
IBM Informix

IBM Informix Guide to SQL: Reference

Version 11.50

SC23-7750-00

���

IBM Informix

IBM Informix Guide to SQL: Reference

Version 11.50

SC23-7750-00

���

Note:

Before using this information and the product it supports read the information in “Notices” on page D-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . ix

About This Publication . ix

Types of Users . ix

Software Dependencies . x

Assumptions About Your Locale . x

Demonstration Database . x

What’s New in SQL Reference for Dynamic Server, Version 11.50 xi

Documentation Conventions . xi

Typographical Conventions . xi

Feature, Product, and Platform Markup . xii

Example Code Conventions . xii

Additional Documentation . xiii

Compliance with Industry Standards . xiii

Syntax Diagrams . xiii

How to Read a Command-Line Syntax Diagram . xiv

Keywords and Punctuation . xv

Identifiers and Names . xvi

How to Provide Documentation Feedback . xvi

Chapter 1. System Catalog Tables . 1-1

In This Chapter . 1-2

Objects That the System Catalog Tables Track . 1-2

Using the System Catalog . 1-2

Structure of the System Catalog . 1-8

SYSAGGREGATES (IDS) . 1-10

SYSAMS (IDS) . 1-11

SYSATTRTYPES (IDS) . 1-13

SYSBLOBS . 1-13

SYSCASTS (IDS) . 1-14

SYSCHECKS . 1-15

SYSCHECKUDRDEP (IDS) . 1-15

SYSCOLATTRIBS (IDS) . 1-15

SYSCOLAUTH . 1-16

SYSCOLDEPEND . 1-17

SYSCOLUMNS . 1-18

SYSCONSTRAINTS . 1-21

SYSDEFAULTS . 1-22

SYSDEPEND . 1-23

SYSDIRECTIVES (IDS) . 1-23

SYSDISTRIB . 1-24

SYSDOMAINS (IDS) . 1-25

SYSERRORS (IDS) . 1-25

SYSEXTCOLS (XPS) . 1-26

SYSEXTDFILES (XPS) . 1-26

SYSEXTERNAL (XPS) . 1-27

SYSFRAGAUTH (IDS) . 1-27

SYSFRAGMENTS . 1-28

SYSINDEXES . 1-30

SYSINDICES (IDS) . 1-31

SYSINHERITS (IDS) . 1-32

SYSLANGAUTH (IDS) . 1-32

SYSLOGMAP (IDS) . 1-33

SYSNEWDEPEND (XPS) . 1-33

SYSOBJSTATE (IDS) . 1-33

SYSOPCLASSES (IDS) . 1-34

© Copyright IBM Corp. 1996, 2008 iii

SYSOPCLSTR . 1-35

SYSPROCAUTH . 1-36

SYSPROCBODY . 1-36

SYSPROCCOLUMNS . 1-37

SYSPROCEDURES . 1-37

SYSPROCPLAN . 1-40

SYSREFERENCES . 1-41

SYSREPOSITORY (XPS) . 1-41

SYSROLEAUTH . 1-42

SYSROUTINELANGS (IDS) . 1-42

SYSSECLABELCOMPONENTS . 1-42

SYSSECLABELCOMPONENTELEMENTS . 1-43

SYSSECPOLICIES . 1-43

SYSSECPOLICYCOMPONENTS . 1-44

SYSSECPOLICYEXEMPTIONS . 1-44

SYSSECLABELS . 1-44

SYSSECLABELNAMES . 1-45

SYSSECLABELAUTH . 1-45

SYSSEQUENCES (IDS) . 1-45

SYSSYNONYMS . 1-45

SYSSYNTABLE . 1-46

SYSTABAMDATA (IDS) . 1-46

SYSTABAUTH . 1-47

SYSTABLES . 1-48

SYSTRACECLASSES (IDS) . 1-50

SYSTRACEMSGS (IDS) . 1-50

SYSTRIGBODY . 1-51

SYSTRIGGERS . 1-51

SYSUSERS . 1-52

SYSVIEWS . 1-53

SYSVIOLATIONS . 1-53

SYSXADATASOURCES . 1-54

SYSXASOURCETYPES . 1-54

SYSXTDDESC (IDS) . 1-54

SYSXTDTYPEAUTH (IDS) . 1-55

SYSXTDTYPES (IDS) . 1-55

Information Schema (IDS) . 1-56

Generating the Information Schema Views . 1-57

Accessing the Information Schema Views . 1-57

Structure of the Information Schema Views . 1-57

