_state, p_zip;

 --6 items

END FUNCTION;

DOCUMENT ’This routine takes the last name of a customer as’,

 --brief description

 ’its only argument. It returns the full name and address’,

 ’of the customer.’

WITH LISTING IN ’pathname’ -- modify this pathname according

-- to the conventions that your operating system requires

-- compile-time warnings go here

; -- end of the routine read_address

Creating an SPL Routine in a Program

To use an SQL API to create an SPL routine, put the text of the CREATE

PROCEDURE or CREATE FUNCTION statement in a file. Use the CREATE

PROCEDURE FROM or CREATE FUNCTION FROM statement and refer to that

file to compile the routine. For example, to create a routine to read a customer

name, you can use a statement such as the one in the previous example and store

it in a file. If the file is named read_add_source, the following statement compiles

the read_address routine:

CREATE PROCEDURE FROM ’read_add_source’;

The following example shows how the previous SQL statement looks in an

Informix ESQL/C program:

/* This program creates whatever routine is in *

 * the file ’read_add_source’.

 */

#include <stdio.h>

EXEC SQL include sqlca;

EXEC SQL include sqlda;

EXEC SQL include datetime;

/* Program to create a routine from the pwd */

main()

{

EXEC SQL database play;

EXEC SQL create procedure from ’read_add_source’;

}

Chapter 11. Creating and Using SPL Routines 11-13

Routines in Distributed Operation

After you create an SPL routine, you cannot change the body of the routine.

Instead, you need to drop the routine and re-create it. Before you drop the routine,

however, make sure that you have a copy of its text somewhere outside the

database.

In general, use DROP PROCEDURE with an SPL procedure name and DROP

FUNCTION with an SPL function name, as Figure 11-18 shows.

Tip: You can also use DROP PROCEDURE with a function name to drop an SPL

function. However, it is recommended that you use DROP PROCEDURE only

with procedure names and DROP FUNCTION only with function names.

However, if the database has other routines of the same name (overloaded

routines), you cannot drop the SPL routine by its routine name alone. To drop a

routine that has been overloaded, you must specify either its signature or its

specific name. Figure 11-19 shows two ways that you might drop a routine that is

overloaded.

If you do not know the type of a routine (function or procedure), you can use the

DROP ROUTINE statement to drop it. DROP ROUTINE works with either

functions or procedures. DROP ROUTINE also has a SPECIFIC keyword, as

Figure 11-20 shows.

Before you drop an SPL routine stored on a remote database server, be aware of

the following restriction. You can drop an SPL routine with a fully qualified

routine name in the form database@dbservername:owner.routinename only if the

routine name alone, without its arguments, is enough to identify the routine. SPL

routines that access tables in databases of non-local database servers, or that are

invoked as UDRs of a database of another database server, can only have

non-opaque built-in data types as their arguments or returned values. If the tables

or the UDR resides on another database of the same Dynamic Server instance,

however, the arguments and returned values of routines written in SPL (or in

external languages that Dynamic Server supports) can be the built-in opaque data

DROP PROCEDURE raise_prices;

DROP FUNCTION read_address;

Figure 11-18.

DROP FUNCTION calculate(a INT, b INT, c INT);

 -- this is a signature

DROP SPECIFIC FUNCTION calc1;

 -- this is a specific name

Figure 11-19.

DROP ROUTINE calculate;

DROP SPECIFIC ROUTINE calc1;

Figure 11-20.

11-14 IBM Informix Guide to SQL: Tutorial

types BLOB, BOOLEAN, CLOB, and LVARCHAR. They can also be UDTs or

DISTINCT data types if the following conditions are true:

v The remote database has the same server as the current database.

v The UDT arguments are explicitly cast to a built-in data type.

v The DISTINCT types are based on built-in types and are explicitly cast to

built-in types.

v The SPL routine and all the casts are defined in all participating databases.

Defining and Using Variables

Any variable that you use in an SPL routine, other than a variable that is implicitly

defined in the parameter list of the routine, must be defined in the body of the

routine.

The value of a variable is held in memory; the variable is not a database object.

Therefore, rolling back a transaction does not restore the values of SPL variables.

To define a variable in an SPL routine, use the DEFINE statement. DEFINE is not

an executable statement. DEFINE must appear after the CREATE PROCEDURE

statement and before any other statements. The examples in Figure 11-21 are all

legal variable definitions.

For more information on DEFINE, see the description in the IBM Informix Guide to

SQL: Syntax.

An SPL variable has a name and a data type. The variable name must be a valid

identifier, as described in the Identifier segment in the IBM Informix Guide to SQL:

Syntax.

Declaring Local Variables

You can define a variable to be either local or global in scope. This section describes

local variables. In an SPL routine, local variables:

v Are valid only for the duration of the SPL routine

v Are reset to their initial values or to a value the user passes to the routine, each

time the routine is executed

v Cannot have default values

You can define a local variable on any of the following data types:

v Built-in data types (except SERIAL, SERIAL8, TEXT, or BYTE)

v Any extended data type (row type, opaque, distinct, or collection type) that is

defined in the database prior to execution of the SPL routine

The scope of a local variable is the statement block in which it is declared. You can

use the same variable name outside the statement block with a different definition.

DEFINE a INT;

DEFINE person person_t;

DEFINE GLOBAL gl_out INT DEFAULT 13;

Figure 11-21.

Chapter 11. Creating and Using SPL Routines 11-15

For more information on defining global variables, see “Declaring Global

Variables” on page 11-22.

Scope of Local Variables

A local variable is valid within the statement block in which it is defined and

within any nested statement blocks, unless you redefine the variable within the

statement block.

In the beginning of the SPL procedure in Figure 11-22, the integer variables x, y,

and z are defined and initialized.

The BEGIN and END statements mark a nested statement block in which the

integer variables x and q are defined as well as the CHAR variable z. Within the

nested block, the redefined variable x masks the original variable x. After the END

statement, which marks the end of the nested block, the original value of x is

accessible again.

Declaring Built-In Type Variables

Built-in type variables hold data retrieved from built-in data types. You can define

an SPL variable with any built-in type, except SERIAL and SERIAL8 as

Figure 11-23 shows.

Declaring Variables for Smart Large Objects (IDS)

A variable for a BLOB or CLOB object (or a data type that contains a smart large

object) does not contain the object itself but rather a pointer to the object.

Figure 11-24 shows how to define a variable for BLOB and CLOB objects.

CREATE PROCEDURE scope()

 DEFINE x,y,z INT;

 LET x = 5;

 LET y = 10;

 LET z = x + y; --z is 15

 BEGIN

 DEFINE x, q INT;

 DEFINE z CHAR(5);

 LET x = 100;

 LET q = x + y; -- q = 110

 LET z = ’silly’; -- z receives a character value

 END

 LET y = x; -- y is now 5

 LET x = z; -- z is now 15, not ’silly’

END PROCEDURE;

Figure 11-22.

DEFINE x INT;

DEFINE y INT8;

DEFINE name CHAR(15);

DEFINE today DATETIME YEAR TO DAY;

Figure 11-23.

11-16 IBM Informix Guide to SQL: Tutorial

Declaring Variables for Simple Large Objects

A variable for a simple large object (a TEXT or BYTE object) does not contain the

object itself but rather a pointer to the object. When you define a variable on the

TEXT or BYTE data type, you must use the keyword REFERENCES before the data

type, as Figure 11-25 shows.

Declaring Collection Variables (IDS)

In order to hold a collection fetched from the database, a variable must be of type

SET, MULTISET, or LIST.

Important: A collection variable must be defined as a local variable. You cannot

define a collection variable as a global variable.

A variable of SET, MULTISET, or LIST type is a collection variable that holds a

collection of the type named in the DEFINE statement. Figure 11-26 shows how to

define typed collection variables.

You must always define the elements of a collection variable as NOT NULL. In this

example, the variable a is defined to hold a SET of non-NULL integers; the

variable b holds a MULTISET of non-NULL row types; and the variable c holds a

LIST of non-NULL sets of non-NULL decimal values.

In a variable definition, you can nest complex types in any combination or depth

to match the data types stored in your database.

You cannot assign a collection variable of one type to a collection variable of

another type. For example, if you define a collection variable as a SET, you cannot

assign another collection variable of MULTISET or LIST type to it.

DEFINE a_blob BLOB;

DEFINE b_clob CLOB;

Figure 11-24.

DEFINE t REFERENCES TEXT;

DEFINE b REFERENCES BYTE;

Figure 11-25.

DEFINE a SET (INT NOT NULL);

DEFINE b MULTISET (ROW (b1 INT,

 b2 CHAR(50),

) NOT NULL);

DEFINE c LIST (SET (DECIMAL NOT NULL) NOT NULL);

Figure 11-26.

Chapter 11. Creating and Using SPL Routines 11-17

Declaring Row-Type Variables (IDS)

Row-type variables hold data from named or unnamed row types. You can define

a named row variable or an unnamed row variable. Suppose you define the named row

types that Figure 11-27 shows.

If you define a variable with the name of a named row type, the variable can only

hold data of that row type. In Figure 11-28, the person variable can only hold data

of employee_t type.

To define a variable that holds data stored in an unnamed row type, use the ROW

keyword followed by the fields of the row type, as Figure 11-29 shows.

Because unnamed row types are type-checked for structural equivalence only, a

variable defined with an unnamed row type can hold data from any unnamed row

type that has the same number of fields and the same type definitions. Therefore,

the variable manager can hold data from any of the row types in Figure 11-30.

CREATE ROW TYPE zip_t

(

 z_code CHAR(5),

 z_suffix CHAR(4)

);

CREATE ROW TYPE address_t

(

 street VARCHAR(20),

 city VARCHAR(20),

 state CHAR(2),

 zip zip_t

);

CREATE ROW TYPE employee_t

(

 name VARCHAR(30),

 address address_t

 salary INTEGER

);

CREATE TABLE employee OF TYPE employee_t;

Figure 11-27.

DEFINE person employee_t;

Figure 11-28.

DEFINE manager ROW (name VARCHAR(30),

 department VARCHAR(30),

 salary INTEGER);

Figure 11-29.

11-18 IBM Informix Guide to SQL: Tutorial

Important: Before you can use a row type variable, you must initialize the row

variable with a LET statement or SELECTINTO statement.

Declaring Opaque- and Distinct-Type Variables (IDS)

Opaque-type variables hold data retrieved from opaque data types. Distinct-type

variables hold data retrieved from distinct data types. If you define a variable with

an opaque data type or a distinct data type, the variable can only hold data of that

type.

If you define an opaque data type named point and a distinct data type named

centerpoint, you can define SPL variables to hold data from the two types, as

Figure 11-31 shows.

The variable a can only hold data of type point, and b can only hold data of type

centerpoint.

Declaring Variables for Column Data with the LIKE Clause

If you use the LIKE clause, the database server defines a variable to have the same

data type as a column in a table or view.

If the column contains a collection, row type, or nested complex type, the variable

has the complex or nested complex type defined in the column.

In Figure 11-32, the variable loc1 defines the data type for the locations column in

the image table.

Declaring PROCEDURE Type Variables

In an SPL routine, you can define a variable of type PROCEDURE and assign the

variable the name of an existing SPL routine or external routine. Defining a

variable of PROCEDURE type indicates that the variable is a call to a user-defined

routine, not a built-in routine of the same name.

ROW (name VARCHAR(30),

 department VARCHAR(30),

 salary INTEGER);

ROW (french VARCHAR(30),

 spanish VARCHAR(30),

 number INTEGER);

ROW (title VARCHAR(30),

 musician VARCHAR(30),

 price INTEGER);

Figure 11-30.

DEFINE a point;

DEFINE b centerpoint;

Figure 11-31.

DEFINE loc1 LIKE image.locations;

Figure 11-32.

Chapter 11. Creating and Using SPL Routines 11-19

For example, the statement in Figure 11-33 defines length as an SPL procedure or

SPL function, not as the built-in LENGTH function.

This definition disables the built-in LENGTH function within the scope of the

statement block. You would use such a definition if you had already created an

SPL or external routine with the name LENGTH.

Dynamic Server

Because Dynamic Server supports routine overloading, you can define more than

one SPL routine or external routine with the same name. If you call any routine

from an SPL routine, Dynamic Server determines which routine to use, based on

the arguments specified and the routine determination rules. For information about

routine overloading and routine determination, see IBM Informix User-Defined

Routines and Data Types Developer’s Guide.

End of Dynamic Server

Tip: If you create an SPL routine with the same name as an aggregate function

(SUM, MAX, MIN, AVG, COUNT) or with the name extend, you must qualify

the routine name with an owner name.

Using Subscripts with Variables

You can use subscripts with variables of CHAR, VARCHAR, NCHAR,

NVARCHAR, BYTE, or TEXT data type. The subscripts indicate the starting and

ending character positions that you want to use within the variable.

Subscripts must always be constants. You cannot use variables as subscripts.

Figure 11-34 illustrates how to use a subscript with a CHAR(15) variable.

In this example, the customer’s last name is placed between positions 4 and 7 of

name. The first three characters of the customer’s first name is retrieved into

positions 1 through 3 of name. The part of the variable that is delimited by the

two subscripts is referred to as a substring.

Variable and Keyword Ambiguity

If you declare a variable whose name is an SQL keyword, ambiguities can occur.

The following rules for identifiers help you avoid ambiguities for SPL variables,

SPL routine names, and built-in function names:

v Defined variables take the highest precedence.

DEFINE length PROCEDURE;

LET x = length(a,b,c);

Figure 11-33.

DEFINE name CHAR(15);

LET name[4,7] = ’Ream’;

SELECT fname[1,3] INTO name[1,3] FROM customer

 WHERE lname = ’Ream’;

Figure 11-34.

11-20 IBM Informix Guide to SQL: Tutorial

v Routines defined with the PROCEDURE keyword in a DEFINE statement take

precedence over SQL functions.

v SQL functions take precedence over SPL routines that exist but are not identified

with the PROCEDURE keyword in a DEFINE statement.

In general, avoid using an ANSI-reserved word for the name of the variable. For

example, you cannot define a variable with the name count or max because they

are the names of aggregate functions. For a list of the reserved keywords that you

should avoid using as variable names, see the Identifier segment in the IBM

Informix Guide to SQL: Syntax.

Variables and Column Names: If you use the same identifier for an SPL variable

that you use for a column name, the database server assumes that each instance of

the identifier is a variable. Qualify the column name with the table name, using

dot notation, in order to use the identifier as a column name.

In the SELECT statement in Figure 11-35, customer.lname is a column name and

lname is a variable name.

Variables and SQL Functions: If you use the same identifier for an SPL variable

as for an SQL function, the database server assumes that an instance of the

identifier is a variable and disallows the use of the SQL function. You cannot use

the SQL function within the block of code in which the variable is defined. The

example in Figure 11-36 shows a block within an SPL procedure in which the

variable called user is defined. This definition disallows the use of the USER

function in the BEGIN END block.

CREATE PROCEDURE table_test()

 DEFINE lname CHAR(15);

 LET lname = ’Miller’;

 SELECT customer.lname INTO lname FROM customer

 WHERE customer_num = 502;

. . .

END PROCEDURE;

Figure 11-35.

CREATE PROCEDURE user_test()

 DEFINE name CHAR(10);

 DEFINE name2 CHAR(10);

 LET name = user; -- the SQL function

 BEGIN

 DEFINE user CHAR(15); -- disables user function

 LET user = ’Miller’;

 LET name = user; -- assigns ’Miller’ to variable name

 END

 . . .

 LET name2 = user; -- SQL function again

Figure 11-36.

Chapter 11. Creating and Using SPL Routines 11-21

SPL Routine Names and SQL Functions: For information about ambiguities

between SPL routine names and SQL function names, see the IBM Informix Guide to

SQL: Syntax.

Declaring Global Variables

A global variable has its value stored in memory and is available to other SPL

routines, run by the same user session, on the same database. A global variable has

the following characteristics:

v It requires a default value.

v It can be used in any SPL routine, although it must be defined in each routine in

which it is used.

v It carries its value from one SPL routine to another until the session ends.

Important: You cannot define a collection variable as a global variable.

Figure 11-37 shows two SPL functions that share a global variable.

Although you must define a global variable with a default value, the variable is

only set to the default the first time you use it. If you execute the two functions in

Figure 11-38 in the order given, the value of gvar would be 4.

But if you execute the functions in the opposite order, as Figure 11-39 shows, the

value of gvar would be 7.

For more information, see “Executing Routines” on page 11-55.

CREATE FUNCTION func1() RETURNING INT;

 DEFINE GLOBAL gvar INT DEFAULT 2;

 LET gvar = gvar + 1;

 RETURN gvar;

END FUNCTION;

CREATE FUNCTION func2() RETURNING INT;

 DEFINE GLOBAL gvar INT DEFAULT 5;

 LET gvar = gvar + 1;

 RETURN gvar;

END FUNCTION;

Figure 11-37.

EXECUTE FUNCTION func1();

EXECUTE FUNCTION func2();

Figure 11-38.

EXECUTE FUNCTION func2();

EXECUTE FUNCTION func1();

Figure 11-39.

11-22 IBM Informix Guide to SQL: Tutorial

Assigning Values to Variables

Within an SPL routine, use the LET statement to assign values to the variables you

have already defined.

If you do not assign a value to a variable, either by an argument passed to the

routine or by a LET statement, the variable has an undefined value.

An undefined value is different from a NULL value. If you attempt to use a

variable with an undefined value within the SPL routine, you receive an error.

You can assign a value to a routine variable in any of the following ways:

v Use a LET statement.

v Use a SELECT INTO statement.

v Use a CALL statement with a procedure that has a RETURNING clause.

v Use an EXECUTE PROCEDURE INTO or EXECUTE FUNCTION INTO

statement.

The LET Statement

With a LET statement, you can use one or more variable names with an equal (=)

sign and a valid expression or function name. Each example in Figure 11-40 is a

valid LET statement.

Dynamic Server

Dynamic Server allows you to assign a value to an opaque-type variable, a

row-type variable, or a field of a row type. You can also return the value of an

external function or another SPL function to an SPL variable.

End of Dynamic Server

 Suppose you define the named row types zip_t and address_t, as Figure 11-27 on

page 11-18 shows. Anytime you define a row-type variable, you must initialize the

variable before you can use it. Figure 11-41 shows how you might define and

initialize a row-type variable. You can use any row-type value to initialize the

variable.

LET a = 5;

LET b = 6; LET c = 10;

LET a,b = 10,c+d;

LET a,b = (SELECT cola,colb

 FROM tab1 WHERE cola=10);

LET d = func1(x,y);

Figure 11-40.

DEFINE a address_t;

LET a = ROW (’A Street’, ’Nowhere’, ’AA’,

 ROW(NULL, NULL))::address_t

Figure 11-41.

Chapter 11. Creating and Using SPL Routines 11-23

After you define and initialize the row-type variable, you can write the LET

statements that Figure 11-42 shows.

Tip: Use dot notation in the form variable.field or variable.field.field to access

the fields of a row type, as “Handling Row-Type Data (IDS)” on page 11-36

describes.

Suppose you define an opaque-type point that contains two values that define a

two-dimensional point, and the text representation of the values is ’(x,y)’. You

might also have a function circum() that calculates the circumference of a circle,

given the point ’(x,y)’ and a radius r.

If you define an opaque-type center that defines a point as the center of a circle,

and a function circum() that calculates the circumference of a circle, based on a

point and the radius, you can write variable declarations for each. In Figure 11-43,

c is an opaque type variable and d holds the value that the external function

circum() returns.

The IBM Informix Guide to SQL: Syntax describes in detail the syntax of the LET

statement.

Other Ways to Assign Values to Variables

You can use the SELECT statement to fetch a value from the database and assign it

directly to a variable, as Figure 11-44 shows.

Use the CALL or EXECUTE PROCEDURE statements to assign values returned by

an SPL function or an external function to one or more SPL variables. You might

use either of the statements in Figure 11-45 to return the full name and address

from the SPL function read_address into the specified SPL variables.

LET a.zip.z_code = 32601;

LET a.zip.z_suffix = 4555;

 -- Assign values to the fields of address_t

Figure 11-42.

DEFINE c point;

DEFINE r REAL;

DEFINE d REAL;

LET c = ’(29.9,1.0)’ ;

 -- Assign a value to an opaque type variable

LET d = circum(c, r);

 -- Assign a value returned from circum()

Figure 11-43.

SELECT fname, lname INTO a, b FROM customer

 WHERE customer_num = 101

Figure 11-44.

11-24 IBM Informix Guide to SQL: Tutorial

Expressions in SPL Routines

You can use any SQL expression in an SPL routine, except for an aggregate

expression. The IBM Informix Guide to SQL: Syntax provides the complete syntax

and descriptions for SQL expressions.

The following examples contain SQL expressions:

var1

var1 + var2 + 5

read_address(’Miller’)

read_address(lastname = ’Miller’)

get_duedate(acct_num) + 10 UNITS DAY

 fname[1,5] || ’’|| lname ’(415)’ || get_phonenum(cust_name)

Writing the Statement Block

Every SPL routine has at least one statement block, which is a group of SQL and

SPL statements between the CREATE statement and the END statement. You can

use any SPL statement or any allowed SQL statement within a statement block. For

a list of SQL statements that are not allowed within an SPL statement block, see

the description of the statement block segment in the IBM Informix Guide to SQL:

Syntax.

Implicit and Explicit Statement Blocks

In an SPL routine, the implicit statement block extends from the end of the CREATE

statement to the beginning of the END statement. You can also define an explicit

statement block, which starts with a BEGIN statement and ends with an END

statement, as Figure 11-46 shows.

The explicit statement block allows you to define variables or processing that are

valid only within the statement block. For example, you can define or redefine

variables, or handle exceptions differently, for just the scope of the explicit

statement block.

EXECUTE FUNCTION read_address(’Smith’)

 INTO p_fname, p_lname, p_add, p_city, p_state,

 p_zip;

CALL read_address(’Smith’)

 RETURNING p_fname, p_lname, p_add, p_city,

 p_state, p_zip;

Figure 11-45.

BEGIN

 DEFINE distance INT;

 LET distance = 2;

END

Figure 11-46.

Chapter 11. Creating and Using SPL Routines 11-25

The SPL function in Figure 11-47 has an explicit statement block that redefines a

variable defined in the implicit block.

In this example, the implicit statement block defines the variable distance and

gives it a value of 37. The explicit statement block defines a different variable

named distance and gives it a value of 2. However, the RETURN statement returns

the value stored in the first distance variable, or 37.

Using Cursors

A FOREACH loop defines a cursor, a specific identifier that points to one item in a

group, whether a group of rows or the elements in a collection.

The FOREACH loop declares and opens a cursor, fetches rows from the database,

works on each item in the group, and then closes the cursor. You must declare a

cursor if a SELECT, EXECUTE PROCEDURE, or EXECUTE FUNCTION statement

might return more than one row. After you declare the cursor, you place the

SELECT, EXECUTE PROCEDURE, or EXECUTE FUNCTION statement within it.

An SPL routine that returns a group of rows is called a cursor routine because you

must use a cursor to access the data it returns. An SPL routine that returns no

value, a single value, or any other value that does not require a cursor is called a

noncursor routine.The FOREACH loop declares and opens a cursor, fetches rows or

a collection from the database, works on each item in the group, and then closes

the cursor. You must declare a cursor if a SELECT, EXECUTE PROCEDURE, or

EXECUTE FUNCTION statement might return more than one row or a collection.

After you declare the cursor, you place the SELECT, EXECUTE PROCEDURE, or

EXECUTE FUNCTION statement within it.

In a FOREACH loop, you can use an EXECUTE FUNCTION or SELECT INTO

statement to execute an external function that is an iterator function.

Using the FOREACH Loop to Define Cursors

A FOREACH loop begins with the FOREACH keyword and ends with END

FOREACH. Between FOREACH and END FOREACH, you can declare a cursor or

use EXECUTE PROCEDURE or EXECUTE FUNCTION. The two examples in

Figure 11-48 show the structure of FOREACH loops.

CREATE FUNCTION block_demo()

 RETURNING INT;

 DEFINE distance INT;

 LET distance = 37;

 BEGIN

 DEFINE distance INT;

 LET distance = 2;

 END

 RETURN distance;

END FUNCTION;

Figure 11-47.

11-26 IBM Informix Guide to SQL: Tutorial

Figure 11-49 creates a routine that uses a FOREACH loop to operate on the

employee table.

The routine in Figure 11-49 performs these tasks within the FOREACH loop:

v Declares a cursor

v Selects one salary value at a time from employee

v Increases the salary by a percentage

v Updates employee with the new salary

v Fetches the next salary value

The SELECT statement is placed within a cursor because it returns all the salaries

in the table greater than 35000.

The WHERE CURRENT OF clause in the UPDATE statement updates only the row

on which the cursor is currently positioned, and sets an update cursor on the

current row. An update cursor places an update lock on the row so that no other

user can update the row until your update occurs.

An SPL routine will set an update cursor automatically if an UPDATE or DELETE

statement within the FOREACH loop uses the WHERE CURRENT OF clause. If

you use WHERE CURRENT OF, you must explicitly reference the cursor within

the FOREACH statement. If you are using an update cursor, you can add a BEGIN

WORK statement before the FOREACH statement and a COMMIT WORK

statement after END FOREACH, as Figure 11-50 shows.

FOREACH cursor FOR

 SELECT column FROM table INTO variable;

. . .

END FOREACH;

FOREACH

 EXECUTE FUNCTION name() INTO variable;

END FOREACH;

Figure 11-48.

CREATE_PROCEDURE increase_by_pct(pct INTEGER)

 DEFINE s INTEGER;

 FOREACH sal_cursor FOR

 SELECT salary INTO s FROM employee

 WHERE salary > 35000;

 LET s = s + s * (pct/100);

 UPDATE employee SET salary = s

 WHERE CURRENT OF sal_cursor;

 END FOREACH;

END PROCEDURE;

Figure 11-49.

Chapter 11. Creating and Using SPL Routines 11-27

For each iteration of the FOREACH loop in Figure 11-50, a new lock is acquired (if

you use row level locking). The COMMIT WORK statement releases all of the

locks (and commits all of the updated rows as a single transaction) after the last

iteration of the FOREACH loop.

To commit an updated row after each iteration of the loop, you must open the

cursor WITH HOLD, and include the BEGIN WORK and COMMIT WORK

statements within the FOREACH loop, as in the following SPL routine.

SPL routine serial_update() commits each row as a separate transaction.

Restriction for FOREACH Loops

Within a FOREACH loop, the SELECT query must complete execution before any

DELETE, INSERT, or UPDATE operation that changes the data set of the SELECT

cursor. One way to ensure that the SELECT query completes, use an ORDER BY

clause in the SELECT statement. The ORDER BY clause creates an index on the

columns and prevents errors caused by UPDATE, INSERT, DELETE statements

modifying the query results of the SELECT statement in the same FOREACH loop

Using an IF - ELIF - ELSE Structure

The SPL routine in Figure 11-52 uses an IF - ELIF - ELSE structure to compare the

two arguments that the routine accepts.

BEGIN WORK;

 FOREACH sal_cursor FOR

 SELECT salary INTO s FROM employee WHERE salary > 35000;

 LET s = s + s * (pct/100);

 UPDATE employee SET salary = s WHERE CURRENT OF sal_cursor

 END FOREACH;

COMMIT WORK;

Figure 11-50.

CREATE PROCEDURE serial_update();

 DEFINE p_col2 INT;

 DEFINE i INT;

 LET i = 1;

 FOREACH cur_su WITH HOLD FOR

 SELECT col2 INTO p_col2 FROM customer WHERE 1=1

 BEGIN WORK;

 UPDATE customer SET customer_num = p_col2 WHERE CURRENT OF cur_su;

 COMMIT WORK;

 LET i = i + 1;

 END FOREACH;

END PROCEDURE;

Figure 11-51.

11-28 IBM Informix Guide to SQL: Tutorial

Suppose you define a table named manager with the columns that Figure 11-53

shows.

The SPL routine in Figure 11-54 uses an IF - ELIF - ELSE structure to check the

number of elements in the SET in the direct_reports column and call various

external routines based on the results.

CREATE FUNCTION str_compare(str1 CHAR(20), str2 CHAR(20))

 RETURNING INTEGER;

 DEFINE result INTEGER;

 IF str1 > str2 THEN

 LET result = 1;

 ELIF str2 > str1 THEN

 LET result = -1;

 ELSE

 LET result = 0;

 END IF

 RETURN result;

END FUNCTION;

Figure 11-52.

CREATE TABLE manager

(

 mgr_name VARCHAR(30),

 department VARCHAR(12),

 dept_no SMALLINT,

 direct_reports SET(VARCHAR(30) NOT NULL),

 projects LIST(ROW (pro_name VARCHAR(15),

 pro_members SET(VARCHAR(20) NOT NULL))

 NOT NULL),

 salary INTEGER,

);

Figure 11-53.

Chapter 11. Creating and Using SPL Routines 11-29

The cardinality() function counts the number of elements that a collection contains.

For more information, see “Cardinality Function (IDS)” on page 4-13.

An IF - ELIF - ELSE structure in an SPL routine has up to the following four parts:

v An IF THEN condition

If the condition following the IF statement is TRUE, the routine executes the

statements in the IF block. If the condition is false, the routine evaluates the

ELIF condition.

The expression in an IF statement can be any valid condition, as the Condition

segment of the IBM Informix Guide to SQL: Syntax describes. For the complete

syntax and a detailed discussion of the IF statement, see the IBM Informix Guide

to SQL: Syntax.

v One or more ELIF conditions (optional)

The routine evaluates the ELIF condition only if the IF condition is false. If the

ELIF condition is true, the routine executes the statements in the ELIF block. If

the ELIF condition is false, the routine either evaluates the next ELIF block or

executes the ELSE statement.

v An ELSE condition (optional)

The routine executes the statements in the ELSE block if the IF condition and all

of the ELIF conditions are false.

v An END IF statement

The END IF statement ends the statement block.

Adding WHILE and FOR Loops

Both the WHILE and FOR statements create execution loops in SPL routines. A

WHILE loop starts with a WHILE condition, executes a block of statements as long

as the condition is true, and ends with END WHILE.

Figure 11-55 shows a valid WHILE condition. The routine executes the WHILE

loop as long as the condition specified in the WHILE statement is true.

CREATE FUNCTION checklist(d SMALLINT)

 RETURNING VARCHAR(30), VARCHAR(12), INTEGER;

 DEFINE name VARCHAR(30);

 DEFINE dept VARCHAR(12);

 DEFINE num INTEGER;

 SELECT mgr_name, department,

 CARDINALITY(direct_reports)

 FROM manager INTO name, dept, num

 WHERE dept_no = d;

 IF num > 20 THEN

 EXECUTE FUNCTION add_mgr(dept);

 ELIF num = 0 THEN

 EXECUTE FUNCTION del_mgr(dept);

 ELSE

 RETURN name, dept, num;

 END IF;

END FUNCTION;

Figure 11-54.

11-30 IBM Informix Guide to SQL: Tutorial

The SPL routine in Figure 11-55 accepts an integer as an argument and then inserts

an integer value into the numbers column of table1 each time it executes the

WHILE loop. The values inserted start at 1 and increase to num - 1.

Be careful that you do not create an endless loop, as Figure 11-56 shows.

A FOR loop extends from a FOR statement to an END FOR statement and executes

for a specified number of iterations, which are defined in the FOR statement.

Figure 11-57 shows several ways to define the iterations in the FOR loop.

For each iteration of the FOR loop, the iteration variable (declared as i in the

examples that follow) is reset, and the statements within the loop are executed

with the new value of the variable.

CREATE PROCEDURE test_rows(num INT)

 DEFINE i INTEGER;

 LET i = 1;

 WHILE i < num

 INSERT INTO table1 (numbers) VALUES (i);

 LET i = i + 1;

 END WHILE;

END PROCEDURE;

Figure 11-55.

CREATE PROCEDURE endless_loop()

 DEFINE i INTEGER;

 LET i = 1;

 WHILE (1 = 1) -- don’t do this!

 LET i = i + 1;

 INSERT INTO table1 VALUES (i);

 END WHILE;

END PROCEDURE;

Figure 11-56.

Chapter 11. Creating and Using SPL Routines 11-31

In the first example, the SPL procedure executes the FOR loop as long as i is

between 1 and 10, inclusive. In the second example, i steps from 1 to 3, 5, 7, and so

on, but never exceeds 10. The third example checks whether i is within a defined

set of values. In the fourth example, the SPL procedure executes the loop when i is

1, 6, 11, 16, 20, 15, 10, 5, 1, 2, 3, 4, or 5—in other words, 13 times.

Tip: The main difference between a WHILE loop and a FOR loop is that a FOR

loop is guaranteed to finish, but a WHILE loop is not. The FOR statement

specifies the exact number of times the loop executes, unless a statement

causes the routine to exit the loop. With WHILE, it is possible to create an

endless loop.

Exiting a Loop

In a FOR, FOREACH, LOOP, or WHILE loop that has no label, you can use the

CONTINUE or EXIT statement to control the execution of the loop.

v CONTINUE causes the routine to skip the statements in the rest of the loop and

move to the next iteration of the FOR, LOOP, or WHILE statement.

v EXIT ends the loop and causes the routine to continue executing with the first

statement following the END FOR, the END LOOP, or the END WHILE

keywords.

Remember that EXIT must be followed by the FOREACH keyword when it

appears within a FOREACH statement that is the innermost loop of nested loop

statements. EXIT can appear with no immediately following keyword when it

appears within the FOR, LOOP, or WHILE statement, but an error is issued if you

specify a keyword that does not match the loop statement from which the EXIT

statement was issued. An error is also issued if EXIT appears outside the context of

a loop statement.

For more information about loops in SPL routines, including labelled loops, see

IBM Informix Guide to SQL: Syntax.

Figure 11-58 shows examples of CONTINUE and EXIT within a FOR loop.

FOR i = 1 TO 10

. . .

END FOR;

FOR i = 1 TO 10 STEP 2

. . .

END FOR;

FOR i IN (2,4,8,14,22,32)

. . .

END FOR;

FOR i IN (1 TO 20 STEP 5, 20 to 1 STEP -5, 1,2,3,4,5)

. . .

END FOR:

Figure 11-57.

11-32 IBM Informix Guide to SQL: Tutorial

Tip: You can use CONTINUE and EXIT to improve the performance of SPL

routines so that loops do not execute unnecessarily.

Returning Values from an SPL Function

SPL functions can return one or more values. To have your SPL function return

values, you need to include the following two parts:

1. Write a RETURNING clause in the CREATE PROCEDURE or CREATE

FUNCTION statement that specifies the number of values to be returned and

their data types.

2. In the body of the function, enter a RETURN statement that explicitly returns

the values.

Tip: You can define a routine with the CREATE PROCEDURE statement that

returns values, but in that case, the routine is actually a function. It is

recommended that you use the CREATE FUNCTION statement when the

routine returns values.

After you define a return clause (with a RETURNING statement), the SPL function

can return values that match those specified in number and data type, or no values

at all. If you specify a return clause, and the SPL routine returns no actual values,

it is still considered a function. In that case, the routine returns a NULL value for

each value defined in the return clause.

An SPL function can return variables, expressions, or the result of another function

call. If the SPL function returns a variable, the function must first assign the

variable a value by one of the following methods:

v A LET statement

v A default value

v A SELECT statement

v Another function that passes a value into the variable

Each value an SPL function returns can be up to 32 kilobytes long.

Important: The return value for an SPL function must be a specific data type. You

cannot specify a generic row or generic collection data type as a return

type.

Returning a Single Value

Figure 11-59 shows how an SPL function can return a single value.

FOR i = 1 TO 10

 IF i = 5 THEN

 CONTINUE FOR;

. . .

 ELIF i = 8 THEN

 EXIT FOR;

 END IF;

END FOR;

Figure 11-58.

Chapter 11. Creating and Using SPL Routines 11-33

The increase_by_pct function receives two arguments of DECIMAL value, an

amount to be increased and a percentage by which to increase it. The return clause

specifies that the function will return one DECIMAL value. The RETURN

statement returns the DECIMAL value stored in result.

Returning Multiple Values

An SPL function can return more than one value from a single row of a table.

Figure 11-60 shows an SPL function that returns two column values from a single

row of a table.

The function in Figure 11-60 returns two values (a name and birthdate) to the

calling routine from one row of the emp_tab table. In this case, the calling routine

must be prepared to handle the VARCHAR and DATE values returned.

Figure 11-61 on page 11-35 shows an SPL function that returns more than one value

from more than one row.

CREATE FUNCTION increase_by_pct(amt DECIMAL, pct DECIMAL)

 RETURNING DECIMAL;

 DEFINE result DECIMAL;

 LET result = amt + amt * (pct/100);

 RETURN result;

END FUNCTION;

Figure 11-59.

CREATE FUNCTION birth_date(num INTEGER)

 RETURNING VARCHAR(30), DATE;

 DEFINE n VARCHAR(30);

 DEFINE b DATE;

 SELECT name, bdate INTO n, b FROM emp_tab

 WHERE emp_no = num;

 RETURN n, b;

END FUNCTION;

Figure 11-60.

11-34 IBM Informix Guide to SQL: Tutorial

In Figure 11-61, the SELECT statement fetches two values from the set of rows

whose employee number is higher than the number the user enters. The set of

rows that satisfy the condition could contain one row, many rows, or zero rows.

Because the SELECT statement can return many rows, it is placed within a cursor.

Tip: When a statement within an SPL routine returns no rows, the corresponding

SPL variables are assigned NULL values.

The RETURN statement uses the WITH RESUME keywords. When RETURN

WITH RESUME is executed, control is returned to the calling routine. But the next

time the SPL function is called (by a FETCH or the next iteration of a cursor in the

calling routine), all the variables in the SPL function keep their same values, and

execution continues at the statement immediately following the RETURN WITH

RESUME statement.

If your SPL routine returns multiple values, the calling routine must be able to

handle the multiple values through a cursor or loop, as follows:

v If the calling routine is an SPL routine, it needs a FOREACH loop.

v If the calling routine is an Informix ESQL/C program, it needs a cursor declared

with the DECLARE statement.

v If the calling routine is an external routine, it needs a cursor or loop appropriate

to the language in which the routine is written.

Note: The values returned by a UDR from external databases of a local server

must be built-in data types or UDTs explicitly cast to built-in types or

DISTINCT types based on built-in types and explicitly cast to built-in types.

In addition, you must define the UDR and all the casts in the participating

databases.

An example of SQL operations you can perform across databases follows:

database db1;

create table ltab1(lcol1 integer, lcol2 boolean, lcol3 lvarchar);

insert into ltab1 values(1, ’t’, "test string 1");

database db2;

create table rtab1(r1col1 boolean, r1col2 blob, r1col3 integer)

put r1col2 in (sbsp);

create table rtab2(r2col1 lvarchar, r2col2 clob) put r2col2 in (sbsp);

create table rtab3(r3col1 integer, r3col2 boolean,

r3col3 lvarchar, r3col4 circle);

create view rvw1 as select * from rtab3;

(The example is a cross-database Insert.)

CREATE FUNCTION birth_date_2(num INTEGER)

 RETURNING VARCHAR(30), DATE;

 DEFINE n VARCHAR(30);

 DEFINE b DATE;

 FOREACH cursor1 FOR

 SELECT name, bdate INTO n, b FROM emp_tab

 WHERE emp_no > num

 RETURN n, b WITH RESUME;

 END FOREACH;

END FUNCTION;

Figure 11-61.

Chapter 11. Creating and Using SPL Routines 11-35

database db1;

create view lvw1 as select * from db2:rtab2;

insert into db2:rtab1 values(’t’,

filetoblob(’blobfile’, ’client’, ’db2:rtab1’, ’r1col2’), 100);

insert into db2:rtab2 values("inserted directly to rtab2",

filetoclob(’clobfile’, ’client’, ’db2:rtab2’, ’r2col2’));

insert into db2:rtab3 (r3col1, r3col2, r3col3)

select lcol1, lcol2, lcol3 from ltab1;

insert into db2:rvw1 values(200, ’f’, "inserted via rvw1");

insert into lvw1 values ("inserted via lvw1", NULL);

Handling Row-Type Data (IDS)

In an SPL routine, you can use named ROW types and unnamed ROW types as

parameter definitions, arguments, variable definitions, and return values. For

information about how to declare a ROW variable in SPL, see “Declaring

Row-Type Variables (IDS)” on page 11-18.

Figure 11-62 defines a row type salary_t and an emp_info table, which are the

examples that this section uses.

The emp_info table has columns for the employee name and salary information.

Precedence of Dot Notation

With Dynamic Server, a value that uses dot notation (as in proj.name) in an SQL

statement in an SPL routine is interpreted as having one of three meanings, in the

following order of precedence:

1. variable.field

2. column.field

3. table.column

In other words, the expression proj.name is first evaluated as variable.field. If the

routine does not find a variable proj, it evaluates the expression as column.field. If

the routine does not find a column proj, it evaluates the expression as table.column.

(If the names cannot be resolved as identifiers of objects in the database or of

variables or fields that were declared in the SPL routine, then an error is returned.)

Updating a Row-Type Expression

From within an SPL routine, you can use a ROW variable to update a row-type

expression. Figure 11-63 shows an SPL procedure emp_raise that is used to update

the emp_info table when an employee’s base salary increases by a certain

percentage.

CREATE ROW TYPE salary_t(base MONEY(9,2), bonus MONEY(9,2))

CREATE TABLE emp_info (emp_name VARCHAR(30), salary salary_t);

Figure 11-62.

11-36 IBM Informix Guide to SQL: Tutorial

The SELECT statement selects a row from the salary column of emp_info table

into the ROW variable row_var.

The emp_raise procedure uses SPL dot notation to directly access the base field of

the variable row_var. In this case, the dot notation means variable.field. The

emp_raise procedure recalculates the value of row_var.base as (row_var.base *

pct). The procedure then updates the salary column of the emp_info table with

the new row_var value.

Important: A row-type variable must be initialized as a row before its fields can be

set or referenced. You can initialize a row-type variable with a SELECT

INTO statement or LET statement.

Handling Collections (IDS)

A collection is a group of elements of the same data type, such as a SET,

MULTISET, or LIST.

A table might contain a collection stored as the contents of a column or as a field

of a ROW type within a column. A collection can be either simple or nested. A

simple collection is a SET, MULTISET, or LIST of built-in, opaque, or distinct data

types. A nested collection is a collection that contains other collections.

Using Collection Data Types

The following sections of the chapter rely on several different examples to show

how you can manipulate collections in SPL programs.

The basics of handling collections in SPL programs are illustrated with the

numbers table, as Figure 11-64 shows.

CREATE PROCEDURE emp_raise(name VARCHAR(30),

 pct DECIMAL(3,2))

 DEFINE row_var salary_t;

 SELECT salary INTO row_var FROM emp_info

 WHERE emp_name = name;

 LET row_var.base = row_var.base * pct;

 UPDATE emp_info SET salary = row_var

 WHERE emp_name = name;

END PROCEDURE;

Figure 11-63.

CREATE TABLE numbers

(

 id INTEGER PRIMARY KEY,

 primes SET(INTEGER NOT NULL),

 evens LIST(INTEGER NOT NULL),

 twin_primes LIST(SET(INTEGER NOT NULL)

 NOT NULL)

Figure 11-64.

Chapter 11. Creating and Using SPL Routines 11-37

The primes and evens columns hold simple collections. The twin_primes column

holds a nested collection, a LIST of SETs. (Twin prime numbers are pairs of

consecutive prime numbers whose difference is 2, such as 5 and 7, or 11 and 13.

The twin_primes column is designed to allow you to enter such pairs.

Some examples in this chapter use the polygons table in Figure 11-65 to illustrate

how to manipulate collections. The polygons table contains a collection to

represent two-dimensional graphical data. For example, suppose that you define an

opaque data type named point that has two double-precision values that represent

the x and y coordinates of a two-dimensional point whose coordinates might be

represented as ’1.0, 3.0’. Using the point data type, you can create a table that

contains a set of points that define a polygon.

The definition column in the polygons table contains a simple collection, a SET of

point values.

Preparing for Collection Data Types (IDS)

Before you can access and handle an individual element of a simple or nested

collection, you must perform the following tasks:

v Declare a collection variable to hold the collection.

v Declare an element variable to hold an individual element of the collection.

v Select the collection from the database into the collection variable.

After you take these initial steps, you can insert elements into the collection or

select and handle elements that are already in the collection.

Each of these steps is explained in the following sections, using the numbers table

as an example.

Tip: You can handle collections in any SPL routine.

Declaring a Collection Variable

Before you can retrieve a collection from the database into an SPL routine, you

must declare a collection variable. Figure 11-66 shows how to declare a collection

variable to retrieve the primes column from the numbers table.

The DEFINE statement declares a collection variable p_coll, whose type matches

the data type of the collection stored in the primes column.

CREATE OPAQUE TYPE point (INTERNALLENGTH = 8);

CREATE TABLE polygons

(

 id INTEGER PRIMARY KEY,

 definition SET(point NOT NULL)

);

Figure 11-65.

DEFINE p_coll SET(INTEGER NOT NULL);

Figure 11-66.

11-38 IBM Informix Guide to SQL: Tutorial

Declaring an Element Variable

After you declare a collection variable, you declare an element variable to hold

individual elements of the collection. The data type of the element variable must

match the data type of the collection elements.

For example, to hold an element of the SET in the primes column, use an element

variable declaration such as the one that Figure 11-67 shows.

To declare a variable that holds an element of the twin_primes column, which

holds a nested collection, use a variable declaration such as the one that

Figure 11-68 shows.

The variable s holds a SET of integers. Each SET is an element of the LIST stored

in twin_primes.

Selecting a Collection into a Collection Variable

After you declare a collection variable, you can fetch a collection into it. To fetch a

collection into a collection variable, enter a SELECT INTO statement that selects

the collection column from the database into the collection variable you have

named.

For example, to select the collection stored in one row of the primes column of

numbers, add a SELECT statement, such as the one that Figure 11-69 shows, to

your SPL routine.

The WHERE clause in the SELECT statement specifies that you want to select the

collection stored in just one row of numbers. The statement places the collection

into the collection variable p_coll, which Figure 11-66 on page 11-38 declares.

The variable p_coll now holds a collection from the primes column, which could

contain the value SET {5,7,31,19,13}.

Inserting Elements into a Collection Variable

After you retrieve a collection into a collection variable, you can insert a value into

the collection variable. The syntax of the INSERT statement varies slightly,

depending on the type of the collection to which you want to add values.

DEFINE p INTEGER;

Figure 11-67.

DEFINE s SET(INTEGER NOT NULL);

Figure 11-68.

SELECT primes INTO p_coll FROM numbers

 WHERE id = 220;

Figure 11-69.

Chapter 11. Creating and Using SPL Routines 11-39

Inserting into a SET or MULTISET

To insert into a SET or MULTISET stored in a collection variable, use an INSERT

statement and follow the TABLE keyword with the collection variable, as

Figure 11-70 shows.

The TABLE keyword makes the collection variable a collection-derived table.

Collection-derived tables are described in the section “Handling Collections in

SELECT Statements (IDS)” on page 5-27. The collection that Figure 11-70 derives is

a virtual table of one column, with each element of the collection representing a

row of the table. Before the insert, consider p_coll as a virtual table that contains

the rows (elements) that Figure 11-71 shows.

After the insert, p_coll might look like the virtual table that Figure 11-72 shows.

Because the collection is a SET, the new value is added to the collection, but the

position of the new element is undefined. The same principle is true for a

MULTISET.

Tip: You can only insert one value at a time into a simple collection.

Inserting into a LIST

If the collection is a LIST, you can add the new element at a specific point in the

LIST or at the end of the LIST. As with a SET or MULTISET, you must first define

a collection variable and select a collection from the database into the collection

variable.