Chapter 2. Data Types . 2-1

In This Chapter . 2-2

Summary of Data Types . 2-2

Description of Data Types . 2-5

BIGINT . 2-5

BIGSERIAL . 2-5

BLOB (IDS) . 2-5

BOOLEAN (IDS) . 2-6

BYTE . 2-6

CHAR(n) . 2-7

CHARACTER(n) . 2-8

CHARACTER VARYING(m,r) . 2-8

CLOB (IDS) . 2-8

DATE . 2-9

DATETIME . 2-10

DEC . 2-12

DECIMAL . 2-12

Distinct (IDS) . 2-14

DOUBLE PRECISION . 2-15

FLOAT(n) . 2-15

iv IBM Informix Guide to SQL: Reference

IDSSECURITYLABEL . 2-15

INT . 2-16

INT8 . 2-16

INTEGER . 2-16

INTERVAL . 2-16

LIST(e) (IDS) . 2-18

LVARCHAR(m) (IDS) . 2-19

MONEY(p,s) . 2-20

MULTISET(e) (IDS) . 2-21

NCHAR(n) . 2-21

NUMERIC(p,s) . 2-22

NVARCHAR(m,r) . 2-22

Opaque (IDS) . 2-22

REAL . 2-22

ROW, Named (IDS) . 2-23

ROW, Unnamed (IDS) . 2-24

SERIAL(n) . 2-25

SERIAL8(n) . 2-26

SET(e) (IDS) . 2-27

SMALLFLOAT . 2-28

SMALLINT . 2-28

TEXT . 2-28

VARCHAR(m,r) . 2-30

Built-In Data Types . 2-31

Large-Object Data Types . 2-32

Time Data Types . 2-33

Extended Data Types (IDS) . 2-38

Complex Data Types . 2-38

Distinct Data Types . 2-40

Opaque Data Types . 2-40

Data Type Casting and Conversion . 2-41

Using Built-in Casts . 2-41

Using User-Defined Casts . 2-43

Determining Which Cast to Apply . 2-44

Casts for Distinct Types . 2-44

What Extended Data Types Can Be Cast? . 2-45

Operator Precedence . 2-45

Chapter 3. Environment Variables . 3-1

In This Chapter . 3-3

Types of Environment Variables . 3-3

Using Environment Variables on UNIX . 3-4

Where to Set Environment Variables on UNIX . 3-4

Setting Environment Variables in a Configuration File . 3-4

Setting Environment Variables at Login Time . 3-5

Syntax for Setting Environment Variables . 3-5

Unsetting Environment Variables . 3-6

Modifying an Environment-Variable Setting . 3-6

Viewing Your Environment-Variable Settings . 3-6

Checking Environment Variables with the chkenv Utility 3-6

Rules of Precedence . 3-7

Using Environment Variables on Windows . 3-8

Where to Set Environment Variables on Windows . 3-8

Environment Settings . 3-8

Rules of Precedence . 3-10

List of Environment Variables . 3-10

Environment Variables . 3-14

AC_CONFIG . 3-14

AFDEBUG . 3-14

ANSIOWNER (IDS) . 3-14

BIG_FET_BUF_SIZE (XPS) . 3-15

Contents v

CPFIRST . 3-15

DBACCNOIGN . 3-16

DBANSIWARN . 3-17

DBBLOBBUF . 3-17

DBCENTURY . 3-18

DBDATE . 3-20

DBDELIMITER . 3-22

DBEDIT . 3-22

DBFLTMASK . 3-23

DBLANG . 3-23

DBMONEY . 3-24

DBNLS (IDS) . 3-25

DBONPLOAD (IDS) . 3-26

DBPATH . 3-26

DBPRINT . 3-28

DBREMOTECMD (UNIX) . 3-28

DBSPACETEMP . 3-29

DBTEMP (IDS) . 3-30

DBTIME . 3-31

DBUPSPACE . 3-33

DEFAULT_ATTACH . 3-34

DELIMIDENT . 3-34

ENVIGNORE (UNIX) . 3-35

FET_BUF_SIZE . 3-36

GLOBAL_DETACH_INFORM (XPS) . 3-37

IBM_XPS_PARAMS (XPS) . 3-37

IFMX_CART_ALRM (XPS) . 3-38

IFMX_HISTORY_SIZE (XPS) . 3-38

IFMX_OPT_FACT_TABS (XPS) . 3-38

IFMX_OPT_NON_DIM_TABS (XPS) . 3-39

IFX_DEF_TABLE_LOCKMODE (IDS) . 3-40

IFX_DIRECTIVES . 3-40