Figure 11-73 shows the statements you need to define a collection variable and

select a LIST from the numbers table into the collection variable.

INSERT INTO TABLE(p_coll) VALUES(3);

Figure 11-70.

5

7

31

19

13

Figure 11-71.

5

7

31

19

13

3

Figure 11-72.

11-40 IBM Informix Guide to SQL: Tutorial

At this point, the value of e_coll might be LIST {2,4,6,8,10}. Because e_coll holds

a LIST, each element has a numbered position in the list. To add an element at a

specific point in a LIST, add an AT position clause to the INSERT statement, as

Figure 11-74 shows.

Now the LIST in e_coll has the elements {2,4,12,6,8,10}, in that order.

The value you enter for the position in the AT clause can be a number or a variable,

but it must have an INTEGER or SMALLINT data type. You cannot use a letter,

floating-point number, decimal value, or expression.

Checking the Cardinality of a LIST Collection

At times you might want to add an element at the end of a LIST. In this case, you

can use the cardinality() function to find the number of elements in a LIST and

then enter a position that is greater than the value cardinality() returns.

Dynamic Server allows you to use the cardinality() function with a collection that

is stored in a column but not with a collection that is stored in a collection

variable. In an SPL routine, you can check the cardinality of a collection in a

column with a SELECT statement and return the value to a variable.

Suppose that in the numbers table, the evens column of the row whose id column

is 99 still contains the collection LIST {2,4,6,8,10}. This time, you want to add the

element 12 at the end of the LIST. You can do so with the SPL procedure

end_of_list, as Figure 11-75 shows.

DEFINE e_coll LIST(INTEGER NOT NULL);

SELECT evens INTO e_coll FROM numbers

 WHERE id = 99;

Figure 11-73.

INSERT AT 3 INTO TABLE(e_coll) VALUES(12);

Figure 11-74.

Chapter 11. Creating and Using SPL Routines 11-41

In end_of_list, the variable n holds the value that CARDINALITY() returns, that is,

the count of the items in the LIST. The LET statement increments n, so that the

INSERT statement can insert a value at the last position of the LIST. The SELECT

statement selects the collection from one row of the table into the collection

variable list_var. The INSERT statement inserts the element 12 at the end of the

list.

Syntax of the VALUES Clause

The syntax of the VALUES clause is different when you insert into an SPL

collection variable from when you insert into a collection column. The syntax rules

for inserting literals into collection variables are as follows:

v Use parentheses after the VALUES keyword to enclose the complete list of

values.

v If you are inserting into a simple collection, you do not need to use a type

constructor or brackets.

v If you are inserting into a nested collection, you need to specify a literal

collection.

Selecting Elements from a Collection

Suppose you want your SPL routine to select elements from the collection stored in

the collection variable, one at time, so that you can handle the elements.

To move through the elements of a collection, you first need to declare a cursor

using a FOREACH statement, just as you would declare a cursor to move through

a set of rows. Figure 11-76 shows the FOREACH and END FOREACH statements,

with no statements between them yet.

The FOREACH statement is described in “Using Cursors” on page 11-26 and the

IBM Informix Guide to SQL: Syntax.

CREATE PROCEDURE end_of_list()

 DEFINE n SMALLINT;

 DEFINE list_var LIST(INTEGER NOT NULL);

 SELECT CARDINALITY(evens) FROM numbers INTO n

 WHERE id = 100;

 LET n = n + 1;

 SELECT evens INTO list_var FROM numbers

 WHERE id = 100;

 INSERT AT n INTO TABLE(list_var) VALUES(12);

END PROCEDURE;

Figure 11-75.

FOREACH cursor1 FOR

. . .

END FOREACH

Figure 11-76.

11-42 IBM Informix Guide to SQL: Tutorial

The next section, “The Collection Query,” describes the statements that are omitted

between the FOREACH and END FOREACH statements.

The examples in the following sections are based on the polygons table of

Figure 11-65 on page 11-38.

The Collection Query

After you declare the cursor between the FOREACH and END FOREACH

statements, you enter a special, restricted form of the SELECT statement known as

a collection query.

A collection query is a SELECT statement that uses the FROM TABLE keywords

followed by the name of a collection variable. Figure 11-77 shows this structure,

which is known as a collection-derived table.

The SELECT statement in Figure 11-77 uses the collection variable vertexes as a

collection-derived table. You can think of a collection-derived table as a table of

one column, with each element of the collection being a row of the table. For

example, you can visualize the SET of four points stored in vertexes as a table with

four rows, such as the one that Figure 11-78 shows.

After the first iteration of the FOREACH statement in Figure 11-78, the collection

query selects the first element in vertexes and stores it in pnt, so that pnt contains

the value ’(3.0,1.0)’.

Tip: Because the collection variable vertexes contains a SET, not a LIST, the

elements in vertexes have no defined order. In a real database, the value

’(3.0,1.0)’ might not be the first element in the SET.

Adding the Collection Query to the SPL Routine

Now you can add the cursor defined with FOREACH and the collection query to

the SPL routine, as Figure 11-79 shows.

FOREACH cursor1 FOR

 SELECT * INTO pnt FROM TABLE(vertexes)

 . . .

END FOREACH

Figure 11-77.

’(3.0,1.0)’

’(8.0,1.0)’

’(3.0,4.0)’

’(8.0,4.0)’

Figure 11-78.

Chapter 11. Creating and Using SPL Routines 11-43

The statements that Figure 11-79 shows form the framework of an SPL routine that

handles the elements of a collection variable. To decompose a collection into its

elements, use a collection-derived table. After the collection is decomposed into its

elements, the routine can access elements individually as table rows of the

collection-derived table. Now that you have selected one element in pnt, you can

update or delete that element, as “Updating a Collection Element” on page 11-47

and “Deleting a Collection Element” on page 11-44 describe.

For the complete syntax of the collection query, see the SELECT statement in the

IBM Informix Guide to SQL: Syntax. For the syntax of a collection-derived table, see

the Collection-Derived Table segment in the IBM Informix Guide to SQL: Syntax.

Tip: If you are selecting from a collection that contains no elements or zero

elements, you can use a collection query without declaring a cursor. However,

if the collection contains more than one element and you do not use a cursor,

you will receive an error message.

Deleting a Collection Element

After you select an individual element from a collection variable into an element

variable, you can delete the element from the collection. For example, after you

select a point from the collection variable vertexes with a collection query, you can

remove the point from the collection.

The steps involved in deleting a collection element include:

1. Declare a collection variable and an element variable.

2. Select the collection from the database into the collection variable.

3. Declare a cursor so that you can select elements one at a time from the

collection variable.

4. Write a loop or branch that locates the element that you want to delete.

5. Delete the element from the collection using a DELETE WHERE CURRENT OF

statement that uses the collection variable as a collection-derived table.

Figure 11-80 shows a routine that deletes one of the four points in vertexes, so that

the polygon becomes a triangle instead of a rectangle.

CREATE PROCEDURE shapes()

 DEFINE vertexes SET(point NOT NULL);

 DEFINE pnt point;

 SELECT definition INTO vertexes FROM polygons

 WHERE id = 207;

 FOREACH cursor1 FOR

 SELECT * INTO pnt FROM TABLE(vertexes);

 . . .

 END FOREACH

. . .

END PROCEDURE;

Figure 11-79.

11-44 IBM Informix Guide to SQL: Tutorial

In Figure 11-80, the FOREACH statement declares a cursor. The SELECT statement

is a collection-derived query that selects one element at a time from the collection

variable vertexes into the element variable pnt.

The IF THEN ELSE structure tests the value currently in pnt to see if it is the point

’(3,4)’. Note that the expression pnt = ’(3,4)’ calls the instance of the equal()

function defined on the point data type. If the current value in pnt is ’(3,4)’, the

DELETE statement deletes it, and the EXIT FOREACH statement exits the cursor.

Tip: Deleting an element from a collection stored in a collection variable does not

delete it from the collection stored in the database. After you delete the

element from a collection variable, you must update the collection stored in

the database with the new collection. For an example that shows how to

update a collection column, see “Updating the Collection in the Database” on

page 11-45.

The syntax for the DELETE statement is described in the IBM Informix Guide to

SQL: Syntax.

Updating the Collection in the Database

After you change the contents of a collection variable in an SPL routine (by

deleting, updating, or inserting an element), you must update the database with

the new collection.

To update a collection in the database, add an UPDATE statement that sets the

collection column in the table to the contents of the updated collection variable.

For example, the UPDATE statement in Figure 11-81 shows how to update the

polygons table to set the definition column to the new collection stored in the

collection variable vertexes.

CREATE PROCEDURE shapes()

 DEFINE vertexes SET(point NOT NULL);

 DEFINE pnt point;

 SELECT definition INTO vertexes FROM polygons

 WHERE id = 207;

 FOREACH cursor1 FOR

 SELECT * INTO pnt FROM TABLE(vertexes)

 IF pnt = ’(3,4)’ THEN

 -- calls the equals function that

 -- compares two values of point type

 DELETE FROM TABLE(vertexes)

 WHERE CURRENT OF cursor1;

 EXIT FOREACH;

 ELSE

 CONTINUE FOREACH;

 END IF;

 END FOREACH

. . .

END PROCEDURE;

Figure 11-80.

Chapter 11. Creating and Using SPL Routines 11-45

Now the shapes() routine is complete. After you run shapes(), the collection stored

in the row whose ID column is 207 is updated so that it contains three values

instead of four.

You can use the shapes() routine as a framework for writing other SPL routines

that manipulate collections.

The elements of the collection now stored in the definition column of row 207 of

the polygons table are listed as follows:

’(3,1)’

’(8,1)’

’(8,4)’

Deleting the Entire Collection

If you want to delete all the elements of a collection, you can use a single SQL

statement. You do not need to declare a cursor. To delete an entire collection, you

must perform the following tasks:

v Define a collection variable.

v Select the collection from the database into a collection variable.

v Enter a DELETE statement that uses the collection variable as a

collection-derived table.

v Update the collection from the database.

Figure 11-82 shows the statements that you might use in an SPL routine to delete

an entire collection.

CREATE PROCEDURE shapes()

 DEFINE vertexes SET(point NOT NULL);

 DEFINE pnt point;

 SELECT definition INTO vertexes FROM polygons

 WHERE id = 207;

 FOREACH cursor1 FOR

 SELECT * INTO pnt FROM TABLE(vertexes)

 IF pnt = ’(3,4)’ THEN

 -- calls the equals function that

 -- compares two values of point type

 DELETE FROM TABLE(vertexes)

 WHERE CURRENT OF cursor1;

 EXIT FOREACH;

 ELSE

 CONTINUE FOREACH;

 END IF;

 END FOREACH

 UPDATE polygons SET definition = vertexes

 WHERE id = 207;

END PROCEDURE;

Figure 11-81.

11-46 IBM Informix Guide to SQL: Tutorial

This form of the DELETE statement deletes the entire collection in the collection

variable vertexes. You cannot use a WHERE clause in a DELETE statement that

uses a collection-derived table.

After the UPDATE statement, the polygons table contains an empty collection

where the id column is equal to 207.

The syntax for the DELETE statement is described in the IBM Informix Guide to

SQL: Syntax.

Updating a Collection Element

You can update a collection element by accessing the collection within a cursor just

as you select or delete an individual element.

If you want to update the collection SET{100, 200, 300, 500} to change the value

500 to 400, retrieve the SET from the database into a collection variable and then

declare a cursor to move through the elements in the SET, as Figure 11-83 shows.

The UPDATE statement uses the collection variable s as a collection-derived table.

To specify a collection-derived table, use the TABLE keyword. The value (x) that

follows (s) in the UPDATE statement is a derived column, a column name you

supply because the SET clause requires it, even though the collection-derived table

does not have columns.

DEFINE vertexes SET(INTEGER NOT NULL);

SELECT definition INTO vertexes FROM polygons

 WHERE id = 207;

DELETE FROM TABLE(vertexes);

UPDATE polygons SET definition = vertexes

 WHERE id = 207;

Figure 11-82.

DEFINE s SET(INTEGER NOT NULL);

DEFINE n INTEGER;

SELECT numbers INTO s FROM orders

 WHERE order_num = 10;

FOREACH cursor1 FOR

 SELECT * INTO n FROM TABLE(s)

 IF (n == 500) THEN

 UPDATE TABLE(s)(x)

 SET x = 400 WHERE CURRENT OF cursor1;

 EXIT FOREACH;

 ELSE

 CONTINUE FOREACH;

 END IF;

END FOREACH

Figure 11-83.

Chapter 11. Creating and Using SPL Routines 11-47

Think of the collection-derived table as having one row and looking something like

the following example:

100 200 300 500

In this example, x is a fictitious column name for the “column” that contains the

value 500. You only specify a derived column if you are updating a collection of

built-in, opaque, distinct, or collection type elements. If you are updating a

collection of row types, use a field name instead of a derived column, as

“Updating a Collection of Row Types” on page 11-49 describes.

Updating a Collection with a Variable

You can also update a collection with the value stored in a variable instead of a

literal value.

The SPL procedure in Figure 11-84 uses statements that are similar to the ones that

Figure 11-83 shows, except that this procedure updates the SET in the

direct_reports column of the manager table with a variable, rather than with a

literal value. Figure 11-53 on page 11-29 defines the manager table.

The UPDATE statement nested in the FOREACH loop uses the collection- derived

table s and the derived column x. If the current value of n is the same as old, the

UPDATE statement changes it to the value of new. The second UPDATE statement

stores the new collection in the manager table.

Updating the Entire Collection

If you want to update all the elements of a collection to the same value, or if the

collection contains only one element, you do not need to use a cursor. The

statements in Figure 11-85 show how you can retrieve the collection into a

collection variable and then update it with one statement.

CREATE PROCEDURE new_report(mgr VARCHAR(30),

 old VARCHAR(30), new VARCHAR(30))

 DEFINE s SET (VARCHAR(30) NOT NULL);

 DEFINE n VARCHAR(30);

 SELECT direct_reports INTO s FROM manager

 WHERE mgr_name = mgr;

 FOREACH cursor1 FOR

 SELECT * INTO n FROM TABLE(s)

 IF (n == old) THEN

 UPDATE TABLE(s)(x)

 SET x = new WHERE CURRENT OF cursor1;

 EXIT FOREACH;

 ELSE

 CONTINUE FOREACH;

 END IF;

 END FOREACH

 UPDATE manager SET mgr_name = s

 WHERE mgr_name = mgr;

END PROCEDURE;

Figure 11-84.

11-48 IBM Informix Guide to SQL: Tutorial

The first UPDATE statement in this example uses a derived column named x with

the collection-derived table s and gives all the elements in the collection the value

0. The second UPDATE statement stores the new collection in the database.

Updating a Collection of Row Types

To update a collection of ROW types, you can take these steps:

1. Declare a collection variable whose field data types match those of the ROW

types in the collection.

2. Set the individual fields of the collection variable to the correct data values for

the ROW type.

3. For each ROW type, update the entire row of the collection derived table using

the collection variable.

The manager table in Figure 11-53 on page 11-29 has a column named projects that

contains a LIST of ROW types with the definition that Figure 11-86 shows.

To access the ROW types in the LIST, declare a cursor and select the LIST into a

collection variable. After you retrieve each ROW type value in the projects column,

however, you cannot update the pro_name or pro_members fields individually.

Instead, for each ROW value that needs to be updated in the collection, you must

replace the entire ROW with values from a collection variable that include the new

field values, as Figure 11-87 shows.

DEFINE s SET (INTEGER NOT NULL);

SELECT numbers INTO s FROM orders

 WHERE order_num = 10;

UPDATE TABLE(s)(x) SET x = 0;

UPDATE orders SET numbers = s

 WHERE order_num = 10;

Figure 11-85.

projects LIST(ROW(pro_name VARCHAR(15),

 pro_members SET(VARCHAR(20) NOT NULL)) NOT NULL)

Figure 11-86.

Chapter 11. Creating and Using SPL Routines 11-49

Before you can use a row-type variable in an SPL program, you must initialize the

row variable with a LET statement or a SELECT INTO statement. The UPDATE

statement nested in the FOREACH loop of Figure 11-87 sets the pro_name field of

the row type to the value supplied in the variable pro.

Tip: To update a value in a SET in the pro_members field of the ROW type,

declare a cursor and use an UPDATE statement with a derived column, as

“Updating a Collection Element” on page 11-47 explains.

Updating a Nested Collection

If you want to update a collection of collections, you must declare a cursor to

access the outer collection and then declare a nested cursor to access the inner

collection.

For example, suppose that the manager table has an additional column, scores,

which contains a LIST whose element type is a MULTISET of integers, as

Figure 11-88 shows.

To update a value in the MULTISET, declare a cursor that moves through each

value in the LIST and a nested cursor that moves through each value in the

MULTISET, as Figure 11-89 shows.

CREATE PROCEDURE update_pro(mgr VARCHAR(30),

 pro VARCHAR(15))

 DEFINE p LIST(ROW(a VARCHAR(15), b SET(VARCHAR(20)

 NOT NULL)) NOT NULL);

 DEFINE r ROW(p_name VARCHAR(15), p_member SET(VARCHAR(20) NOT NULL));

 LET r = ROW("project", "SET{’member’}");

SELECT projects INTO p FROM manager

 WHERE mgr_name = mgr;

 FOREACH cursor1 FOR

 SELECT * INTO r FROM TABLE(p)

 IF (r.p_name == ’Zephyr’) THEN

 LET r.p_name = pro;

 UPDATE TABLE(p)(x) SET x = r

 WHERE CURRENT OF cursor1;

 EXIT FOREACH;

 END IF;

 END FOREACH

 UPDATE manager SET projects = p

 WHERE mgr_name = mgr;

END PROCEDURE;

Figure 11-87.

scores LIST(MULTISET(INT NOT NULL) NOT NULL);

Figure 11-88.

11-50 IBM Informix Guide to SQL: Tutorial

The SPL function in Figure 11-89 selects each MULTISET in the scores column into

l, and then each value in the MULTISET into m. If a value in m is 0, the function

deletes it from the MULTISET. After the values of 0 are deleted, the function

counts the remaining elements in each MULTISET and returns an integer.

Tip: Because this function returns a value for each MULTISET in the LIST, you

must use a cursor to enclose the EXECUTE FUNCTION statement when you

execute the function.

Inserting into a Collection

You can insert a value into a collection without declaring a cursor. If the collection

is a SET or MULTISET, the value is added to the collection but the position of the

new element is undefined because the collection has no particular order. If the

value is a LIST, you can add the new element at a specific point in the LIST or at

the end of the LIST.

In the manager table, the direct_reports column contains collections of SET type,

and the projects column contains a LIST. To add a name to the SET in the

direct_reports column, use an INSERT statement with a collection-derived table, as

Figure 11-90 shows.

CREATE FUNCTION check_scores (mgr VARCHAR(30))

 SPECIFIC NAME nested;

 RETURNING INT;

 DEFINE l LIST(MULTISET(INT NOT NULL) NOT NULL);

 DEFINE m MULTISET(INT NOT NULL);

 DEFINE n INT;

 DEFINE c INT;

 SELECT scores INTO l FROM manager

 WHERE mgr_name = mgr;

 FOREACH list_cursor FOR

 SELECT * FROM TABLE(l) INTO m;

 FOREACH set_cursor FOR

 SELECT * FROM TABLE(m) INTO n;

 IF (n == 0) THEN

 DELETE FROM TABLE(m)

 WHERE CURRENT OF set_cursor;

 ENDIF;

 END FOREACH;

 LET c = CARDINALITY(m);

 RETURN c WITH RESUME;

 END FOREACH

END FUNCTION

 WITH LISTING IN ’/tmp/nested.out’;

Figure 11-89.

Chapter 11. Creating and Using SPL Routines 11-51

This SPL procedure takes an employee name and a manager name as arguments.

The procedure then selects the collection in the direct_reports column for the

manager the user has entered, adds the employee name the user has entered, and

updates the manager table with the new collection.

The INSERT statement in Figure 11-90 inserts the new employee name that the user

supplies into the SET contained in the collection variable r. The UPDATE statement

then stores the new collection in the manager table.

Notice the syntax of the VALUES clause. The syntax rules for inserting literal data

and variables into collection variables are as follows:

v Use parentheses after the VALUES keyword to enclose the complete list of

values.

v If the collection is SET, MULTISET, or LIST, use the type constructor followed by

brackets to enclose the list of values to be inserted. In addition, the collection

value must be enclosed in quotes.

VALUES("SET{ 1,4,8,9 }")

v If the collection contains a row type, use ROW followed by parentheses to

enclose the list of values to be inserted:

VALUES(ROW(’Waters’, ’voyager_project’))

v If the collection is a nested collection, nest keywords, parentheses, and brackets

according to how the data type is defined:

VALUES("SET{ ROW(’Waters’, ’voyager_project’),

 ROW(’Adams’, ’horizon_project’) }")

For more information on inserting values into collections, see Chapter 6.

Inserting into a Nested Collection

If you want to insert into a nested collection, the syntax of the VALUES clause

changes. Suppose, for example, that you want to insert a value into the

twin_primes column of the numbers table that Figure 11-64 on page 11-37 shows.

With the twin_primes column, you might want to insert a SET into the LIST or an

element into the inner SET. The following sections describe each of these tasks.

Inserting a Collection into the Outer Collection: Inserting a SET into the LIST is

similar to inserting a single value into a simple collection.

CREATE PROCEDURE new_emp(emp VARCHAR(30), mgr VARCHAR(30))

 DEFINE r SET(VARCHAR(30) NOT NULL);

 SELECT direct_reports INTO r FROM manager

 WHERE mgr_name = mgr;

 INSERT INTO TABLE (r) VALUES(emp);

 UPDATE manager SET direct_reports = r

 WHERE mgr_name = mgr;

END PROCEDURE;

Figure 11-90.

11-52 IBM Informix Guide to SQL: Tutorial

To insert a SET into the LIST, declare a collection variable to hold the LIST and

select the entire collection into it. When you use the collection variable as a

collection-derived table, each SET in the LIST becomes a row in the table. You can

then insert another SET at the end of the LIST or at a specified point.

For example, the twin_primes column of one row of numbers might contain the

following LIST, as Figure 11-91 shows.

If you think of the LIST as a collection-derived table, it might look similar to the

one that Figure 11-92 shows.

You might want to insert the value "SET{17,19}" as a second item in the LIST. The

statements in Figure 11-93 show how to do this.

In the INSERT statement, the VALUES clause inserts the value SET {17,19} at the

second position of the LIST. Now the LIST looks like the one that Figure 11-94

shows.

LIST(SET{3,5}, SET{5,7}, SET{11,13})

Figure 11-91.

{3,5}

{5,7}

{11,13}

Figure 11-92.

CREATE PROCEDURE add_set()

 DEFINE l_var LIST(SET(INTEGER NOT NULL) NOT NULL);

 SELECT twin_primes INTO l_var FROM numbers

 WHERE id = 100;

 INSERT AT 2 INTO TABLE (l_var) VALUES("SET{17,19}");

 UPDATE numbers SET twin_primes = l

 WHERE id = 100;

END PROCEDURE;

Figure 11-93.

{3,5}

{17,19}

{5,7}

{11,13}

Figure 11-94.

Chapter 11. Creating and Using SPL Routines 11-53

You can perform the same insert by passing a SET to an SPL routine as an

argument, as Figure 11-95 shows.

In add_set(), the user supplies a SET to add to the LIST and an INTEGER value

that is the id of the row in which the SET will be inserted.

Inserting a Value into the Inner Collection: In an SPL routine, you can also

insert a value into the inner collection of a nested collection. In general, to access

the inner collection of a nested collection and add a value to it, perform the

following steps:

1. Declare a collection variable to hold the entire collection stored in one row of a

table.

2. Declare an element variable to hold one element of the outer collection. The

element variable is itself a collection variable.

3. Select the entire collection from one row of a table into the collection variable.

4. Declare a cursor so that you can move through the elements of the outer

collection.

5. Select one element at a time into the element variable.

6. Use a branch or loop to locate the inner collection you want to update.

7. Insert the new value into the inner collection.

8. Close the cursor.

9. Update the database table with the new collection.

As an example, you can use this process on the twin_primes column of numbers.

For example, suppose that twin_primes contains the values that Figure 11-96

shows, and you want to insert the value 18 into the last SET in the LIST.

CREATE PROCEDURE add_set(set_var SET(INTEGER NOT NULL),

 row_id INTEGER);

 DEFINE list_var LIST(SET(INTEGER NOT NULL) NOT NULL);

 DEFINE n SMALLINT;

 SELECT CARDINALITY(twin_primes) INTO n FROM numbers

 WHERE id = row_id;

 LET n = n + 1;

 SELECT twin_primes INTO list_var FROM numbers

 WHERE id = row_id;

 INSERT AT n INTO TABLE(list_var) VALUES(set_var);

 UPDATE numbers SET twin_primes = list_var

 WHERE id = row_id;

END PROCEDURE;

Figure 11-95.

LIST(SET({3,5}, {5,7}, {11,13}, {17,19}))

Figure 11-96.

11-54 IBM Informix Guide to SQL: Tutorial

Figure 11-97 shows the beginning of a procedure that inserts the value.

So far, the attaint procedure has performed steps 1, 2, and 3. The first DEFINE

statement declares a collection variable that holds the entire collection stored in

one row of numbers.

The second DEFINE statement declares an element variable that holds an element

of the collection. In this case, the element variable is itself a collection variable

because it holds a SET. The SELECT statement selects the entire collection from one

row into the collection variable, list_var.

Figure 11-98 shows how to declare a cursor so that you can move through the

elements of the outer collection.

Executing Routines

You can execute an SPL routine or external routine in any of these ways:

v Using a stand-alone EXECUTE PROCEDURE or EXECUTE FUNCTION

statement that you execute from DB–Access

v Calling the routine explicitly from another SPL routine or an external routine

v Using the routine name with an expression in an SQL statement

An additional mechanism for executing routines supports only the sysdbopen and

sysdbclose procedures, which the DBA can define. If a sysdbopen procedure

whose owner matches the login identifier of a user exists in the database when the

user connects to the database by the CONNECT or DATABASE statement, that

routine is executed automatically. If no sysdbopen routine has an owner that

matches the login identifier of the user, but a PUBLIC.sysdbopen routine exists,

that routine is executed. This automatic invocation enables the DBA to customize

the session environment for users at connection time. The sysdbclose routine is

similarly invoked when the user disconnects from the database. (For more

information about these session configuration routines, see the IBM Informix Guide

to SQL: Syntax and the IBM Informix Administrator’s Guide.)

An external routine is a routine written in C or some other external language.

CREATE PROCEDURE add_int()

 DEFINE list_var LIST(SET(INTEGER NOT NULL) NOT NULL);

 DEFINE set_var SET(INTEGER NOT NULL);

 SELECT twin_primes INTO list_var FROM numbers

 WHERE id = 100;

Figure 11-97.

FOREACH list_cursor FOR

 SELECT * INTO set_var FROM TABLE(list_var);

 FOREACH element_cursor FOR

Figure 11-98.

Chapter 11. Creating and Using SPL Routines 11-55

Using the EXECUTE Statements

You can use EXECUTE PROCEDURE or EXECUTE FUNCTION to execute an SPL

routine or external routine. In general, it is best to use EXECUTE PROCEDURE

with procedures and EXECUTE FUNCTION with functions.

Tip: For backward compatibility, the EXECUTE PROCEDURE statement allows

you to use an SPL function name and an INTO clause to return values.

However, it is recommended that you use EXECUTE PROCEDURE only with

procedures and EXECUTE FUNCTION only with functions.

You can issue EXECUTE PROCEDURE and EXECUTE FUNCTION statements as

stand-alone statements from DB–Access or from within an SPL routine or external

routine. If the routine name is unique within the database, and if it does not

require arguments, you can execute it by entering just its name and parentheses

after EXECUTE PROCEDURE, as Figure 11-99 shows.

The INTO clause is never present when you invoke a procedure with the

EXECUTE statement because a procedure does not return a value.

If the routine expects arguments, you must enter the argument values within

parentheses, as Figure 11-100 shows.

The statement in Figure 11-100 executes a function. Because a function returns a

value, EXECUTE FUNCTION uses an INTO clause that specifies a variable where

the return value is stored. The INTO clause must always be present when you use

an EXECUTE statement to execute a function.

Dynamic Server

If the database has more than one procedure or function of the same name,

Dynamic Server locates the right function based on the data types of the

arguments. For example, the statement in Figure 11-100 supplies INTEGER and

REAL values as arguments, so if your database contains multiple routines named

scale_rectangles(), the database server executes only the scale_rectangles() function

that accepts INTEGER and REAL data types.

The parameter list of an SPL routine always has parameter names as well as data

types. When you execute the routine, the parameter names are optional. However,

if you pass arguments by name (instead of just by value) to EXECUTE

PROCEDURE or EXECUTE FUNCTION, as in Figure 11-101, Dynamic Server

resolves the routine-by-routine name and arguments only, a process known as

partial routine resolution.

EXECUTE PROCEDURE update_orders();

Figure 11-99.

EXECUTE FUNCTION scale_rectangles(107, 1.9)

 INTO new;

Figure 11-100.

11-56 IBM Informix Guide to SQL: Tutorial

End of Dynamic Server

 You can also execute an SPL routine stored on another database server by adding a

qualified routine name to the statement; that is, a name in the form

database@dbserver:owner_name.routine_name, as in Figure 11-102.

When you execute a routine remotely, the owner_name in the qualified routine name

is optional.

Using the CALL Statement

You can call an SPL routine or an external routine from an SPL routine using the

CALL statement. CALL can execute both procedures and functions. If you use

CALL to execute a function, add a RETURNING clause and the name of an SPL

variable (or variables) that will receive the value (or values) the function returns.

Suppose, for example, that you want the scale_rectangles function to call an

external function that calculates the area of the rectangle and then returns the area

with the rectangle description, as in Figure 11-103.

EXECUTE FUNCTION scale_rectangles(rectid = 107,

 scale = 1.9) INTO new_rectangle;

Figure 11-101.

EXECUTE PROCEDURE informix@davinci:bsmith.update_orders();

Figure 11-102.

CREATE FUNCTION scale_rectangles(rectid INTEGER,

 scale REAL)

 RETURNING rectangle_t, REAL;

 DEFINE rectv rectangle_t;

 DEFINE a REAL;

 SELECT rect INTO rectv

 FROM rectangles WHERE id = rectid;

 IF (rectv IS NULL) THEN

 LET rectv.start = (0.0,0.0);

 LET rectv.length = 1.0;

 LET rectv.width = 1.0;

 LET a = 1.0;

 RETURN rectv, a;

 ELSE

 LET rectv.length = scale * rectv.length;

 LET rectv.width = scale * rectv.width;

 CALL area(rectv.length, rectv.width) RETURNING a;

 RETURN rectv, a;

 END IF;

END FUNCTION;

Figure 11-103.

Chapter 11. Creating and Using SPL Routines 11-57

The SPL function in Figure 11-103 uses a CALL statement that executes the external

function area(). The value area() returns is stored in a and returned to the calling

routine by the RETURN statement.

In this example, area() is an external function, but you can use CALL in the same

manner with an SPL function.

Executing Routines in Expressions

Just as with built-in functions, you can execute SPL routines (and external routines

from SPL routines) by using them in expressions in SQL and SPL statements. A

routine used in an expression is usually a function, because it returns a value to

the rest of the statement.

For example, you might execute a function by a LET statement that assigns the

return value to a variable. The statements in Figure 11-104 perform the same task.

They execute an external function within an SPL routine and assign the return

value to the variable a.

You can also execute an SPL routine from an SQL statement, as Figure 11-105

shows. Suppose you write an SPL function, increase_by_pct, which increases a

given price by a given percentage. After you write an SPL routine, it is available

for use in any other SPL routine.

The example in Figure 11-105 selects the price column of a specified row of

inventory and uses the value as an argument to the SPL function increase_by_pct.

The function then returns the new value of price, increased by 20 percent, in the

variable p.

Executing an External Function with the RETURN Statement

You can use a RETURN statement to execute any external function from within an

SPL routine.Figure 11-106 on page 11-59 shows an external function that is used in

the RETURN statement of an SPL program.

LET a = area(rectv.length, rectv.width);

CALL area(rectv.length, rectv.width) RETURNING a;

 -- these statements are equivalent

Figure 11-104.

CREATE FUNCTION raise_price (num INT)

 RETURNING DECIMAL;

 DEFINE p DECIMAL;

 SELECT increase_by_pct(price, 20) INTO p

 FROM inventory WHERE prod_num = num;

 RETURN p;

END FUNCTION;

Figure 11-105.

11-58 IBM Informix Guide to SQL: Tutorial

When you execute the spl_func() function, the c_func() function is invoked, and

the SPL function returns the value that the external function returns.

Executing Cursor Functions from an SPL Routine

A cursor function is a user-defined function that returns one or more rows of data

and therefore requires a cursor to execute. A cursor function can be either of the

following functions:

v An SPL function whose RETURN statement includes WITH RESUME

v An external function that is defined as an iterator function

The behavior of a cursor function is the same whether the function is an SPL

function or an external function. However, an SPL cursor function can return more

than one value per iteration, whereas an external cursor function (iterator function)

can return only one value per iteration.

To execute a cursor function from an SPL routine, you must include the function in

a FOREACH loop of an SPL routine. The following examples show different ways

to execute a cursor function in a FOREACH loop:

FOREACH SELECT cur_func1(col_name) INTO spl_var FROM tab1

 INSERT INTO tab2 VALUES (spl_var);

END FOREACH

FOREACH EXECUTE FUNCTION cur_func2() INTO spl_var

 INSERT INTO tab2 VALUES (spl_var);

END FOREACH

Dynamic Routine-Name Specification

Dynamic routine-name specification allows you to execute an SPL routine from

another SPL routine, by building the name of the called routine within the calling

routine. Dynamic routine-name specification simplifies how you can write an SPL

routine that calls another SPL routine whose name is not known until runtime. The

database server lets you specify an SPL variable instead of the explicit name of an

SPL routine in the EXECUTE PROCEDURE or EXECUTE FUNCTION statement.

In Figure 11-107, the SPL procedure company_proc updates a large company sales

table and then assigns an SPL variable named salesperson_proc to hold the

dynamically created name of an SPL procedure that updates another, smaller table

that contains the monthly sales of an individual salesperson.

CREATE FUNCTION c_func() RETURNS int

LANGUAGE C;

CREATE FUNCTION spl_func() RETURNS INT;

 RETURN(c_func());

END FUNCTION;

EXECUTE FUNCTION spl_func();

Figure 11-106.

Chapter 11. Creating and Using SPL Routines 11-59

In Figure 11-107, the procedure company _proc accepts five arguments and inserts

them into company_tbl. Then the LET statement uses various values and the

concatenation operator || to generate the name of another SPL procedure to

execute. In the LET statement:

v sales_person is an argument passed to the company_proc procedure.

v current_month is the current month in the system date.

v current_year is the current year in the system date.

Therefore, if a salesperson named Bill makes a sale in July 1998, company_proc

inserts a record in company_tbl and executes the SPL procedure

bill.tbl07_1998_proc, which updates a smaller table that contains the monthly sales

of an individual salesperson.

Rules for Dynamic Routine-Name Specification

You must define the SPL variable that holds the name of the dynamically executed

SPL routine as CHAR, VARCHAR, NCHAR, or NVARCHAR type. You must also

give the SPL variable a valid and non-NULL name.

The SPL routine that the dynamic routine-name specification identifies must exist

before it can be executed. If you assign the SPL variable the name of a valid SPL

routine, the EXECUTE PROCEDURE or EXECUTE FUNCTION statement executes

the routine whose name is contained in the variable, even if a built-in function of

the same name exists.

In an EXECUTE PROCEDURE or EXECUTE FUNCTION statement, you cannot

use two SPL variables to create a variable name in the form owner.routine_name.

However, you can use an SPL variable that contains a fully qualified routine name,

for example, bill.proc1. Figure 11-108 shows both cases.

CREATE PROCEDURE company_proc (no_of_items INT,

 itm_quantity SMALLINT, sale_amount MONEY,

 customer VARCHAR(50), sales_person VARCHAR(30))

DEFINE salesperson_proc VARCHAR(60);

-- Update the company table

INSERT INTO company_tbl VALUES (no_of_items, itm_quantity,

 sale_amount, customer, sales_person);

-- Generate the procedure name for the variable salesperson_proc

LET salesperson_proc = sales_person || "." || "tbl" ||

 current_month || "_" || current_year || "_proc" ;

-- Execute the SPL procedure that the salesperson_proc

-- variable specifies

EXECUTE PROCEDURE salesperson_proc (no_of_items,

 itm_quantity, sale_amount, customer)

END PROCEDURE;

Figure 11-107.

11-60 IBM Informix Guide to SQL: Tutorial

Privileges on Routines

Privileges differentiate users who can create a routine from users who can execute

a routine. Some privileges accrue as part of other privileges. For example, the DBA

privilege includes permissions to create routines, execute routines, and grant these

privileges to other users.

Privileges for Registering a Routine

To register a routine in the database, an authorized user wraps the SPL commands

in a CREATE FUNCTION or CREATE PROCEDURE statement. The database

server stores a registered SPL routine internally. The following users qualify to

register a new routine in the database:

v Any user with the DBA privilege can register a routine with or without the DBA

keyword in the CREATE statement.

For an explanation of the DBA keyword, see “DBA Privileges for Executing a

Routine” on page 11-63.

v A user who does not have the DBA privilege needs the Resource privilege to

register an SPL routine. The creator is the owner of the routine.

A user who does not have the DBA privilege cannot use the DBA keyword to

register the routine.

A DBA must give other users the Resource privilege needed to create routines.

The DBA can also revoke the Resource privilege, preventing the user from

creating further routines.

A DBA or the routine owner can cancel the registration with the DROP

FUNCTION or DROP PROCEDURE statement.

For routines written in the C or Java language, the DBSA can require that only

users to whom the EXTERNAL role has been granted can register or alter external

UDRs. This security feature does not, however, affect SPL routines.

Privileges for Executing a Routine

The Execute privilege enables users to invoke a routine. The routine might be

invoked by the EXECUTE or CALL statements, or by using a function in an

expression. The following users have a default Execute privilege, which enables

them to invoke a routine:

v By default, any user with the DBA privilege can execute any routine in the

database.

v If the routine is registered with the qualified CREATE DBA FUNCTION or

CREATE DBA PROCEDURE statements, only users with the DBA privilege have

a default Execute privilege for that routine.

EXECUTE PROCEDURE owner_variable.proc_variable;

 -- this is not allowed

LET proc1 = bill.proc1;

EXECUTE PROCEDURE proc1; -- this is allowed

Figure 11-108.

Chapter 11. Creating and Using SPL Routines 11-61

v If the database is not ANSI compliant, user public (any user with Connect

database privilege) automatically has the Execute privilege to a routine that is

not registered with the DBA keyword.

v In an ANSI-compliant database, the procedure owner and any user with the

DBA privilege can execute the routine without receiving additional privileges.

Granting and Revoking the Execute Privilege

Routines have the following GRANT and REVOKE requirements:

v The DBA can grant or revoke the Execute privilege to any routine in the

database.

v The creator of a routine can grant or revoke the Execute privilege on that

particular routine. The creator forfeits the ability to grant or revoke by including

the AS grantor clause with the GRANT EXECUTE ON statement.

v Another user can grant the Execute privilege if the owner applied the WITH

GRANT keywords in the GRANT EXECUTE ON statement.

A DBA or the routine owner must explicitly grant the Execute privilege to

non-DBA users for the following conditions:

v A routine in an ANSI-compliant database

v A database with the NODEFDAC environment variable set to yes

v A routine that was created with the DBA keyword

An owner can restrict the Execute privilege on a routine even though the database

server grants that privilege to public by default. To do this, issue the REVOKE

EXECUTE ON PUBLIC statement. The DBA and owner can still execute the

routine and can grant the Execute privilege to specific users, if applicable.

Execute Privileges with COMMUTATOR and NEGATOR Functions

(IDS)

Important: If you explicitly grant the Execute privilege on an SPL function that is

the commutator or negator function of a UDR, you must also grant

that privilege on the commutator or the negator function before the

grantee can use either. You cannot specify COMMUTATOR or

NEGATOR modifiers with SPL procedures.

The following example demonstrates both limiting privileges for a function and its

negator to one group of users. Suppose you create the following pair of negator

functions:

CREATE FUNCTION greater(y PERCENT, z PERCENT)

RETURNS BOOLEAN

NEGATOR= less(y PERCENT, z PERCENT);

. . .

CREATE FUNCTION less(y PERCENT, z PERCENT)

RETURNS BOOLEAN

NEGATOR= greater(y PERCENT, z PERCENT);

By default, any user can execute both the function and negator. The following

statements allow only accounting to execute these functions:

REVOKE EXECUTE ON greater FROM PUBLIC;

REVOKE EXECUTE ON less FROM PUBLIC;

GRANT accounting TO mary, jim, ted;

GRANT EXECUTE ON greater TO accounting;

GRANT EXECUTE ON less TO accounting;

11-62 IBM Informix Guide to SQL: Tutorial

A user might receive the Execute privilege accompanied by the WITH GRANT

option authority to grant the Execute privilege to other users. If a user loses the

Execute privilege on a routine, the Execute privilege is also revoked from all users

who were granted the Execute privilege by that user.

For more information, see the GRANT and REVOKE statements in the IBM

Informix Guide to SQL: Syntax.

Privileges on Objects Associated with a Routine

The database server checks the existence of any referenced objects and verifies that

the user invoking the routine has the necessary privileges to access the referenced

objects. For example, if a user executes a routine that updates data in a table, the

user must have the Update privilege for the table or columns referenced in the

routine.

Objects referenced by a routine can include:

v Tables and columns

v Sequence objects

v User-defined data types

v Other routines executed by the routine

When the owner of a routine grants the Execute privilege, some privileges on

objects automatically accompany the Execute privilege. A GRANT EXECUTE ON

statement confers to the grantee any table-level privileges that the grantor received

from a GRANT statement that contained the WITH GRANT keywords.

The owner of the routine, and not the user who runs the routine, owns the

unqualified objects created in the course of executing the routine. For example,

assume user howie registers an SPL routine that creates two tables, with the

following SPL routine:

CREATE PROCEDURE promo()

. . .

 CREATE TABLE newcatalog

 (

 catlog_num INTEGER

 cat_advert VARCHAR(255, 65)

 cat_picture BLOB

) ;

 CREATE TABLE dawn.mailers

 (

 cust_num INTEGER

 interested_in SET(catlog_num INTEGER)

);

END PROCEDURE;

User julia runs the routine, which creates the table newcatalog. Because no owner

name qualifies table name newcatalog, the routine owner (howie) owns

newcatalog. By contrast, the qualified name dawn.maillist identifies dawn as the

owner of maillist.

DBA Privileges for Executing a Routine

If a DBA creates a routine using the DBA keyword, the database server

automatically grants the Execute privilege only to other users with the DBA

privilege. A DBA can, however, explicitly grant the Execute privilege on a DBA

routine to a user who does not have the DBA privilege.

Chapter 11. Creating and Using SPL Routines 11-63

When a user executes a routine that was registered with the DBA keyword, that

user assumes the privileges of a DBA for the duration of the routine. If a user who

does not have the DBA privilege runs a DBA routine, the database server implicitly

grants a temporary DBA privilege to the invoker. Before exiting a DBA routine, the

database server implicitly revokes the temporary DBA privilege.

Objects created in the course of running a DBA routine are owned by the user who

executes the routine, unless a statement in the routine explicitly names someone

else as the owner. For example, suppose that tony registers the promo() routine

with the DBA keyword, as follows:

CREATE DBA PROCEDURE promo()

 . . .

 CREATE TABLE catalog

 . . .

 CREATE TABLE libby.mailers

 . . .

END PROCEDURE;

Although tony owns the routine, if marty runs it, then marty owns the catalog

table, but user libby owns libby.mailers because her name qualifies the table

name, making her the table owner.

A called routine does not inherit the DBA privilege. If a DBA routine executes a

routine that was created without the DBA keyword, the DBA privileges do not

affect the called routine.

If a routine that is registered without the DBA keyword calls a DBA routine, the

caller must have Execute privileges on the called DBA routine. Statements within

the DBA routine execute as they would within any DBA routine.

The following example demonstrates what occurs when a DBA and non-DBA

routine interact. Suppose procedure dbspc_cleanup() executes another procedure

clust_catalog(). Suppose also that the procedure clust_catalog() creates an index

and that the SPL source code for clust_catalog() includes the following statements:

CREATE CLUSTER INDEX c_clust_ix ON catalog (catalog_num);

The DBA procedure dbspc_cleanup() invokes the other routine with the following

statement:

EXECUTE PROCEDURE clust_catalog(catalog);

Assume tony registered dbspc_cleanup() as a DBA procedure and clust_catalog()

is registered without the DBA keyword, as the following statements show:

CREATE DBA PROCEDURE dbspc_cleanup(loc CHAR)

CREATE PROCEDURE clust_catalog(catalog CHAR)

GRANT EXECUTE ON dbspc_cleanup(CHAR) to marty;

Suppose user marty runs dbspc_cleanup(). Because index c_clust_ix is created by a

non-DBA routine, tony, who owns both routines, also owns c_clust_ix. By contrast,

marty would own index c_clust_ix if clust_catalog() is a DBA procedure, as the

following registering and grant statements show:

CREATE PROCEDURE dbspc_cleanup(loc CHAR);

CREATE DBA PROCEDURE clust_catalog(catalog CHAR);

GRANT EXECUTE ON clust_catalog(CHAR) to marty;

Notice that dbspc_cleanup() need not be a DBA procedure to call a DBA

procedure.

11-64 IBM Informix Guide to SQL: Tutorial

Finding Errors in an SPL Routine

When you use CREATE PROCEDURE or CREATE FUNCTION to write an SPL

routine with DB–Access, the statement fails when you select Run from the menu, if

a syntax error occurs in the body of the routine.

If you are creating the routine in DB–Access, when you choose the Modify option

from the menu, the cursor moves to the line that contains the syntax error. You can

select Run and Modify again to check subsequent lines.

Looking at Compile-Time Warnings

If the database server detects a potential problem, but the syntax of the SPL routine

is correct, the database server generates a warning and places it in a listing file.

You can examine this file to check for potential problems before you execute the

routine.

The filename and pathname of the listing file are specified in the WITH LISTING

IN clause of the CREATE PROCEDURE or CREATE FUNCTION statement. For

information about how to specify the pathname of the listing file, see “Specifying a

Document Clause” on page 11-11.

If you are working on a network, the listing file is created on the system where the

database resides. If you provide an absolute pathname and filename for the file,

the file is created at the location you specify.

UNIX Only

If you provide a relative pathname for the listing file, the file is created in your

home directory on the computer where the database resides. (If you do not have a

home directory, the file is created in the root directory.)

End of UNIX Only

Windows Only

If you provide a relative pathname for the listing file, the default directory is your

current working directory if the database is on the local computer. Otherwise the

default directory is %INFORMIXDIR%\bin.

End of Windows Only

 After you create the routine, you can view the file that is specified in the WITH

LISTING IN clause to see the warnings that it contains.

Generating the Text of the Routine

After you create an SPL routine, it is stored in the sysprocbody system catalog

table. The sysprocbody system catalog table contains the executable routine, as

well as its text.

To retrieve the text of the routine, select the data column from the sysprocbody

system catalog table. The datakey column for a text entry has the code T.

The SELECT statement in Figure 11-109 reads the text of the SPL routine

read_address.