IFX_EXTDIRECTIVES . 3-41

IFX_LONGID . 3-42

IFX_NETBUF_PVTPOOL_SIZE (UNIX) . 3-42

IFX_NETBUF_SIZE . 3-43

IFX_NO_TIMELIMIT_WARNING . 3-43

IFX_NODBPROC . 3-43

IFX_NOT_STRICT_THOUS_SEP . 3-43

IFX_ONTAPE_FILE_PREFIX . 3-44

IFX_PAD_VARCHAR (IDS) . 3-44

IFX_UPDDESC (IDS) . 3-44

IFX_XASTDCOMPLIANCE_XAEND . 3-45

IFX_XFER_SHMBASE . 3-45

IMCADMIN . 3-46

IMCCONFIG . 3-46

IMCSERVER . 3-46

INFORMIXC (UNIX) . 3-47

INFORMIXCONCSMCFG (IDS) . 3-47

INFORMIXCONRETRY . 3-47

INFORMIXCONTIME . 3-48

INFORMIXCPPMAP (IDS) . 3-49

INFORMIXDIR . 3-49

INFORMIXOPCACHE (IDS) . 3-49

INFORMIXSERVER . 3-50

INFORMIXSHMBASE (UNIX) . 3-51

INFORMIXSQLHOSTS . 3-51

INFORMIXSTACKSIZE . 3-52

INFORMIXTERM (UNIX) . 3-52

INF_ROLE_SEP (IDS) . 3-52

INTERACTIVE_DESKTOP_OFF (Windows) . 3-53

vi IBM Informix Guide to SQL: Reference

ISM_COMPRESSION . 3-54

ISM_DEBUG_FILE . 3-54

ISM_DEBUG_LEVEL . 3-54

ISM_ENCRYPTION . 3-54

ISM_MAXLOGSIZE . 3-55

ISM_MAXLOGVERS . 3-55

JAR_TEMP_PATH (IDS) . 3-55

JAVA_COMPILER (IDS) . 3-55

JVM_MAX_HEAP_SIZE (IDS) . 3-56

LD_LIBRARY_PATH (UNIX) . 3-56

LIBERAL_MATCH (XPS) . 3-56

LIBPATH (UNIX) . 3-57

NODEFDAC . 3-57

ONCONFIG . 3-57

OPTCOMPIND . 3-58

OPTMSG . 3-59

OPTOFC . 3-59

OPT_GOAL (IDS, UNIX) . 3-59

PATH . 3-60

PDQPRIORITY . 3-60

PLCONFIG (IDS) . 3-62

PLOAD_LO_PATH (IDS) . 3-62

PLOAD_SHMBASE (IDS) . 3-62

PSORT_DBTEMP . 3-63

PSORT_NPROCS . 3-63

RTREE_COST_ADJUST_VALUE (IDS) . 3-64

SHLIB_PATH (UNIX) . 3-65

STMT_CACHE (IDS) . 3-65

TERM (UNIX) . 3-65

TERMCAP (UNIX) . 3-66

TERMINFO (UNIX) . 3-66

THREADLIB (UNIX) . 3-67

TOBIGINT (XPS) . 3-67

USETABLEAME (IDS) . 3-67

XFER_CONFIG (XPS) . 3-67

Index of Environment Variables . 3-68

Appendix A. The stores_demo Database . A-1

Appendix B. The sales_demo and superstores_demo Databases B-1

Appendix C. Accessibility . C-1

Accessibility features for IBM Informix Dynamic Server . C-1

Accessibility Features . C-1

Keyboard Navigation . C-1

Related Accessibility Information . C-1

IBM and Accessibility . C-1

Dotted Decimal Syntax Diagrams . C-1

Notices . D-1

Trademarks . D-3

Index . X-1

Contents vii

viii IBM Informix Guide to SQL: Reference

Introduction

About This Publication . ix

Types of Users . ix

Software Dependencies . x

Assumptions About Your Locale . x

Demonstration Database . x

What’s New in SQL Reference for Dynamic Server, Version 11.50 xi

Documentation Conventions . xi

Typographical Conventions . xi

Feature, Product, and Platform Markup . xii

Example Code Conventions . xii

Additional Documentation . xiii

Compliance with Industry Standards . xiii

Syntax Diagrams . xiii

How to Read a Command-Line Syntax Diagram . xiv

Keywords and Punctuation . xv

Identifiers and Names . xvi

How to Provide Documentation Feedback . xvi

About This Publication

This publication includes information about the system catalog tables, data types,

and environment variables that IBM Informix products use.