Chapter 11. Creating and Using SPL Routines 11-65

Debugging an SPL Routine

After you successfully create and run an SPL routine, you can encounter logic

errors. If the routine has logic errors, use the TRACE statement to help find them.

You can trace the values of the following items:

v Variables

v Arguments

v Return values

v SQL error codes

v ISAM error codes

To generate a listing of traced values, first use the SQL statement SET DEBUG FILE

to name the file that is to contain the traced output. When you create the SPL

routine, include a TRACE statement.

The following methods specify the form of TRACE output.

Statement Action

TRACE ON Traces all statements except SQL statements. Prints

the contents of variables before they are used.

Traces routine calls and returned values.

TRACE PROCEDURE Traces only the routine calls and returned values.

TRACE expression Prints a literal or an expression. If necessary, the

value of the expression is calculated before it is

sent to the file.

 Figure 11-110 demonstrates how you can use the TRACE statement to monitor how

an SPL function executes.

SELECT data FROM informix.sysprocbody

 WHERE datakey = ’T’ -- find text lines

 AND procid =

 (SELECT procid

 FROM informix.sysprocedures

 WHERE informix.sysprocedures.procname =

 ’read_address’)

Figure 11-109.

11-66 IBM Informix Guide to SQL: Tutorial

With the TRACE ON statement, each time you execute the traced routine, entries

are added to the file you specified in the SET DEBUG FILE statement. To see the

debug entries, view the output file with any text editor.

The following list contains some of the output that the function in Figure 11-110

generates. Next to each traced statement is an explanation of its contents.

Statement Action

TRACE ON Echoes TRACE ON statement.

TRACE Foreach starts Traces expression, in this case, the literal string

Foreach starts.

start select cursor Provides notification that a cursor is opened to

handle a FOREACH loop.

select cursor iteration Provides notification of the start of each iteration of

the select cursor.

expression: (+lcount, 1) Evaluates the encountered expression, (lcount+1),

to 2.

let lcount = 2 Echoes each LET statement with the value.

CREATE FUNCTION read_many (lastname CHAR(15))

 RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),

 CHAR(2), CHAR(5);

 DEFINE p_lname,p_fname, p_city CHAR(15);

 DEFINE p_add CHAR(20);

 DEFINE p_state CHAR(2);

 DEFINE p_zip CHAR(5);

 DEFINE lcount, i INT;

 LET lcount = 1;

 TRACE ON; -- Trace every expression from here on

 TRACE ’Foreach starts’; -- Trace statement with a literal

 FOREACH

 SELECT fname, lname, address1, city, state, zipcode

 INTO p_fname, p_lname, p_add, p_city, p_state, p_zip

 FROM customer

 WHERE lname = lastname

 RETURN p_fname, p_lname, p_add, p_city, p_state, p_zip

 WITH RESUME;

 LET lcount = lcount + 1; -- count of returned addresses

 END FOREACH

 TRACE ’Loop starts’; -- Another literal

 FOR i IN (1 TO 5)

 BEGIN

 RETURN i , i+1, i*i, i/i, i-1,i WITH RESUME;

 END

 END FOR;

END FUNCTION;

Figure 11-110.

Chapter 11. Creating and Using SPL Routines 11-67

Exception Handling

You can use the ON EXCEPTION statement to trap any exception (or error) that

the database server returns to your SPL routine or any exception that the routine

raises. The RAISE EXCEPTION statement lets you generate an exception within the

SPL routine.

In an SPL routine, you cannot use exception handling to handle the following

conditions:

v Success (row returned)

v Success (no rows returned)

Trapping an Error and Recovering

The ON EXCEPTION statement provides a mechanism to trap any error.

To trap an error, enclose a group of statements in a statement block marked with

BEGIN and END and add an ON EXCEPTION IN statement at the beginning of

the statement block. If an error occurs in the block that follows the ON

EXCEPTION statement, you can take recovery action.

Figure 11-111 shows an ON EXCEPTION statement within a statement block.

When an error occurs, the SPL interpreter searches for the innermost ON

EXCEPTION declaration that traps the error. The first action after trapping the

error is to reset the error. When execution of the error action code is complete, and

if the ON EXCEPTION declaration that was raised included the WITH RESUME

keywords, execution resumes automatically with the statement following the

statement that generated the error. If the ON EXCEPTION declaration did not

include the WITH RESUME keywords, execution exits the current block entirely.

BEGIN

DEFINE c INT;

ON EXCEPTION IN

 (

 -206, -- table does not exist

 -217 -- column does not exist

) SET err_num

IF err_num = -206 THEN

 CREATE TABLE t (c INT);

 INSERT INTO t VALUES (10);

 -- continue after the insert statement

 ELSE

 ALTER TABLE t ADD(d INT);

 LET c = (SELECT d FROM t);

 -- continue after the select statement.

 END IF

END EXCEPTION WITH RESUME

INSERT INTO t VALUES (10); -- fails if t does not exist

LET c = (SELECT d FROM t); -- fails if d does not exist

END

Figure 11-111.

11-68 IBM Informix Guide to SQL: Tutorial

Scope of Control of an ON EXCEPTION Statement

An ON EXCEPTION statement is valid for the statement block that follows the ON

EXCEPTION statement, all the statement blocks nested within the following

statement block, and all the statement blocks that follow the ON EXCEPTION

statement. It is not valid in the statement block that contains the ON EXCEPTION

statement.

The pseudocode in Figure 11-112 shows where the exception is valid within the

routine. That is, if error 201 occurs in any of the indicated blocks, the action

labeled a201 occurs.

User-Generated Exceptions

You can generate your own error using the RAISE EXCEPTION statement, as

Figure 11-113 shows.

In Figure 11-113, the ON EXCEPTION statement uses two variables, esql and

eisam, to hold the error numbers that the database server returns. The IF clause

CREATE PROCEDURE scope()

 DEFINE i INT;

 . . .

 BEGIN -- begin statement block A

 . . .

 ON EXCEPTION IN (201)

 -- do action a201

 END EXCEPTION

 BEGIN -- statement block aa

 -- do action, a201 valid here

 END

 BEGIN -- statement block bb

 -- do action, a201 valid here

 END

 WHILE i < 10

 -- do something, a201 is valid here

 END WHILE

 END

 BEGIN -- begin statement block B

 -- do something

 -- a201 is NOT valid here

 END

END PROCEDURE;

Figure 11-112.

BEGIN

 ON EXCEPTION SET esql, eisam -- trap all errors

 IF esql = -206 THEN -- table not found

 -- recover somehow

 ELSE

 RAISE exception esql, eisam; -- pass the error up

 END IF

 END EXCEPTION

 -- do something

END

Figure 11-113.

Chapter 11. Creating and Using SPL Routines 11-69

executes if an error occurs and if the SQL error number is -206. If any other SQL

error is caught, it is passed out of this BEGINEND block to the last BEGINEND

block of the previous example.

Simulating SQL Errors

You can generate errors to simulate SQL errors, as Figure 11-114 shows. If the user

is pault, then the SPL routine acts as if that user has no update privileges, even if

the user really does have that privilege.

Using RAISE EXCEPTION to Exit Nested Code

Figure 11-115 shows how you can use the RAISE EXCEPTION statement to break

out of a deeply nested block.

If the innermost condition is true (if aa is negative), then the exception is raised

and execution jumps to the code following the END of the block. In this case,

execution jumps to the TRACE statement.

Remember that a BEGINEND block is a single statement. If an error occurs

somewhere inside a block and the trap is outside the block, the rest of the block is

skipped when execution resumes, and execution begins at the next statement.

Unless you set a trap for this error somewhere in the block, the error condition is

passed back to the block that contains the call and back to any blocks that contain

the block. If no ON EXCEPTION statement exists that is set to handle the error,

execution of the SPL routine stops, creating an error for the routine that is

executing the SPL routine.

BEGIN

 IF user = ’pault’ THEN

 RAISE EXCEPTION -273; -- deny Paul update privilege

 END IF

END

Figure 11-114.

BEGIN

 ON EXCEPTION IN (1)

 END EXCEPTION WITH RESUME -- do nothing significant (cont)

 BEGIN

 FOR i IN (1 TO 1000)

 FOREACH select ..INTO aa FROM t

 IF aa < 0 THEN

 RAISE EXCEPTION 1; -- emergency exit

 END IF

 END FOREACH

 END FOR

 RETURN 1;

 END

 --do something; -- emergency exit to

 -- this statement.

 TRACE ’Negative value returned’;

 RETURN -10;

END

Figure 11-115.

11-70 IBM Informix Guide to SQL: Tutorial

Checking the Number of Rows Processed in an SPL Routine

Within SPL routines, you can use the DBINFO function to find out the number of

rows that have been processed in SELECT, INSERT, UPDATE, DELETE, EXECUTE

PROCEDURE, and EXECUTE FUNCTION statements.

Figure 11-116 shows an SPL function that uses the DBINFO function with the

’sqlca.sqlerrd2’ option to determine the number of rows that are deleted from a

table.

To ensure valid results, use this option after SELECT and EXECUTE PROCEDURE

or EXECUTE FUNCTION statements have completed executing. In addition, if you

use the ’sqlca.sqlerrd2’ option within cursors, make sure that all rows are fetched

before the cursors are closed, to ensure valid results.

Summary

SPL routines provide many opportunities for streamlining your database process,

including enhanced database performance, simplified applications, and limited or

monitored access to data. You can also use SPL routines to handle extended data

types, such as collection types, row types, opaque types, and distinct types. For

syntax diagrams of SPL statements, see the IBM Informix Guide to SQL: Syntax.

CREATE FUNCTION del_rows (pnumb INT)

RETURNING INT;

DEFINE nrows INT;

DELETE FROM sec_tab WHERE part_num = pnumb;

LET nrows = DBINFO(’sqlca.sqlerrd2’);

RETURN nrows;

END FUNCTION;

Figure 11-116.

Chapter 11. Creating and Using SPL Routines 11-71

11-72 IBM Informix Guide to SQL: Tutorial

Chapter 12. Creating and Using Triggers

In This Chapter . 12-1

When to Use Triggers . 12-2

How to Create a Trigger . 12-2

Declaring a Trigger Name . 12-3

Specifying the Trigger Event . 12-3

Defining the Triggered Actions . 12-4

A Complete CREATE TRIGGER Statement . 12-4

Using Triggered Actions . 12-4

Using BEFORE and AFTER Triggered Actions . 12-4

Using FOR EACH ROW Triggered Actions . 12-5

Using the REFERENCING Clause . 12-6

Using the WHEN Condition . 12-6

Using SPL Routines as Triggered Actions . 12-7

Passing Data to an SPL Routine . 12-7

Using SPL . 12-7

Updating Nontriggering Columns with Data from an SPL Routine 12-8

Trigger Routines . 12-8

Triggers in a Table Hierarchy (IDS) . 12-8

Using Select Triggers (IDS) . 12-9

SELECT Statements That Execute Triggered Actions . 12-9

Stand-Alone SELECT Statements . 12-9

Collection Subqueries in the Projection List of a Query 12-9

SELECT Statements Embedded in User-Defined Routines 12-9

Views . 12-9

Restrictions on Execution of Select Triggers . 12-10

Select Triggers on Tables in a Table Hierarchy . 12-10

Re-Entrant Triggers . 12-10

INSTEAD OF Triggers on Views (IDS) . 12-11

Using an INSTEAD OF Trigger to Update on a View 12-11

Tracing Triggered Actions . 12-12

Example of TRACE Statements in an SPL Routine . 12-12

Example of TRACE Output . 12-12

Generating Error Messages . 12-13

Applying a Fixed Error Message . 12-13

Generating a Variable Error Message . 12-14

Summary . 12-15

In This Chapter

This chapter describes each component of the CREATE TRIGGER statement,

illustrates some uses for triggers, and describes the advantages of using an SPL

routine as a triggered action.

In addition, this chapter describes INSTEAD OF trigger that can be defined on

views.

An SQL trigger is a mechanism that resides in the database. It is available to any

user who has permission to use it. An SQL trigger specifies that when a

data-manipulation language (DML) operation (an INSERT, SELECT, DELETE, or

UPDATE statement) occurs on a particular table, the database server automatically

performs one or more additional actions. For triggers defined on views, the

triggered action on the base tables of the view replaces the triggering event. For

triggers on tables or views, the triggered actions can be INSERT, DELETE,

© Copyright IBM Corp. 1996, 2008 12-1

UPDATE, EXECUTE PROCEDURE or EXECUTE FUNCTION statements.

Dynamic Server

Dynamic Server also supports user-defined routines written in C or in Java as

triggered actions.

End of Dynamic Server

 For information on how to write a C UDR to obtain metadata information about

trigger events, see the IBM Informix DataBlade API Programmer’s Guide.

When to Use Triggers

Because a trigger resides in the database and anyone who has the required

privilege can use it, a trigger lets you write a set of SQL statements that multiple

applications can use. It lets you avoid redundant code when multiple programs

need to perform the same database operation.

You can use triggers to perform the following actions, as well as others that are not

found in this list:

v Create an audit trail of activity in the database. For example, you can track

updates to the orders table by updating corroborating information to an audit

table.

v Implement a business rule. For example, you can determine when an order

exceeds a customer’s credit limit and display a message to that effect.

v Derive additional data that is not available within a table or within the database.

For example, when an update occurs to the quantity column of the items table,

you can calculate the corresponding adjustment to the total_price column.

v Enforce referential integrity. When you delete a customer, for example, you can

use a trigger to delete corresponding rows that have the same customer number

in the orders table.

How to Create a Trigger

You use the CREATE TRIGGER statement to define a new trigger. The CREATE

TRIGGER statement is a data-definition statement that associates SQL statements,

called the triggered action, with a precipitating event on a table. When the event

occurs, it triggers the associated SQL statements, which are stored in the database.

In this example, the triggering event is an UPDATE statement that references the

quantity column of the items table. Figure 12-1 illustrates the relationship of the

DML operation that activates the trigger, called the trigger event, to the triggered

action.

12-2 IBM Informix Guide to SQL: Tutorial

The CREATE TRIGGER statement consists of clauses that perform the following

actions:

v Declare a name for the trigger .

v Specify the DML operation on a specified table or view as the triggering event.

v Define the SQL operations that this event triggers.

An optional clause, called the REFERENCING clause, is discussed in “Using FOR

EACH ROW Triggered Actions” on page 12-5.

To create a trigger, use DB–Access or one of the SQL APIs. This section describes

the CREATE TRIGGER statement as you enter it with the interactive

Query-language option in DB–Access. In an SQL API, you precede the statement

with the symbol or keywords that identify it as an embedded statement.

Declaring a Trigger Name

The trigger name identifies the trigger, and must be unique among trigger names

within the database. The trigger name follows the words CREATE TRIGGER in the

statement. Like any SQL identifier, can be up to 128 bytes in length, beginning

with a letter and consisting of letters, digits, and the underscore (_) symbol. In

the following example, the portion of the CREATE TRIGGER statement that is

shown declares the name upqty for the trigger:

CREATE TRIGGER upqty -- declare trigger name

Specifying the Trigger Event

The trigger event is the type of DML statement that activates the trigger. When a

statement of this type is performed on the table, the database server executes the

SQL statements that make up the triggered action. For tables, the trigger event can

be an INSERT, SELECT, DELETE, or UPDATE statement. For UPDATE or SELECT

trigger event, you can specify one or more columns in the table to activate the

trigger. If you do not specify any columns, then an UPDATE or SELECT of any

column in the table activates the trigger. You can define multiple INSERT, DELETE,

UPDATE and SELECT triggers on the same table, and multiple INSERT, DELETE,

and UPDATE triggers on the same view.

You can only create a trigger on a table or view in the current database. Triggers

cannot reference a remote table or view.

In the following excerpt from a CREATE TRIGGER statement, the trigger event is

defined as an update of the quantity column in the items table:

item_num quantity total_price
2 3 15.00
3 1 236.00
4 4 100.00
5 1 280.00

UPDATE

trigger event

EXECUTE PROCEDURE
upd_items

Figure 12-1. Trigger Event and Triggered Action

Chapter 12. Creating and Using Triggers 12-3

CREATE TRIGGER upqty

 UPDATE OF quantity ON items -- an UPDATE trigger event

This portion of the statement identifies the table on which you define the trigger. If

the trigger event is an insert or delete operation, only the type of statement and

the table name are required, as the following example shows:

CREATE TRIGGER ins_qty

 INSERT ON items -- an INSERT trigger event

Defining the Triggered Actions

The triggered actions are the SQL statements that are performed when the trigger

event occurs. The triggered actions can consist of INSERT, DELETE, UPDATE,

EXECUTE FUNCTION and EXECUTE PROCEDURE statements. In addition to

specifying what actions are to be performed, however, you must also specify when

they are to be performed in relation to the triggering statement. You have the

following choices:

v Before the triggering statement executes

v After the triggering statement executes

v For each row that is affected by the triggering statement

A single trigger on a table can define actions for each of these times.

To define a triggered action, specify when it occurs and then provide the SQL

statement or statements to execute. You specify when the action is to occur with

the keywords BEFORE, AFTER, or FOR EACH ROW. The triggered actions follow,

enclosed in parentheses. The following triggered-action definition specifies that the

SPL routine upd_items_p1 is to be executed before the triggering statement:

BEFORE(EXECUTE PROCEDURE upd_items_p1) -- a BEFORE action

A Complete CREATE TRIGGER Statement

To define a complete CREATE TRIGGER statement, combine the trigger-name

clause, the trigger-event clause, and the triggered-action clause. The following

CREATE TRIGGER statement is the result of combining the components of the

statement from the preceding examples. This trigger executes the SPL routine

upd_items_p1 whenever the quantity column of the items table is updated.

CREATE TRIGGER upqty

 UPDATE OF quantity ON items

 BEFORE(EXECUTE PROCEDURE upd_items_p1);

If a database object in the trigger definition, such as the SPL routine upd_items_p1

in this example, does not exist when the database server processes the CREATE

TRIGGER statement, it returns an error.

Using Triggered Actions

To use triggers effectively, you need to understand the relationship between the

triggering statement and the resulting triggered actions. You define this

relationship when you specify the time that the triggered action occurs; that is,

BEFORE, AFTER, or FOR EACH ROW.

Using BEFORE and AFTER Triggered Actions

Triggered actions that occur before or after the trigger event execute only once. A

BEFORE triggered action executes before the triggering statement, that is, before the

occurrence of the trigger event. An AFTER triggered action executes after the

12-4 IBM Informix Guide to SQL: Tutorial

action of the triggering statement is complete. BEFORE and AFTER triggered

actions execute even if the triggering statement does not process any rows.

Among other uses, you can use BEFORE and AFTER triggered actions to

determine the effect of the triggering statement. For example, before you update

the quantity column in the items table, you could call the SPL routine

upd_items_p1 to calculate the total quantity on order for all items in the table, as

the following example shows. The procedure stores the total in a global variable

called old_qty.

CREATE PROCEDURE upd_items_p1()

 DEFINE GLOBAL old_qty INT DEFAULT 0;

 LET old_qty = (SELECT SUM(quantity) FROM items);

END PROCEDURE;

After the triggering update completes, you can calculate the total again to see how

much it has changed. The following SPL routine, upd_items_p2, calculates the total

of quantity again and stores the result in the local variable new_qty. Then it

compares new_qty to the global variable old_qty to see if the total quantity for all

orders has increased by more than 50 percent. If so, the procedure uses the RAISE

EXCEPTION statement to simulate an SQL error.

CREATE PROCEDURE upd_items_p2()

 DEFINE GLOBAL old_qty INT DEFAULT 0;

 DEFINE new_qty INT;

 LET new_qty = (SELECT SUM(quantity) FROM items);

 IF new_qty > old_qty * 1.50 THEN

 RAISE EXCEPTION -746, 0, ’Not allowed - rule violation’;

 END IF

END PROCEDURE;

The following trigger calls upd_items_p1 and upd_items_p2 to prevent an

extraordinary update on the quantity column of the items table:

CREATE TRIGGER up_items

 UPDATE OF quantity ON items

 BEFORE(EXECUTE PROCEDURE upd_items_p1())

 AFTER(EXECUTE PROCEDURE upd_items_p2());

If an update raises the total quantity on order for all items by more than 50

percent, the RAISE EXCEPTION statement in upd_items_p2 terminates the trigger

with an error. When a trigger fails in a database that has transaction logging, the

database server rolls back the changes that both the triggering statement and the

triggered actions make. For more information on what happens when a trigger

fails, see the CREATE TRIGGER statement in the IBM Informix Guide to SQL:

Syntax.

Using FOR EACH ROW Triggered Actions

A FOR EACH ROW triggered action executes once for each row that the triggering

statement affects. For example, if the triggering statement has the following syntax,

a FOR EACH ROW triggered action executes once for each row in the items table

in which the manu_code column has a value of ‘KAR’:

UPDATE items SET quantity = quantity * 2

 WHERE manu_code = ’KAR’;

If the triggering event does not process any rows, a FOR EACH ROW triggered

action does not execute.

For a trigger on a table, if the triggering event is a SELECT statement, the trigger is

a called a Select trigger, and the triggered actions execute after all processing on

Chapter 12. Creating and Using Triggers 12-5

the retrieved row is complete. The triggered actions might not execute

immediately; however, because a FOR EACH ROW action executes for every

instance of a row that the query returns. For example, in a SELECT statement with

an ORDER BY clause, all rows must be qualified against the WHERE clause before

they are sorted and returned.

Using the REFERENCING Clause

When you create a FOR EACH ROW triggered action, you must usually indicate in

the triggered action statements whether you are referring to the value of a column

before or after the effect of the triggering statement. For example, imagine that you

want to track updates to the quantity column of the items table. To do this, create

the following table to record the activity:

CREATE TABLE log_record

 (item_num SMALLINT,

 ord_num INTEGER,

 username CHARACTER(8),

 update_time DATETIME YEAR TO MINUTE,

 old_qty SMALLINT,

 new_qty SMALLINT);

To supply values for the old_qty and new_qty columns in this table, you must be

able to refer to the old and new values of quantity in the items table; that is, the

values before and after the effect of the triggering statement. The REFERENCING

clause enables you to do this.

The REFERENCING clause lets you create two prefixes that you can combine with

a column name, one to reference the old value of the column, and one to reference

its new value. These prefixes are called correlation names. You can create one or

both correlation names, depending on your requirements. You indicate which one

you are creating with the keywords OLD and NEW. The following REFERENCING

clause creates the correlation names pre_upd and post_upd to refer to the old and

new values in a row:

REFERENCING OLD AS pre_upd NEW AS post_upd

The following triggered action creates a row in log_record when quantity is

updated in a row of the items table. The INSERT statement refers to the old values

of the item_num and order_num columns and to both the old and new values of

the quantity column.

FOR EACH ROW(INSERT INTO log_record

 VALUES (pre_upd.item_num, pre_upd.order_num, USER,

 CURRENT, pre_upd.quantity, post_upd.quantity));

The correlation names defined in the REFERENCING clause apply to all rows that

the triggering statement affects.

Important: If you refer to a column name that is not qualified by a correlation

name, the database server makes no special effort to search for the

column in the definition of the triggering table. You must always use a

correlation name with a column name in SQL statements in a FOR

EACH ROW triggered action, unless the statement is valid independent

of the triggered action. For more information, see the CREATE

TRIGGER statement in the IBM Informix Guide to SQL: Syntax.

Using the WHEN Condition

As an option for triggers on tables, you can precede a triggered action with a

WHEN clause to make the action dependent on the outcome of a test. The WHEN

clause consists of the keyword WHEN followed by the condition statement given

12-6 IBM Informix Guide to SQL: Tutorial

in parentheses. In the CREATE TRIGGER statement, the WHEN clause follows the

keywords BEFORE, AFTER, or FOR EACH ROW and precedes the triggered-action

list.

When a WHEN condition is present, if it evaluates to true, the triggered actions

execute in the order in which they appear. If the WHEN condition evaluates to

false or unknown, the actions in the triggered-action list do not execute. If the

trigger specifies FOR EACH ROW, the condition is evaluated for each row also.

In the following trigger example, the triggered action executes only if the condition

in the WHEN clause is true; that is, if the post-update unit price is greater than

two times the pre-update unit price:

CREATE TRIGGER up_price

 UPDATE OF unit_price ON stock

 REFERENCING OLD AS pre NEW AS post

 FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)

 (INSERT INTO warn_tab

 VALUES(pre.stock_num, pre.manu_code, pre.unit_price,

 post.unit_price, CURRENT));

For more information on the WHEN condition, see the CREATE TRIGGER

statement in the IBM Informix Guide to SQL: Syntax.

Using SPL Routines as Triggered Actions

Probably the most powerful feature of triggers is the ability to call an SPL routine

as a triggered action. The EXECUTE PROCEDURE or EXECUTE FUNCTION

statement, which calls an SPL routine, lets you pass data from the triggering table

to the SPL routine and also to update the triggering table with data returned by

the SPL routine. SPL also lets you define variables, assign data to them, make

comparisons, and use procedural statements to accomplish complex tasks within a

triggered action.

Passing Data to an SPL Routine

You can pass data to an SPL routine in the argument list of the EXECUTE

PROCEDURE or EXECUTE FUNCTION statement. The EXECUTE PROCEDURE

statement in the following example passes values from the quantity and

total_price columns of the items table to the SPL routine calc_totpr:

CREATE TRIGGER upd_totpr

 UPDATE OF quantity ON items

 REFERENCING OLD AS pre_upd NEW AS post_upd

 FOR EACH ROW(EXECUTE PROCEDURE calc_totpr(pre_upd.quantity,

 post_upd.quantity, pre_upd.total_price) INTO total_price);

Passing data to an SPL routine lets you use data values in the operations that the

routine performs.

Using SPL

The EXECUTE PROCEDURE statement in the preceding trigger calls the SPL

routine that the following example shows. The procedure uses SPL to calculate the

change that needs to be made to the total_price column when quantity is updated

in the items table. The procedure receives both the old and new values of quantity

and the old value of total_price. It divides the old total price by the old quantity to

derive the unit price. It then multiplies the unit price by the new quantity to obtain

the new total price.

CREATE PROCEDURE calc_totpr(old_qty SMALLINT, new_qty SMALLINT,

 total MONEY(8)) RETURNING MONEY(8);

 DEFINE u_price LIKE items.total_price;

Chapter 12. Creating and Using Triggers 12-7

DEFINE n_total LIKE items.total_price;

 LET u_price = total / old_qty;

 LET n_total = new_qty * u_price;

 RETURN n_total;

END PROCEDURE;

In this example, SPL lets the trigger derive data that is not directly available from

the triggering table.

Updating Nontriggering Columns with Data from an SPL Routine

Within a triggered action, the INTO clause of the EXECUTE PROCEDURE

statement lets you update nontriggering columns in the triggering table. The

EXECUTE PROCEDURE statement in the following example calls the calc_totpr

SPL procedure that contains an INTO clause, which references the column

total_price:

FOR EACH ROW(EXECUTE PROCEDURE calc_totpr(pre_upd.quantity,

 post_upd.quantity, pre_upd.total_price) INTO total_price);

The value that is updated into total_price is returned by the RETURN statement at

the conclusion of the SPL procedure. The total_price column is updated for each

row that the triggering statement affects.

Trigger Routines

You can define specialized SPL routines, called trigger routines, that can be

invoked only from the FOR EACH ROW section of the triggered action. Unlike

ordinary UDRs that EXECUTE FUNCTION or EXECUTE PROCEDURE routines

can call from the triggered action list, trigger routines include their own

REFERENCING clause that defines correlation names for the old and new column

values in rows that the triggered action modifies. These correlation names can be

referenced in SPL statements within the trigger routine, providing greater flexibility

in how the triggered action can modify data in the table or view.

Trigger routines can also use trigger-type Boolean operators, called DELETING,

INSERTING, SELECTING, and UPDATING, to identify what type of trigger has

called the trigger routine. Trigger routines can also invoke the mi_trigger* routines,

which are sometimes called trigger introspection routines, to obtain information

about the context in which the trigger routine has been called.

Trigger routines are invoked by EXECUTE FUNCTION or EXECUTE PROCEDURE

statements that include the WITH TRIGGER REFERENCES keywords. These

statements must call the trigger routine from the FOR EACH ROW section of the

triggered action, rather than from the BEFORE or AFTER sections.

For information about syntax features that the CREATE FUNCTION, CREATE

PROCEDURE, EXECUTE FUNCTION, and EXECUTE PROCEDURE statements of

SQL support for defining and executing trigger routines, see your IBM Informix

Guide to SQL: Syntax. For more information about the mi_trigger* routines, see

your IBM Informix DataBlade API Programmer’s Guide.

Triggers in a Table Hierarchy (IDS)

When you define a trigger on a supertable, any subtables in the table hierarchy

also inherit the trigger. Consequently when you perform operations on tables in

the hierarchy, triggers can execute for any table in the hierarchy that is a subtable

of the table on which a trigger is defined.

12-8 IBM Informix Guide to SQL: Tutorial

Using Select Triggers (IDS)

You can create a select trigger on a table or column(s) to perform certain types of

application-specific auditing, such as tracking the number of hits on a table. You

might create a select trigger to insert an audit record to an audit table each time a

user queries a certain table. For example, a DBA might create a select trigger to

provide a Web transaction history for Web DataBlade modules.

SELECT Statements That Execute Triggered Actions

When you create a select trigger, only certain types of select statements can execute

the actions defined on that trigger. A select trigger executes for the following types

of SELECT statements only:

v Stand-alone SELECT statements

v Collection subqueries in the select list of a SELECT statement

v SELECT statements embedded in user-defined routines

v Views

Stand-Alone SELECT Statements

Suppose you define the following Select trigger on a table:

CREATE TRIGGER hits_trig SELECT OF col_a ON tab_a

 REFERENCING OLD AS hit

 FOR EACH ROW (INSERT INTO hits_log

 VALUES (hit.col_a, CURRENT, USER));

A Select trigger executes when the triggering column appears in the select list of a

stand-alone SELECT statement. The following statement executes a triggered action

on the hits_trig trigger for each instance of a row that the database server returns:

SELECT col_a FROM tab_a;

Collection Subqueries in the Projection List of a Query

A Select trigger executes when the triggering column appears in a collection

subquery that occurs in the projection list of another SELECT statement. The

following statement executes a triggered action on the hits_trig trigger for each

instance of a row that the collection subquery returns:

SELECT MULTISET(SELECT col_a FROM tab_a) FROM ...

SELECT Statements Embedded in User-Defined Routines

A select trigger that is defined on a SELECT statement embedded in a user defined

routine (UDR) executes a triggered action in the following instances only:

v The UDR appears in the select list of a SELECT statement

v The UDR is invoked with an EXECUTE PROCEDURE statement

Suppose you create a routine new_proc that contains the statement SELECT col_a

FROM tab_a. Each of the following statements executes a triggered action on the

hits_trig trigger for each instance of a row that the embedded SELECT statement

returns:

SELECT new_proc() FROM tab_b;

EXECUTE PROCEDURE new_proc;

Views

Select triggers execute a triggered action for views whose base tables contain a

reference to a triggering column. You cannot, however, define a Select trigger on a

view.

Chapter 12. Creating and Using Triggers 12-9

Suppose you create the following view:

CREATE VIEW view_tab AS

 SELECT * FROM tab_a;

The following statements execute a triggered action on the hits_trig trigger for

each instance of a row that the view returns:

SELECT * FROM view_tab;

SELECT col_a FROM tab_a;

Restrictions on Execution of Select Triggers

The following types of statements do not trigger any actions on select triggers:

v The triggering column or columns are not in the projection list (for example, a

column that appears in the WHERE clause of a SELECT statement does not

execute a select trigger).

v The SELECT statement includes a remote table.

v The SELECT statement contains an aggregate function.

v The SELECT statement includes UNION or UNION ALL operations.

v The SELECT statement includes a DISTINCT or UNIQUE keyword.

v The UDR expression that contains the SELECT statement is not in the projection

list.

v The SELECT statement appears within an INSERT INTO statement.

v The SELECT statement appears within a scroll cursor.

v The trigger is a cascading select trigger.

A cascading select trigger is a trigger whose actions includes an SPL routine that

itself has a triggering select statement. However, the actions of a cascading select

trigger do not execute and the database server does not return an error.

Select Triggers on Tables in a Table Hierarchy

When you define a select trigger on a supertable, any subtables in the table

hierarchy also inherit the trigger.

For information about overriding and disabling inherited triggers, see “Triggers in

a Table Hierarchy (IDS)” on page 12-8.

Re-Entrant Triggers

A re-entrant trigger refers to a case in which the triggered action can reference the

triggering table. In other words, both the triggering event and the triggered action

can operate on the same table. For example, suppose the following UPDATE

statement represents the triggering event:

UPDATE tab1 SET (col_a, col_b) = (col_a + 1, col_b + 1);

The following triggered action is legal because column col_c is not a column that

the triggering event has updated:

UPDATE tab1 SET (col_c) = (col_c + 3);

In the preceding example, a triggered action on col_a or col_b would be illegal

because a triggered action cannot be an UPDATE statement that references a

column that was updated by the triggering event.

12-10 IBM Informix Guide to SQL: Tutorial

Important: Select triggers cannot be re-entrant triggers. If the triggering event is a

SELECT statement, the triggered action cannot operate on the same

table.

For a list of the rules that describe those situations in which a trigger can and

cannot be re-entrant, see the CREATE TRIGGER statement in the IBM Informix

Guide to SQL: Syntax.

INSTEAD OF Triggers on Views (IDS)

A view is a synthetic table that you create with the CREATE VIEW statement and

define with a SELECT statement. Each view consists of the set of rows and

columns that the SELECT statement in the view definition returns each time you

refer to the view in a query. To insert, update, or delete rows in the base tables of a

view, you can define an INSTEAD OF trigger.

Unlike a trigger on a table, the INSTEAD OF trigger on a view causes Dynamic

Server to ignore the triggering event, and instead perform only the triggered

action.

For information on the CREATE VIEW statement and the INSTEAD OF trigger

syntax and rules, including an example of an INSTEAD OF trigger that will insert

rows on a view, see the IBM Informix Guide to SQL: Syntax.

Using an INSTEAD OF Trigger to Update on a View

After you create one or more tables (like those named dept and emp in the

following example), and then created a view (like the one named manager_info)

from dept and emp, you can use an INSTEAD OF trigger to update that view.

The following CREATE TRIGGER statement creates manager_info_update, an

INSTEAD OF trigger that is designed to update rows within the dept and emp

tables through the manager_info view.

CREATE TRIGGER manager_info_update

 INSTEAD OF UPDATE ON manager_info

 REFERENCING NEW AS n

 FOR EACH ROW

 (EXECUTE PROCEDURE updtab (n.empno, n.empname, n.deptno,));

CREATE PROCEDURE updtab (eno INT, ename CHAR(20), dno INT,)

 DEFINE deptcode INT;

 UPDATE dept SET manager_num = eno where deptno = dno;

 SELECT deptno INTO deptcode FROM emp WHERE empno = eno;

 IF dno !=deptcode THEN

 UPDATE emp SET deptno = dno WHERE empno = eno;

 END IF;

 END PROCEDURE;

After the tables, view, trigger, and SPL routine have been created, the database

server treats the following UPDATE statement as a triggering event:

UPDATE manager_info

 SET empno = 3666, empname = “Steve”

 WHERE deptno = 01;

This triggering UPDATE statement is not executed, but this event causes the

trigger action to be executed instead, invoking the updtab() SPL routine. The

UPDATE statements in the SPL routine update values into both the emp and dept

base tables of the manager_info view.

Chapter 12. Creating and Using Triggers 12-11

Tracing Triggered Actions

If a triggered action does not behave as you expect, place it in an SPL routine and

use the SPL TRACE statement to monitor its operation. Before you start the trace,

you must direct the output to a file with the SET DEBUG FILE TO statement.

Example of TRACE Statements in an SPL Routine

The following example shows TRACE statements that you add to the SPL routine

items_pct. The SET DEBUG FILE TO statement directs the trace output to the file

that the pathname specifies. The TRACE ON statement begins tracing the

statements and variables within the procedure.

CREATE PROCEDURE items_pct(mac CHAR(3))

DEFINE tp MONEY;

DEFINE mc_tot MONEY;

DEFINE pct DECIMAL;

SET DEBUG FILE TO ’pathname’;

TRACE ’begin trace’;

TRACE ON;

LET tp = (SELECT SUM(total_price) FROM items);

LET mc_tot = (SELECT SUM(total_price) FROM items

 WHERE manu_code = mac);

LET pct = mc_tot / tp;

IF pct > .10 THEN

 RAISE EXCEPTION -745;

END IF

TRACE OFF;

END PROCEDURE;

CREATE TRIGGER items_ins

INSERT ON items

REFERENCING NEW AS post_ins

FOR EACH ROW(EXECUTE PROCEDURE items_pct (post_ins.manu_code));

Example of TRACE Output

The following example shows sample trace output from the items_pct procedure

as it appears in the file that was named in the SET DEBUG FILE TO statement.

The output reveals the values of procedure variables, procedure arguments, return

values, and error codes.

trace expression :begin trace

trace on

expression:

 (select (sum total_price)

 from items)

evaluates to $18280.77 ;

let tp = $18280.77

expression:

 (select (sum total_price)

 from items

 where (= manu_code, mac))

evaluates to $3008.00 ;

let mc_tot = $3008.00

expression:(/ mc_tot, tp)

evaluates to 0.16

let pct = 0.16

expression:(> pct, 0.1)

evaluates to 1

expression:(- 745)

evaluates to -745

12-12 IBM Informix Guide to SQL: Tutorial

raise exception :-745, 0, ’’

exception : looking for handler

SQL error = -745 ISAM error = 0 error string = = ’’

exception : no appropriate handler

For more information about how to use the TRACE statement to diagnose logic

errors in SPL routines, see Chapter 11, “Creating and Using SPL Routines,” on page

11-1.

Generating Error Messages

When a trigger fails because of an SQL statement, the database server returns the

SQL error number that applies to the specific cause of the failure.

When the triggered action is an SPL routine, you can generate error messages for

other error conditions with one of two reserved error numbers. The first one is

error number -745, which has a generalized and fixed error message. The second

one is error number -746, which allows you to supply the message text, up to a

maximum of 70 bytes.

Applying a Fixed Error Message

You can apply error number -745 to any trigger failure that is not an SQL error.

The following fixed message is for this error:

-745 Trigger execution has failed.

You can apply this message with the RAISE EXCEPTION statement in SPL. The

following example generates error -745 if new_qty is greater than old_qty

multiplied by 1.50:

CREATE PROCEDURE upd_items_p2()

 DEFINE GLOBAL old_qty INT DEFAULT 0;

 DEFINE new_qty INT;

 LET new_qty = (SELECT SUM(quantity) FROM items);

 IF new_qty > old_qty * 1.50 THEN

 RAISE EXCEPTION -745;

 END IF

END PROCEDURE

If you are using DB–Access, the text of the message for error -745 displays on the

bottom of the screen, as Figure 12-2 shows.

Chapter 12. Creating and Using Triggers 12-13

If your trigger calls a procedure that contains an error through an SQL statement

in your SQL API, the database server sets the SQL error status variable to -745 and

returns it to your program. To display the text of the message, follow the

procedure that your IBM Informix application development tool provides for

retrieving the text of an SQL error message.

Generating a Variable Error Message

Error number -746 allows you to provide the text of the error message. Like the

preceding example, the following one also generates an error if new_qty is greater

than old_qty multiplied by 1.50. However, in this case the error number is -746,

and the message text Too many items for Mfr. is supplied as the third argument

in the RAISE EXCEPTION statement. For more information on the syntax and use

of this statement, see the RAISE EXCEPTION statement in Chapter 11, “Creating

and Using SPL Routines,” on page 11-1.

CREATE PROCEDURE upd_items_p2()

 DEFINE GLOBAL old_qty INT DEFAULT 0;

 DEFINE new_qty INT;

 LET new_qty = (SELECT SUM(quantity) FROM items);

 IF new_qty > old_qty * 1.50 THEN

 RAISE EXCEPTION -746, 0, ’Too many items for Mfr.’;

 END IF

END PROCEDURE;

If you use DB–Access to submit the triggering statement, and if new_qty is greater

than old_qty, you will get the result that Figure 12-3 shows.

Press CTRL-W for Help

SQL: New Run �Modify� Use-editor Output Choose Save Info Drop Exit

Modify the current SQL statements using the SQL editor.

--------------------- stores8@myserver --------- Press CTRL-W for Help ----

INSERT INTO items VALUES(2, 1001, 2, ’HRO’, 1, 126.00);

 �745: Trigger execution has failed.�

Figure 12-2. Error Message -745 with Fixed Message

12-14 IBM Informix Guide to SQL: Tutorial

If you invoke the trigger through an SQL statement in an SQL API, the database

server sets sqlcode to -746 and returns the message text in the sqlerrm field of the

SQL communications area (SQLCA). For more information about how to use the

SQLCA, see your SQL API publication.

Summary

To introduce triggers, this chapter discussed the following topics:

v The components of the CREATE TRIGGER statement

v Types of DML statements that can be triggering events

v Types of SQL statements that can be triggered actions

v How to create BEFORE and AFTER triggered actions and how to use them to

determine the impact of the triggering statement

v How to create a FOR EACH ROW triggered action and how to use the

REFERENCING clause to refer to the values of columns both before and after

the action of the triggering statement

v INSTEAD OF triggers on views, whose triggering event is ignored, but whose

triggered actions can modify the base tables of the view

v The advantages of using SPL routines as triggered actions

v Special features of calls to trigger routines as triggered actions

v How to trace triggered actions if they behave unexpectedly

v How to generate two types of error messages within a triggered action.

Press CTRL-W for Help

SQL: New Run �Modify� Use-editor Output Choose Save Info Drop Exit

Modify the current SQL statements using the SQL editor.

-------------------- store7@myserver --------- Press CTRL-W for Help -----

INSERT INTO items VALUES(2, 1001, 2, ’HRO’, 1, 126.00);

�746: Too many items for Mfr.�

Figure 12-3. Error Number -746 with User-Specified Message Text

Chapter 12. Creating and Using Triggers 12-15

12-16 IBM Informix Guide to SQL: Tutorial

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft® Windows® navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our publications are available in dotted decimal format.

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1996, 2008 A-1

http://www.ibm.com/able

A-2 IBM Informix Guide to SQL: Tutorial

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 B-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

B-2 IBM Informix Guide to SQL: Tutorial

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix Guide to SQL: Tutorial

Index

Special characters
!=, not equal, relational operator 2-19

?, question mark
as placeholder in PREPARE 8-19

>=, greater than or equal to, relational operator 2-20

=, equals, relational operator 2-19, 2-42

A
Access modes, description of 10-17

accessibility A-1

keyboard A-1

shortcut keys A-1

Active set
definition of 2-18, 8-9

of a cursor 8-15

Aggregate functions
and GROUP BY clause 5-3

AVG 4-3

COUNT 4-3

description of 4-2, 4-11

finding NULL values 8-12

in ESQL 8-9

in expressions 4-2

in SPL routine 11-25

in subquery 5-22

MAX 4-4

MIN 4-4

null value signalled 8-7

RANGE 4-4

standard deviation 4-5

STDEV 4-5

SUM 4-4

VARIANCE 4-5

Alias
for table name 2-47

to assign column names in temporary table 5-8

using
as a query shortcut 2-47

with a supertable 3-11

with self-join 5-7

ALL keyword
beginning a subquery 5-21

in subquery 5-21

ALTER INDEX statement, locking table 10-5

AND logical operator 2-23

ANSI
isolation levels 10-14

SQL version 1-11

ANSI standard
as extension to Informix syntax 1-11

ANSI-compliant database
FOR UPDATE not required in 9-10

signalled in SQLWARN 8-7

ANY keyword, in SELECT statement 5-21

Application
handling errors 8-11

isolation level 10-10

update cursor 10-14

Archiving
database server methods 6-36

description of 6-35

transaction log 6-36

Arithmetic expressions 2-33

Arithmetic operators, in expression 2-33

Ascending order in SELECT 2-9

Asterisk notation, in a SELECT statement 3-5

Asterisk, wildcard character in SELECT 2-7

AVG function, as aggregate function 4-3

B
BEGIN WORK statement 6-35

BETWEEN keyword
using in WHERE clause 2-18

using to specify a range of rows 2-20

Boolean expression 2-23

Braces ({ }) comment delimiters 11-12

Built-in type variable 11-16

BYTE data type
restrictions with GROUP BY 5-4

using LENGTH function on 4-21

with relational expression 2-18

C
CALL statement, in SPL function 11-57

Cardinality function
description of 4-13

CARDINALITY function 4-13

Cartesian product
basis of joins 2-41

description of 2-40

Cascading deletes
child tables 6-25

definition of 6-24

locking associated with 6-25

logging 6-25, 6-34

referential integrity 6-24

restriction 6-25

Case conversion
with INITCAP function 4-16

with LOWER function 4-16

with UPPER function 4-16

CASE expression
description of 2-36

in UPDATE statement 6-19

using 2-37

CHAR data type
converting to a DATE value 4-11

converting to a DATETIME value 4-12

in relational expressions 2-18

substrings of 2-15

truncation signalled 8-7

Character string
converting to a DATE value 4-11

converting to a DATETIME value 4-12

Check constraints, definition of 6-23

Class libraries, shared 1-10

© Copyright IBM Corp. 1996, 2008 X-1

CLOSE DATABASE statement, effect on database locks 10-4

Collation order and GLS 2-16

Collection data types
accessing 3-1, 3-6

counting elements in 4-13

description of 3-6

element, searching for with IN 3-8

simple 3-6

updating 6-18

using the CARDINALITY function 4-13

Collection subquery
description of 5-27

ITEM keyword 5-28

using ITEM keyword in 5-28

Collection types
in an SPL routine 11-12

in DELETE statement 6-5

Collection values, inserting into columns 6-11

Collection variable
defining, restrictions on 11-17

nested 3-6, 3-7

selecting 3-7

Collection-derived table 5-30

accessing elements in a collection 5-30

description of 5-28, 11-44

restrictions on 5-31

using in SPL 11-47

Collections, with INSERT statement 6-11

Column number, using 2-15

Columns
definition of 2-3

descending order 2-9

description of 1-8

in relational model 1-8

label on 5-36

ordering the selection of 2-8

row-type, definition of 3-3

COMMIT WORK statement
closing cursors 10-19

releasing locks 10-10, 10-19

setting SQLCODE 9-2

Committed Read isolation level (Informix) 10-12

commutator function
definition 11-10

Comparison condition, description of 2-18

Compound query 5-32

Concurrency
access modes 10-17

active set 8-16

ANSI isolation levels 10-11

Cursor Stability isolation (Informix) 10-12

database lock 10-4

deadlock 10-18

description of 6-36, 10-1

Informix isolation levels 10-11

isolation level 10-10

kinds of locks 10-3

lock duration 10-9

lock scope 10-4

multiple programs 10-2

table lock 10-5

Configuration parameters
ISOLATION_LOCKS 10-13

Constraints, entity integrity 6-23

Conversion function, description of 4-11

Coordinated deletes 9-3

Correlated subquery
definition of 5-18

restriction with cascading deletes 6-25

COUNT function
and GROUP BY 5-4

as aggregate function 4-3

count rows to delete 6-4

use in a subquery 6-6

with DISTINCT 4-3

CREATE DATABASE statement
setting shared lock 10-4

SQLWARN after 8-7

CREATE FUNCTION FROM statement, in embedded

languages 11-13

CREATE FUNCTION statement
inside CREATE FUNCTION FROM statement 11-13

using 11-4

WITH LISTING IN clause 11-65

CREATE FUNCTION, return clause 11-8

CREATE INDEX statement, locking table 10-5

CREATE PROCEDURE FROM statement, in embedded

languages 11-13

CREATE PROCEDURE statement
inside CREATE PROCEDURE FROM 11-13

using 11-4

WITH LISTING IN clause 11-65

CREATE TABLE statement
cascading deletes 6-25

collection types 3-6

hierarchy 3-9

LOCK MODE clause 10-6

multiset columns 5-28

ON DELETE CASCADE clause 6-3

primary keys 6-24

row type columns 3-2

setting the lock mode 10-8

smart large object columns 4-15

typed table 3-2

CREATE TRIGGER statement 12-4

Cross join 2-41

CURRENT function
comparing column values 4-6

using 4-6

Cursor
active set of 8-15

closing 10-19

declaring 8-13

definition of 8-12

end of transaction 10-19

for insert 9-5

for update 9-9, 10-10

opening 8-13, 8-15

retrieving values with FETCH 8-13

scroll 8-14

sequence of program operations 8-12

sequential 8-14, 8-16

Cursor Stability isolation level (Informix) 10-12

Cyclic query 6-25

D
Data definition statements 8-21

Data encryption functions 4-28

Data integrity 6-22

failures 6-32

Data loading 6-36

Data models, description of 1-1

X-2 IBM Informix Guide to SQL: Tutorial

Data replication 6-37

Data types
automatic conversions 8-10

collection, accessing 3-1, 3-6

conversion 6-7, 8-10

Database object
constraints as a 6-26

index as a 6-26

object modes 6-26

trigger as a 6-26

violation detection 6-26

Database object mode
examples 6-27

Database servers
archiving 6-36

identifying host computer name 4-24

identifying version number 4-24

locking tables 10-5

signalled in SQLWARN 8-7

statement caching 10-21

DATABASE statement
locking 10-4

SQLWARN after 8-7

Databases
ANSI-compliant 1-12

compared to file 1-2

concurrent use 1-4

control of 1-5

definition of 1-8

external 7-1

locking 10-4

management of 1-7

modifying contents of 1-4

object-relational, description of 1-10

relational, description of 1-7

remote 7-1

server 1-4

DataBlade modules 1-10

DATE data type
converting to a character string 4-11

functions returning 4-6

in ORDER BY sequence 2-9

in relational expressions 2-18

DATE function, as conversion function 4-11

DATETIME data type
converting to a character string 4-11

displaying format 4-10

functions returning 4-6

in ORDER BY sequence 2-9

in relational expressions 2-18

DATETIME values, formatting 4-10

DAY function 4-6

DB-Access
creating database with 8-21

DBDATE environment variable 6-7

DBINFO function, in SELECT statement 4-24

DBSERVERALIAS, TCP/IP connection in 7-3

DBSERVERNAME function, in SELECT statement 4-23

DBSERVERNAME, TCP/IP connection in 7-3

dbspace, name returned by DBINFO function 4-24

Deadlock detection 10-18

DECIMAL data type, signalled in SQLWARN 8-7

DECLARE CURSOR statement 9-5

DECLARE statement
description of 8-13

FOR INSERT clause 9-5

FOR UPDATE 9-9

DECLARE statement (continued)
SCROLL keyword 8-15

WITH HOLD clause 10-20

DECODE function 4-25

DECRYPT_BINARY function 4-28

DECRYPT_CHAR function 4-28

DEF_TABLES_LOCKMODE configuration parameter 10-8

Default values
in column 6-23

using 8-12

DELETE statements
collection types 6-5

coordinated deletes 9-3

count of rows 9-2

description of 6-3

developing 6-5

duplicate rows 9-7

embedded 8-4, 9-1

lock mode 10-16

number of rows 8-6

preparing 8-19

remove all rows 6-3

row types 6-5

selected rows 6-4

specific rows 6-4

transactions with 9-2

using 9-1

using join in XPS 6-6

using subquery 6-6

WHERE clause restriction 6-6

with cursor 9-3

with supertables 6-5

Delete using TRUNCATE 6-3

Descending order in SELECT 2-9

Diagnostics table
description of 6-29

example of privileges 6-31

examples of starting 6-30

Difference set operation 5-39

Dirty Read isolation level (Informix) 10-11

disability A-1

Display label
in ORDER BY clause 2-38

with SELECT 2-35

Display labels 11-9

DISTINCT keyword
relation to GROUP BY 5-2

using in SELECT 2-12

using with COUNT function 4-3

Distinct-type variable 11-19

DOCUMENT clause, use in SPL routine 11-11

Domain of column 6-23

Dot notation 3-4

double hyphen (--) comment indicator 11-12

DROP INDEX statement, locking table 10-5

Duplicate values, finding 2-39

Dynamic routine-name specification
for SPL function 11-59

for SPL routine 11-59

rules for 11-60

Dynamic Server, object-relational databases 1-10

Dynamic SQL
description of 8-3, 8-19

freeing prepared statements 8-21

Index X-3

E
Embedded SQL

definition of 8-2

languages available 8-2

ENCRYPT_AES function 4-28

ENCRYPT_TDES function 4-28

End of data
signal in SQLCODE 8-5, 8-11

signal only for SELECT 9-8

SQLCODE 8-14

when opening cursor 8-13

Entity integrity 6-23

Equals (=) relational operator 2-19, 2-42

Equi-join 2-42

Error checking
simulating errors 11-70

SPL routines 11-68, 11-70

Error message files 8-8

Error messages
applying fixed 12-13

for trigger failure 12-13

generating a variable 12-14

generating in a trigger 12-13

retrieving trigger text in a program 12-14, 12-15

Errors
after DELETE 9-2

codes for 8-6

dealing with 8-11

detected on opening cursor 8-13

during updates 6-32

inserting with a cursor 9-6

ISAM error code 8-6

ESCAPE keyword, using in WHERE clause 2-29

ESQL/C
cursor use 8-12, 8-18

DELETE statement in 9-1

delimiting host variables 8-4

dynamic embedding 8-3, 8-19

error handling 8-11

fetching rows from cursor 8-13

host variable 8-3, 8-4

indicator variable 8-10

INSERT in 9-5

overview 8-2, 8-24, 9-1

preprocessor 8-2

scroll cursor 8-14

selecting single rows 8-9

SQL Communications Area 8-5

SQLCODE 8-5

SQLERRD fields 8-6

static embedding 8-3

UPDATE in 9-9

EXCLUSIVE keyword
in DATABASE statement 10-4

Exclusive lock 10-4

EXECUTE FUNCTION statement
with SPL 11-56

EXECUTE IMMEDIATE statement, description of 8-21

Execute privilege
DBA keyword, effect of 11-63

objects referenced by a routine 11-63

EXECUTE PROCEDURE statement
with SPL 11-56

EXISTS keyword 5-38

in a WHERE clause 5-21

in SELECT statement 5-24

Expression
CASE 2-36

date-oriented 4-6

description of 2-33

display label for 2-35

in SPL routine 11-25

EXTEND function
using in expression 4-10

with DATE and DATETIME values 4-6

Extensibility, description of 1-10

External database 7-1

External tables 6-36

F
FETCH statement 8-14

ABSOLUTE keyword 8-15

description of 8-13

sequential 8-15

with sequential cursor 8-16

Field projection 3-4

Field, definition of 3-3

Files, compared to database 1-1

Filtering mode 6-26

FIRST clause
description of 2-30

in a union query 5-37

using 2-31

with ORDER BY clause 2-31

FLUSH statement
count of rows inserted 9-6

rollback 9-6

writing rows to buffer 9-5

FOR UPDATE keywords
conflicts with ORDER BY 9-5

not needed in ANSI-compliant database 9-10

specific columns 9-9

FOREACH statement 11-26

Foreign key 6-24

FREE statement, freeing prepared statements 8-21

FROM clause
subqueries in 5-19

FROM keyword, alias names 2-47

Functions
aggregate 4-2

applying to expressions 4-6

conversion 4-11

DATE 4-11

date-oriented 4-6

DBINFO 4-24

DECODE 4-25

in SELECT statements 4-1

INITCAP 4-16

LOWER 4-16

LPAD 4-19

name confusion in SPL routine 11-21

NVL 4-26

REPLACE 4-17

RPAD 4-20

smart large object 4-14

string manipulation 4-15

SUBSTR 4-19

SUBSTRING 4-18

time 4-6

TO_CHAR 4-11

TO_DATE 4-12

UPPER 4-16

X-4 IBM Informix Guide to SQL: Tutorial

Functions, data encryption 4-28

G
GET DIAGNOSTICS statement 8-8

GETHINT function 4-29

Global Language Support (GLS)
and MATCHES keyword 2-28

and ORDER BY keywords 2-16

default locale 2-16

sort order 2-16

Global variable
declaring 11-22

description of 11-22

GRANT statement, in embedded SQL 8-22, 8-23

Granularity, of locks 10-4

Greater than or equal to (>=) relational operator 2-20

GROUP BY clause
description of 5-2

GROUP BY keywords
column number with 5-4

description of 5-2

H
HAVING clause, description of 5-2

HAVING keyword 5-5

HEX function, using in expression 4-23

Hierarchy
table and row 3-9

Hold cursor, definition of 10-19

Host variable 8-4

delimiter for 8-4

description of 8-3

fetching data into 8-13

in DELETE statement 9-2

in INSERT statement 9-5

in UPDATE statement 9-9

in WHERE clause 8-9

INTO keyword sets 8-9

null indicator 8-10

restrictions in prepared statement 8-19

truncation signalled 8-7

I
IF statement, in SPL 11-28

IFX_DEF_TABLE_LOCKMODE environment variable 10-8

IN keyword
to form an intersection 5-38

using in WHERE clause 2-18

IN relational operator 5-21

Indicator variable, definition of 8-10

INITCAP function, as string manipulation function 4-16

Insert cursor
definition of 9-5

using 9-7

INSERT statements
and end of data 9-8

collection columns 6-11

constant data with 9-7

count of rows inserted 9-6

description 6-6

embedded 9-5

inserting
collections 6-11

INSERT statements (continued)
inserting (continued)

into supertables 6-10

multiple rows 6-12

lock mode 10-16

named row type 6-9

null values in collection 6-11

number of rows 8-6

SELECT restrictions 6-13

SELECT statement in 6-12

selected columns 6-8

serial values 6-8

smart large objects in 6-12

unnamed row type 6-9

VALUES clause 6-6

with row-type columns 6-9

with SELECT statement 6-12

Inserting rows of constant data 9-7

INSTEAD OF trigger 12-11

Intent lock 10-16

Intersection
definition of 5-38

set operation 5-37

INTERVAL data type
in relational expressions 2-18

INTO clause 8-14

INTO keyword
choice of location 8-14

in FETCH statement 8-14

mismatch signalled in SQLWARN 8-7

restrictions in INSERT 6-13

restrictions in prepared statement 8-19

retrieving multiple rows 8-13

retrieving single rows 8-9

INTO TEMP keywords, description of 2-49

IS NOT NULL keywords 2-23

IS NULL keywords 2-23

ISAM error code 8-6

ISO 8859-1 code set 2-16

Isolation level
ANSI 10-11, 10-14

Cursor Stability (Informix) 10-12

description of 10-10

dirty read 10-11

Informix 10-11

read uncommitted 10-11

repeatable read 10-14

ISOLATION_LOCKS configuration parameter 10-13

ITEM keyword, collection subquery 5-28

J
Join

ANSI outer-join syntax 5-11

associative 2-45

composite 2-40

condition 2-40

creating 2-41

cross 2-41

definition of 2-6, 2-40

delete join 6-6

equi-join 2-42

in an UPDATE statement 6-20

Informix outer join syntax 5-11

left outer 5-12

multiple-table join 2-46

natural 2-44

Index X-5

Join (continued)
nested simple 5-14

on derived tables 5-13

outer 5-10

right outer 5-13

self-join 5-7

simple 2-40

K
Keywords

in a subquery 5-21

in a WHERE clause 2-18

L
Label 2-35, 5-36

Left outer join 5-12

LENGTH function
on TEXT or BYTE strings 4-21

on VARCHAR 4-21

use in expression 4-21

Less than or equal to (>=) relational operator 2-20

LET statement 11-23

LIKE clause
in SPL function 11-19

LIKE keyword
description of 2-25

using in WHERE clause 2-18

Local variable, description of 11-15

Lock mode, TABLE 10-6

LOCK TABLE statement, locking a table explicitly 10-5

Locking
and concurrency 6-36

behavior of different lock types 10-16

deadlock 10-18

description of 10-3

end of transaction 10-19

integrity 10-2

intent locks 10-16

lock duration 10-9

number of rows to lock 10-13

row and key locks 10-6

scope of lock 10-4

setting lock mode 10-17

time limit 10-18

types of locks 10-3

coarse index lock 10-9

database lock 10-4

exclusive 10-4

page lock 10-6, 10-8

promotable 10-4

promotable lock 10-10

row and key locks 10-6

shared 10-4

smart-large-object locks 10-9

table lock 10-5

update cursor 10-10

update lock 10-15

WAIT keyword 10-18

with DELETE 9-2

Logical log
and backups 6-35

description of 6-33

Logical operator
= (equals) 2-24

Logical operator (continued)
AND 2-23

NOT 2-23

OR 2-23

Logslice, description of 6-34

Loop, exiting with RAISE exception 11-70

LOWER function, as string manipulation function 4-16

LPAD function, as string manipulation function 4-19

M
MATCHES keyword

using GLS 2-28

using in WHERE clause 2-18

MATCHES relational operator
how locale affects 2-28

in WHERE clause 2-25

MAX function, as aggregate function 4-4

MIN function, as aggregate function 4-4

MODE ANSI keywords, specifying transactions 6-35

MONEY data type
in INSERT statement 6-7

MONTH function
using, TIME function

MONTH 4-8

MONTH function, as time function 4-6

Multiple-table join 2-46

Multiple-Table SELECTs 2-40

MULTISET keyword
collection subquery 5-28

Multithreaded application, definition of 8-2

N
Named row type, in VALUES clause 6-9

Natural join 2-44

NCHAR data type, querying on 2-3

Nested ordering, in SELECT 2-10

NODEFDAC environment variable, effect on privileges of

public 11-62

Nonlogging tables 6-34

NOT BETWEEN keywords in WHERE clause 2-21

Not equal (!=) relational operator 2-19

NOT EXISTS keywords 5-39

NOT IN keywords 5-39

NOT logical operator 2-23

Null values
detecting in ESQL 8-10

testing for 2-23

with logical operator 2-23

NVARCHAR data type, querying on 2-3

NVL function 4-26

O
Object mode

description of 6-26

disabled 6-26

enabled 6-26

filtering 6-26

Object-relational database, description of 1-10

ON DELETE CASCADE option 6-24

ON EXCEPTION statement
scope of control 11-69

trapping errors 11-68

user-generated errors 11-69

X-6 IBM Informix Guide to SQL: Tutorial

onload utility 6-36

onunload utility 6-36

Opaque-type variable 11-19

OPEN statement 8-13

Opening a cursor 8-15

OR logical operator 2-23

OR relational operator 2-21

ORDER BY keywords
and GLS 2-16

ascending order 2-9

DESC keyword 2-9, 2-15

display label with 2-38

multiple columns 2-10

relation to GROUP BY 5-4

restrictions in INSERT 6-13

restrictions with FOR UPDATE 9-5

select columns by number 2-15

sorting rows 2-8

Outer-join syntax
ANSI 5-11

Informix 5-11

P
Page locking 10-6

Parts explosion 8-17

Performance
effect of concurrency 10-2

increasing with stored routines 11-3

PREPARE statement
description of 8-19

error return in SQLERRD 8-6

multiple SQL statements 8-20

Primary key constraint, definition of 6-24

Primary key, definition of 6-23

Privileges
database-level 6-20

displaying 6-21

needed to modify data 6-20

on a database 6-20

overview 1-4

table-level 6-21

Procedure-type variables 11-19

Program variables
SPL 8-3

Projection, definition of 2-5

Projects, description of 1-9

Promotable lock 10-4, 10-10

PUT statement
constant data with 9-7

count of rows inserted 9-6

insert data 9-5

sends returned data to buffer 9-5

status code 9-6

Q
Qualifier, existential 5-24

Query
audit 5-26

compound 5-32

cyclic 6-25

self-referencing 6-25

stated in terms of data model 1-3

R
RAISE EXCEPTION statement 11-68

RANGE function, as aggregate function 4-4

Re-entrant trigger, description of 12-10

Read Committed isolation level (ANSI) 10-12

Read Uncommitted isolation level (ANSI) 10-11

Recursive relationship, example of 8-17

REFERENCES keyword, in SPL function 11-17

Referential constraint, definition of 6-24

Referential integrity, definition of 6-24

Relational database, description of 1-7

Relational model
join 2-6

projection 2-4

selection 2-4

Relational operation 2-4

Relational operators
BETWEEN 2-20

EXISTS 5-21

IN 5-21

in a WHERE clause 2-18

LIKE 2-25

MATCHES 2-25

NULL 2-23

OR 2-21

Remote database 7-1

Repeatable read isolation level 10-14

REPLACE function, as string manipulation function 4-17

Replication
of data 6-37

transparency 6-37

Return types, in SPL function 11-8

REVOKE statement, in embedded SQL 8-22, 8-23

Right outer join 5-13

Roles
default 1-6

definition 1-5

ROLLBACK WORK statement
closes cursors 10-19

releases locks 10-10, 10-19

setting SQLCODE 9-2

ROW data types
dot notation with 3-4

field projection 3-4

field projections in SELECT 3-5

field, definition of 3-3

in DELETE statement 6-5

selecting columns from 3-3

selecting data from 3-1

updating 6-17

using asterisk notation with SELECT 3-5

Row type columns
definition of 3-3

null values 6-17

Row-type data, selecting columns of 3-3

Row-type variables, delcaring 11-18

ROWID, using to locate internal row numbers 2-39

Rows
checking rows processed in SPL routines 11-71

definition of 1-8, 2-3

finding number of rows processed 4-24

in relational model 1-8

inserting 6-6

locking 10-6

number of rows returned 2-30

removing 6-3

updating 6-14

Index X-7

RPAD function, as string manipulation function 4-20

S
Screens, example 12-13

Scroll cursors
active set 8-16

definition of 8-14

SCROLL keyword, using in DECLARE 8-15

Select cursor
opening 8-13

using 8-13

Select list
display label 2-35

expressions in 2-33

functions in 4-1, 4-23

labels in 5-36

selecting all columns 2-7

selecting specific columns 2-11

specifying a substring in 2-15

SELECT statements
accessing collections 3-1, 3-6

active set 2-18, 8-9

advanced 5-2

aggregate functions in 4-2, 4-11

alias names 2-47

ALL keyword 5-21

and end-of-data return code 9-8

ANY keyword 5-21

basic concepts 2-3

collection expressions 5-27

collection subquery 5-28

collection-derived table 5-30

compound query 5-32

cursor for 8-12, 8-13

date-oriented functions in 4-6

description of 2-2

display label 2-35

DISTINCT keyword 2-12

embedded 8-9, 8-11

executing triggered actions 12-9

EXISTS keyword 5-24

FIRST clause 2-30

for joined tables 2-50

for single tables 2-7, 4-23

forms of 2-3

functions 4-1, 4-23

GROUP BY clause 5-2

HAVING clause 5-5

in UPDATE statement 6-15

INTO clause with ESQL 8-9

INTO TEMP clause 2-49

isolation level 10-10

join 2-41

multiple-table 2-40

natural join 2-44

ORDER BY clause 2-8

outer join 5-10

select list 2-5

selecting a row type 3-1

selecting a substring 2-15

selecting expressions 2-33

selection list 2-7

self-join 5-7

set operations 5-32

simple 2-2

single-table 2-7

SELECT statements (continued)
singleton 2-18, 8-9

smart-large-object functions in 4-14

stand-alone 12-9

subquery 5-17

UNION operator 5-32

using
for join 2-6

for projection 2-5

for selection 2-4

using functions 4-2

SELECT triggers, description of 12-9

Select, description of 1-9

Selection, description of 2-4

Self-join 5-7

assigning column names with INTO TEMP 5-8

description of 5-7

Self-referencing query 5-7, 6-25

Semantic integrity 6-23

Sequence
definition of 1-9

Sequential cursor, definition of 8-14

SERIAL data type
finding last SERIAL value inserted 4-24

generated number in SQLERRD 8-6

inserting a starting value 6-8

Servers, database, communicating with other servers 7-3

Session ID, returned by DBINFO function 4-24

SET clause, in UPDATE statement 6-16

SET COLLATION 2-28

Set intersection 5-38

SET ISOLATION statement
and SET TRANSACTION 10-11

use of 10-10

SET keyword, in UPDATE statement 6-14

SET LOCK MODE statement, description of 10-17

Set operation
difference 5-39

intersection 5-37

union 5-32

use of 5-32

SET TRANSACTION statement
and SET ISOLATION 10-11

use of 10-10

Shared class libraries 1-10

Shared lock 10-4

shortcut keys
keyboard A-1

Simple large objects, SPL variable 11-17

Singleton SELECT statement 2-18, 8-9

SITENAME function, in SELECT statement 4-23

Smart large objects
functions for copying 4-14

importing and exporting 4-14, 6-12

in an UPDATE statement 6-19

SPL variables 11-16

using SQL functions
in a SELECT statement 4-14

in an INSERT statement 6-12

SOME keyword, beginning a subquery 5-21

Sorting
as affected by a locale 2-16

effects of GLS 2-16

nested 2-10

with ORDER BY 2-9

Special character, protecting 2-29

Specific name, for SPL routine 11-6

X-8 IBM Informix Guide to SQL: Tutorial

SPL
assigning values to variables 11-23, 11-25

FOREACH loop 11-26

LET statement 11-23

parameter list 11-7

program variable 8-3

relation to SQL 11-3

return clause 11-8

statement block 11-25

tracing triggered actions 12-12

using cursors 11-26

WITH LISTING IN clause 11-11

SPL function
CALL statement 11-57

collection query 11-43

definition of 11-3

dynamic routine-name specification 11-59

large object variables 11-17

variant vs. not variant 11-10

WITH clause 11-10

SPL routines
adding comments to 11-11

as triggered action 12-7

collection data types 11-37

comments 11-12

compiler messages 11-65

CONTINUE statement 11-32

debugging 11-66

definition of 11-3

dot notation 11-36

dropping 11-14

dynamic routine-name specification 11-59

example of 11-13

exceptions 11-68, 11-70

EXECUTE PROCEDURE 12-7

executing 11-55

EXIT statement 11-32

exiting a loop 11-32

finding errors 11-65

FOR loop 11-30

IF..ELIF..ELSE structure 11-28

in an embedded language 11-13

in SELECT statements 4-27

in XPS 11-4

introduction to 11-3

name confusion with SQL functions 11-22

passing data 12-7

privileges 11-61

return types 11-8

returning values 11-33

row-type data 11-36

specific name 11-6

SQL expressions 11-25

syntax error 11-65

SYSPROCPLAN 11-4

system catalog entries 11-65

text of 11-65

TRACE statement 12-12

updating nontriggering columns 12-8

uses 11-3

variables, scope of 11-16

WHILE loop 11-30

writing 11-4

SQL
application languages 8-3

Application Programming Interfaces 8-2

compliance of statements with ANSI standard 1-11

SQL (continued)
cursor 8-12

description of 1-10

difference between Informix syntax and ANSI

standard 1-11

dynamic statements 8-3

error handling 8-11

history 1-11

Informix SQL and ANSI SQL 1-11

interactive use 1-12

standardization 1-11

static embedding 8-3

SQL Communications Area
altered by end of transaction 9-2

description of 8-5

inserting rows 9-6

SQL statement cache 10-20

SQLCODE
end of data 8-14

negative values 8-11

SQLCODE field
after opening cursor 8-13

and FLUSH operation 9-6

description of 8-5

end of data on SELECT only 9-8

end of data signalled 8-11

set by DELETE statement 9-2

set by PUT statement 9-6

SQLERRD array
count of deleted rows 9-2

count of inserted rows 9-6

count of rows 9-8

description of 8-6

syntax of naming 8-5

SQLERRM character string 8-8

SQLSTATE values 8-8

SQLSTATE variable
in non-ANSI-compliant databases 8-11

using with a cursor 8-13

SQLSTATE, problem values 8-11

SQLWARN array
description of 8-7

syntax of naming 8-5

with PREPARE 8-19

Standard deviation, aggregate function 4-5

START VIOLATIONS TABLE 6-30

Statement block 11-25

Statement cache, SQL 10-20

Static SQL 8-3

STDEV function, as aggregate function 4-5

Stored routine, general programming 1-12

Subquery
ALL keyword 5-21

ANY keyword 5-21

correlated 5-18, 5-23, 6-25

in DELETE statement 6-6

in FROM clause 5-19

in select list 5-19

in SELECT statement 5-17

in UPDATE statement 6-15

with SET clause 6-15

in WHERE clause 5-20

single-valued 5-22

Subscripting
in a WHERE clause 2-29

SPL variables 11-20

SUBSTR function, as string manipulation function 4-19

Index X-9

Substring 2-15, 11-20

SUBSTRING function, as string manipulation function 4-18

SUM function, as aggregate function 4-4

Supertable 3-10

in a table hierarchy 3-9

inserting into 6-10

selecting from 3-10

using an alias 3-11

SYSDATE function, as time function 4-6

sysprocbody, system catalog table 11-65

SYSPROCPLAN
SPL routines 11-4

System catalogs
privileges in 6-21

querying 6-21

sysprocbody 11-65

systabauth 6-21

System descriptor area 8-21

T
Table

description of 1-8

hierarchy 3-9

in relational model 1-8

loading data
with external tables 6-36

with onload utility 6-36

lock 10-5

logging 6-34

nonlogging 6-34

not in the current database 2-24

operations on a 1-9

Table hierarchy
triggers in 12-8

UPDATE statements 6-18

TABLE keyword, in lock mode 10-6

Temporary tables
and active set of cursor 8-16

assigning column names 5-8

example 6-14

TEXT data type
restrictions

with GROUP BY 5-4

using LENGTH function on 4-21

with relational expressions 2-18

Time function
description of 4-6

use in SELECT 4-2

TIME function
DAY and CURRENT 4-6

WEEKDAY 4-9

YEAR 4-9

TO_CHAR function, as conversion function 4-11

TO_DATE function, as conversion function 4-12

TODAY function, in constant expression 4-22, 6-7

TRACE statement
debugging an SPL routine 11-66

output 12-12

Transaction logging
contents of log 6-35

description of 6-33

XPS 6-34

Transactions
description of 6-33

end of 10-19

example with DELETE 9-2

Transactions (continued)
locks held to end of 10-10

locks released at end of 10-10

logging 6-33

use signalled in SQLWARN 8-7

Trigger action
definition of 12-4

REFERENCING clause 12-6

Trigger event
definition of 12-3

example of 12-3

Trigger routines 12-8

Triggered action
BEFORE and AFTER 12-4

FOR EACH ROW 12-5

generating an error message 12-13

in relation to triggering statement 12-4

SELECT statements 12-9

statements 12-1

tracing 12-12

using 12-4

using SPL routines 12-7

WHEN condition 12-6

Triggers
creating 12-2

declaring the name 12-3

definition of 12-1

in a table hierarchy 12-8

INSTEAD OF 12-11

re-entrant 12-10

select
defining on a table hierarchy 12-10

description of 12-9

restrictions on execution 12-10

when to use 12-2

TRUNCATE statement 6-3

Truncation, signalled in SQLWARN 8-7

Typed table
definition of 3-2

inserting rows 6-8

selecting from 3-2

U
UNION keyword, in set operations 5-32

UNION operator, display labels with 5-36

Union set operation 5-32

UNIQUE keyword, in SELECT statement 2-12

Unnamed row type, in VALUES clause 6-9

untyped 11-17

Update cursor 10-14

Update cursor, definition of 9-9

UPDATE keyword 9-9

Update locks, retaining 10-15

UPDATE statements
and end of data 9-8

collection data types 6-18

description of 6-14

embedded 9-9

failures 6-32

lock mode 10-16

number of rows 8-6

preparing 8-19

restrictions on subqueries 6-16

SET clause 6-16

smart large objects 6-19

using a join to update a column 6-20

X-10 IBM Informix Guide to SQL: Tutorial

UPDATE statements (continued)
WHERE clause 6-14

with a supertable 6-18

with row data types 6-17

with uniform values 6-15

UPPER function, as string manipulation function 4-16

USER function, in expression 4-22

Using the GROUP BY and HAVING Clauses 5-2

UTC time and time zone, returned by DBINFO function 4-24

Utility program
onload 6-36

onunload 6-36

V
VALUES clause

in INSERT statement 6-6

legal values 6-7

NULL values 6-10

restrictions 6-7

selected columns 6-8

VARCHAR data type, using LENGTH function on 4-21

Variables
defining and using in SPL routine 11-15

scope in SPL routine 11-16

with same name as a keyword 11-20

VARIANCE function, as aggregate function 4-5

variant SPL function 11-10

Version number, returned by DBINFO function 4-24

View
definition of 1-9

deleting in a 12-11

inserting into a 12-11

INSTEAD OF trigger on a 12-11

updating in a 12-11

Violation detection 6-26

Violations table
assigning a name 6-30

description of 6-29

example of privileges 6-31

examples 6-27

examples of starting 6-30

starting 6-30

W
Warnings, with SPL routine at compile time 11-65

WEEKDAY function
as time function 4-6, 4-9

using 4-9

WHERE clause
Boolean expression in 2-23

comparison condition 2-18

date-oriented functions in 4-9

description of 2-18

equal sign relational operator 2-19

host variables in 8-9

in DELETE 6-3

in UPDATE statement 6-14

less-than relational operator 2-20

not-equal relational operator 2-19

relational operators 2-18

selecting a range of characters 2-29

subqueries in 5-20, 5-21

wildcard comparisons 2-25

with NOT keyword 2-21

WHERE clause (continued)
with OR keyword 2-21

WHERE CURRENT OF clause
in DELETE statement 9-3

in UPDATE statement 9-9

WHERE keyword
null data tests 2-23

range of values 2-20

Wildcard character
asterisk 2-7

protecting 2-29

Wildcard comparison in WHERE clause 2-25

Wildcard, using single character 2-25

WITH clause, in SPL function 11-10

WITH HOLD keywords, declaring a hold cursor 10-20

WITH LISTING IN clause, use in SPL routine 11-11

Y
YEAR function

as time function 4-6

using 4-9

Index X-11

X-12 IBM Informix Guide to SQL: Tutorial

����

Printed in USA

SC23-9432-01

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

ix

Ve
rs

io
n

11
.5

0
IB

M

In

fo
rm

ix

Gu

id
e

to

SQ

L:

Tu

to
ria

l
�
�

�

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	Whats New in IBM Informix Guide to SQL: Tutorial
	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Chapter 1. Database Concepts
	In This Chapter
	Illustration of a Data Model
	Storing Data
	Querying Data
	Modifying Data

	Concurrent Use and Security
	Controlling Database Use
	Access-Management Strategies

	Centralized Management

	Important Database Terms
	The Relational Database Model
	Tables
	Columns
	Rows
	Views
	Sequences
	Operations on Tables
	The Object-Relational Model (IDS)

	Structured Query Language
	Standard SQL
	Informix SQL and ANSI SQL
	Interactive SQL
	General Programming
	ANSI-Compliant Databases
	Global Language Support (GLS)

	Summary

	Chapter 2. Composing SELECT Statements
	In This Chapter
	Introducing the SELECT Statement
	Output from SELECT Statements
	Output from Large Object Data Types
	Output from User-Defined Data Types
	Output in Non-Default Code Sets

	Some Basic Concepts
	Privileges
	Relational Operations
	Selection and Projection
	Joining

	Single-Table SELECT Statements
	Using the Asterisk Symbol (*)
	Reordering the Columns

	Using the ORDER BY Clause to Sort the Rows
	Ascending Order
	Descending Order
	Sorting on Multiple Columns

	Selecting Specific Columns
	Selecting Substrings
	ORDER BY and Non-English Data

	Using the WHERE Clause
	Creating a Comparison Condition
	Including Rows
	Excluding Rows
	Specifying A Range of Rows
	Excluding a Range of Rows
	Using a WHERE Clause to Find a Subset of Values
	Identifying NULL Values
	Forming Compound Conditions
	Using Exact-Text Comparisons
	Using Variable-Text Searches
	Using a Single-Character Wildcard
	MATCHES and Non-Default Locales
	Protecting Special Characters
	Using Subscripting in a WHERE Clause

	Using a FIRST Clause to Select Specific Rows
	FIRST Clause Without an ORDER BY Clause
	FIRST Clause with an ORDER BY Clause

	Expressions and Derived Values
	Arithmetic Expressions
	CASE Expressions
	Sorting on Derived Columns

	Using Rowid Values In SELECT Statements

	Multiple-Table SELECT Statements
	Creating a Cartesian Product
	Creating a Join
	Cross Join (IDS)
	Equi-Join
	Natural Join
	Multiple-Table Join

	Some Query Shortcuts
	Using Aliases
	The INTO TEMP Clause

	Summary

	Chapter 3. Selecting Data from Complex Types (IDS)
	In This Chapter
	Selecting Row-Type Data
	Selecting Columns of a Typed Table
	Selecting Columns That Contain Row-Type Data
	Field Projections
	Using Field Projections to Select Nested Fields
	Using Asterisk Notation to Access All Fields of a Row Type

	Selecting from a Collection
	Selecting Nested Collections
	Using the IN Keyword to Search for Elements in a Collection

	Selecting Rows Within a Table Hierarchy
	Selecting Rows of the Supertable without the ONLY Keyword
	Selecting Rows from a Supertable with the ONLY Keyword
	Using an Alias for a Supertable

	Summary

	Chapter 4. Using Functions in SELECT Statements
	In This Chapter
	Using Functions in SELECT Statements
	Aggregate Functions
	Using the COUNT Function
	Using the AVG Function
	Using the MAX and MIN Functions
	Using the SUM Function
	Using the RANGE Function
	Using the STDEV Function
	Using the VARIANCE Function
	Applying Functions to Expressions

	Time Functions
	Using DAY and CURRENT Functions
	Using the MONTH Function
	Using the WEEKDAY Function
	Using the YEAR Function
	Formatting DATETIME Values

	Date-Conversion Functions (IDS)
	Using the DATE Function
	Using the TO_CHAR Function
	Using the TO_DATE Function

	Cardinality Function (IDS)
	Smart-Large-Object Functions (IDS)
	String-Manipulation Functions (IDS)
	Using the LOWER Function
	Using the UPPER Function
	Using the INITCAP Function
	Using the REPLACE Function
	Using the SUBSTRING and SUBSTR Functions
	Using the SUBSTRING Function
	Using the SUBSTR Function
	Using the LPAD Function
	Using the RPAD Function

	Other Functions
	Using the LENGTH Function
	Using the USER Function
	Using the TODAY Function
	Using the DBSERVERNAME and SITENAME Functions
	Using the HEX Function
	Using the DBINFO Function
	Using the DECODE Function
	Using the NVL Function (IDS)

	Using SPL Routines in SELECT Statements
	Using Data Encryption Functions (IDS)
	Summary

	Chapter 5. Composing Advanced SELECT Statements
	In This Chapter
	Using the GROUP BY and HAVING Clauses
	Using the GROUP BY Clause
	Using the HAVING Clause

	Creating Advanced Joins
	Self-Joins
	Outer Joins
	Informix Extension to Outer Join Syntax
	ANSI Join Syntax
	Left Outer Join
	Right Outer Join (IDS)
	Simple Join
	Simple Outer Join on Two Tables
	Outer Join for a Simple Join to a Third Table
	Outer Join of Two Tables to a Third Table
	Joins That Combine Outer Joins

	Subqueries in SELECT Statements
	Correlated Subqueries
	Subqueries in SELECT Statements
	Subqueries in a Projection Clause
	Subqueries in the FROM Clause
	Subqueries in WHERE Clauses
	Using ALL
	Using ANY
	Single-Valued Subqueries
	Correlated Subqueries
	Using EXISTS

	Subqueries in DELETE and UPDATE Statements

	Handling Collections in SELECT Statements (IDS)
	Collection Subqueries
	Omitting the ITEM Keyword in a Collection Subquery
	Specifying the ITEM Keyword in a Collection Subquery
	Collection Subqueries in the FROM Clause

	Collection-Derived Tables
	ISO-Compliant Syntax for Collection Derived Tables

	Set Operations
	Union
	Using ORDER BY with UNION
	Using UNION ALL
	Using Different Column Names
	Using UNION with Multiple Tables
	Using a Literal in the Projection Clause
	Using a FIRST Clause

	Intersection
	Difference

	Summary

	Chapter 6. Modifying Data
	In This Chapter
	Modifying Your Database
	Deleting Rows
	Deleting All Rows of a Table
	Deleting All Rows using TRUNCATE
	Deleting Specified Rows
	Deleting Selected Rows
	Deleting Rows That Contain Row Types (IDS)
	Deleting Rows That Contain Collection Types (IDS)
	Deleting Rows from a Supertable (IDS)
	Complicated Delete Conditions
	Using a Delete Join (XPS)

	Inserting Rows
	Single Rows
	Possible Column Values
	Restrictions on Column Values
	Serial Data Types
	Listing Specific Column Names

	Inserting Rows into Typed Tables (IDS)
	Inserting into Row-Type Columns (IDS)
	Rows That Contain Named Row Types
	Rows That Contain Unnamed Row Types
	Specifying Null Values for Row Types

	Inserting Rows into Supertables (IDS)
	Inserting Collection Values into Columns (IDS)
	Inserting into Simple Collections and Nested Collections
	Inserting Null Values into a Collection That Contains a Row Type

	Inserting Smart Large Objects (IDS)
	Multiple Rows and Expressions
	Restrictions on the Insert Selection

	Updating Rows
	Selecting Rows to Update
	Updating with Uniform Values
	Restrictions on Updates
	Updating with Selected Values
	Updating Row Types (IDS)
	Updating Rows That Contain Named Row Types
	Updating Rows That Contain Unnamed Row Types
	Specifying Null Values for the Fields of a Row Type

	Updating Collection Types (IDS)
	Updating Rows of a Supertable (IDS)
	Using a CASE Expression to Update a Column
	Using SQL Functions to Update Smart Large Objects (IDS)
	Using a Join to Update a Column

	Privileges on a Database and on its Objects
	Database-Level Privileges
	Table-Level Privileges
	Displaying Table Privileges
	Granting Privileges to Roles

	Data Integrity
	Entity Integrity
	Semantic Integrity
	Referential Integrity
	Using the ON DELETE CASCADE Option
	Example of Cascading Deletes
	Restrictions on Cascading Deletes

	Object Modes and Violation Detection
	Definitions of Object Modes
	Example of Modes with Data Manipulation Statements
	Violations and Diagnostics Tables

	Interrupted Modifications
	Transactions
	Transaction Logging
	Transaction Logging for Extended Parallel Server
	Logging and Cascading Deletes

	Specifying Transactions

	Backups and Logs with Informix Database Servers
	Concurrency and Locks
	IBM Informix Data Replication (IDS)
	Summary

	Chapter 7. Accessing and Modifying Data in an External Database
	In This Chapter
	Accessing Other Database Servers
	Accessing ANSI Databases
	Creating Joins Between External Database Servers
	Accessing External Routines (IDS)

	Restrictions for Remote Database Access
	SQL Statements and Logging Modes
	Accessing External Database Objects

	Chapter 8. Programming with SQL
	In This Chapter
	SQL in Programs
	SQL in SQL APIs
	SQL in Application Languages
	Static Embedding
	Dynamic Statements
	Program Variables and Host Variables

	Calling the Database Server
	SQL Communications Area
	SQLCODE Field
	End of Data
	Negative Codes

	SQLERRD Array
	SQLWARN Array
	SQLERRM Character String
	SQLSTATE Value

	Retrieving Single Rows
	Data Type Conversion
	Working with NULL Data
	Dealing with Errors
	End of Data
	End of Data with Databases That Are Not ANSI Compliant
	Serious Errors
	Interpreting End of Data with Aggregate Functions
	Using Default Values

	Retrieving Multiple Rows
	Declaring a Cursor
	Opening a Cursor
	Fetching Rows
	Detecting End of Data
	Locating the INTO Clause

	Cursor Input Modes
	Active Set of a Cursor
	Creating the Active Set
	Active Set for a Sequential Cursor
	Active Set for a SCROLL Cursor
	Active Set and Concurrency

	Using a Cursor: A Parts Explosion

	Dynamic SQL
	Preparing a Statement
	Executing Prepared SQL
	Dynamic Host Variables
	Freeing Prepared Statements
	Quick Execution

	Embedding Data-Definition Statements
	Granting and Revoking Privileges in Applications
	Assigning Roles

	Summary

	Chapter 9. Modifying Data Through SQL Programs
	In This Chapter
	Using DELETE
	Direct Deletions
	Errors During Direct Deletions
	Using Transaction Logging
	Coordinated Deletions

	Deleting with a Cursor

	Using INSERT
	Using an Insert Cursor
	Declaring an Insert Cursor
	Inserting with a Cursor
	Status Codes After PUT and FLUSH

	Rows of Constants
	An Insert Example
	How Many Rows Were Affected?

	Using UPDATE
	Using an Update Cursor
	The Purpose of the Keyword UPDATE
	Updating Specific Columns
	UPDATE Keyword Not Always Needed

	Cleaning Up a Table

	Summary

	Chapter 10. Programming for a Multiuser Environment
	In This Chapter
	Concurrency and Performance
	Locking and Integrity
	Locking and Performance
	Concurrency Issues
	How Locks Work
	Kinds of Locks
	Lock Scope
	Database Locks
	Table Locks
	Row and Key Locks
	Page Locks
	Coarse Index Locks
	Smart-Large-Object Locks (IDS)

	Duration of a Lock
	Locks While Modifying

	Locking with the SELECT Statement
	Setting the Isolation Level
	Comparing SET TRANSACTION with SET ISOLATION
	ANSI Read Uncommitted and Informix Dirty Read Isolation
	ANSI Read Committed and Informix Committed Read Isolation
	Informix Cursor Stability Isolation
	ANSI Serializable, ANSI Repeatable Read, and Informix Repeatable Read Isolation

	Update Cursors

	Retaining Update Locks
	Locks Placed with INSERT, UPDATE, and DELETE
	Understanding the Behavior of the Lock Types
	Controlling Data Modification with Access Modes
	Setting the Lock Mode
	Waiting for Locks
	Not Waiting for Locks
	Waiting a Limited Time
	Handling a Deadlock
	Handling External Deadlock

	Simple Concurrency
	Hold Cursors
	Using the SQL Statement Cache
	Summary

	Chapter 11. Creating and Using SPL Routines
	In This Chapter
	Introduction to SPL Routines
	What You Can Do with SPL Routines
	SPL Routine Behavior for Extended Parallel Server

	Writing SPL Routines
	Using the CREATE PROCEDURE or CREATE FUNCTION Statement
	Beginning and Ending the Routine
	Specifying a Routine Name
	Adding a Specific Name (IDS)
	Adding a Parameter List
	Adding a Return Clause
	Adding Display Labels (IDS)
	Specifying Whether the SPL Function is Variant
	Adding a Modifier (IDS)
	Specifying a Document Clause
	Specifying a Listing File
	Adding Comments

	Example of a Complete Routine
	Creating an SPL Routine in a Program
	Routines in Distributed Operation

	Defining and Using Variables
	Declaring Local Variables
	Scope of Local Variables
	Declaring Built-In Type Variables
	Declaring Variables for Smart Large Objects (IDS)
	Declaring Variables for Simple Large Objects
	Declaring Collection Variables (IDS)
	Declaring Row-Type Variables (IDS)
	Declaring Opaque- and Distinct-Type Variables (IDS)
	Declaring Variables for Column Data with the LIKE Clause
	Declaring PROCEDURE Type Variables
	Using Subscripts with Variables
	Variable and Keyword Ambiguity

	Declaring Global Variables
	Assigning Values to Variables
	The LET Statement
	Other Ways to Assign Values to Variables

	Expressions in SPL Routines
	Writing the Statement Block
	Implicit and Explicit Statement Blocks
	Using Cursors
	Using the FOREACH Loop to Define Cursors
	Restriction for FOREACH Loops

	Using an IF - ELIF - ELSE Structure
	Adding WHILE and FOR Loops
	Exiting a Loop

	Returning Values from an SPL Function
	Returning a Single Value
	Returning Multiple Values

	Handling Row-Type Data (IDS)
	Precedence of Dot Notation
	Updating a Row-Type Expression

	Handling Collections (IDS)
	Using Collection Data Types
	Preparing for Collection Data Types (IDS)
	Declaring a Collection Variable
	Declaring an Element Variable
	Selecting a Collection into a Collection Variable

	Inserting Elements into a Collection Variable
	Inserting into a SET or MULTISET
	Inserting into a LIST
	Checking the Cardinality of a LIST Collection
	Syntax of the VALUES Clause

	Selecting Elements from a Collection
	The Collection Query
	Adding the Collection Query to the SPL Routine

	Deleting a Collection Element
	Updating the Collection in the Database
	Deleting the Entire Collection

	Updating a Collection Element
	Updating a Collection with a Variable

	Updating the Entire Collection
	Updating a Collection of Row Types
	Updating a Nested Collection

	Inserting into a Collection
	Inserting into a Nested Collection

	Executing Routines
	Using the EXECUTE Statements
	Using the CALL Statement
	Executing Routines in Expressions
	Executing an External Function with the RETURN Statement
	Executing Cursor Functions from an SPL Routine
	Dynamic Routine-Name Specification
	Rules for Dynamic Routine-Name Specification

	Privileges on Routines
	Privileges for Registering a Routine
	Privileges for Executing a Routine
	Granting and Revoking the Execute Privilege
	Execute Privileges with COMMUTATOR and NEGATOR Functions (IDS)

	Privileges on Objects Associated with a Routine
	DBA Privileges for Executing a Routine

	Finding Errors in an SPL Routine
	Looking at Compile-Time Warnings
	Generating the Text of the Routine

	Debugging an SPL Routine
	Exception Handling
	Trapping an Error and Recovering
	Scope of Control of an ON EXCEPTION Statement
	User-Generated Exceptions
	Simulating SQL Errors
	Using RAISE EXCEPTION to Exit Nested Code

	Checking the Number of Rows Processed in an SPL Routine
	Summary

	Chapter 12. Creating and Using Triggers
	In This Chapter
	When to Use Triggers
	How to Create a Trigger
	Declaring a Trigger Name
	Specifying the Trigger Event
	Defining the Triggered Actions
	A Complete CREATE TRIGGER Statement

	Using Triggered Actions
	Using BEFORE and AFTER Triggered Actions
	Using FOR EACH ROW Triggered Actions
	Using the REFERENCING Clause
	Using the WHEN Condition

	Using SPL Routines as Triggered Actions
	Passing Data to an SPL Routine
	Using SPL
	Updating Nontriggering Columns with Data from an SPL Routine

	Trigger Routines
	Triggers in a Table Hierarchy (IDS)
	Using Select Triggers (IDS)
	SELECT Statements That Execute Triggered Actions
	Stand-Alone SELECT Statements
	Collection Subqueries in the Projection List of a Query
	SELECT Statements Embedded in User-Defined Routines
	Views

	Restrictions on Execution of Select Triggers
	Select Triggers on Tables in a Table Hierarchy

	Re-Entrant Triggers
	INSTEAD OF Triggers on Views (IDS)
	Using an INSTEAD OF Trigger to Update on a View

	Tracing Triggered Actions
	Example of TRACE Statements in an SPL Routine
	Example of TRACE Output

	Generating Error Messages
	Applying a Fixed Error Message
	Generating a Variable Error Message

	Summary

	Appendix. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Notices
	Trademarks

	Index