This publication is one of a series of publications that discusses the Informix®

implementation of SQL. The IBM Informix Guide to SQL: Syntax contains all the

syntax descriptions for SQL and stored procedure language (SPL). The IBM

Informix Guide to SQL: Tutorial shows how to use basic and advanced SQL and SPL

routines to access and manipulate the data in your databases. The IBM Informix

Database Design and Implementation Guide shows how to use SQL to implement and

manage your databases.

See the documentation notes files for a list of the publications in the

documentation set of your Informix database server.

Types of Users

This publication is written for the following users:

v Database users

v Database administrators

v Database server administrators

v Database-application programmers

v Performance engineers

This publication assumes that you have the following background:

v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides

v Some experience working with relational databases or exposure to database

concepts

v Some experience with computer programming

© Copyright IBM Corp. 1996, 2008 ix

v Some experience with database server administration, operating-system

administration, or network administration

If you have limited experience with relational databases, SQL, or your operating

system, refer to the IBM Informix Dynamic Server Getting Started Guide for your

database server for a list of supplementary titles.

Software Dependencies

This publication is written with the assumption that you are using one of the

following database servers:

v IBM Informix Dynamic Server (IDS), Version 11.50

v IBM Informix Extended Parallel Server, Version 8.50

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All

the information related to character set, collation, and representation of numeric

data, currency, date, and time is brought together in a single environment, called a

Global Language Support (GLS) locale.

This publication assumes that your database uses the default locale. This default is

en_us.8859-1 (ISO 8859-1) on UNIX® platforms or en_us.1252 (Microsoft® 1252) in

Windows environments. This locale supports U.S. English format conventions for

displaying and entering date, time, number, and currency values. It also supports

the ISO 8859-1 (on UNIX and Linux®) or Microsoft 1252 (on Windows) code set,

which includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or in SQL identifiers, or if

you plan to use other collation rules for sorting character data, you need to specify

the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, and for additional syntax

and other considerations related to GLS locales, see the IBM Informix GLS User’s

Guide.

Demonstration Database

The DB–Access utility, which is provided with the database server products,

includes one or more of the following demonstration databases:

v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM

Informix publications are based on the stores_demo database.

Extended Parallel Server

v The sales_demo database illustrates a dimensional schema for data-

warehousing applications. For conceptual information about dimensional data

modeling, see the IBM Informix Database Design and Implementation Guide.

End of Extended Parallel Server

Dynamic Server

v The superstores_demo database illustrates an object-relational schema. The

superstores_demo database contains examples of extended data types, type and

x IBM Informix Guide to SQL: Reference

table inheritance, and user-defined routines.

End of Dynamic Server

For information about how to create and populate the demonstration databases,

see the IBM Informix DB–Access User’s Guide. For descriptions of the databases and

their contents, see Appendix A, “The stores_demo Database,” on page A-1 and

Appendix B, “The sales_demo and superstores_demo Databases,” on page B-1.

The scripts that you use to install the demonstration databases reside in the

$INFORMIXDIR/bin directory on UNIX platforms and in the

%INFORMIXDIR%\bin directory in Windows environments.

What’s New in SQL Reference for Dynamic Server, Version 11.50

For a comprehensive list of new features for this release, see the IBM Informix

Dynamic Server Getting Started Guide. The following changes and enhancements are

relevant to this publication.

 Table 1. What’s New in IBM Informix Guide to SQL: Reference

Overview Reference

BIGINT and BIGSERIAL data types

This release introduces two ANSI-standard

data types, BIGINT and BIGSERIAL. These

data types have the same ranges as the

existing INT8 and SERIAL8 data types, and

have storage and computational advantages.

“BIGINT” on page 2-5

“BIGSERIAL” on page 2-5

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM® Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Syntax diagrams

v Command-line conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

Introduction xi

Convention Meaning

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement. If you are using DB–Access, you must delimit multiple

statements with semicolons.

xii IBM Informix Guide to SQL: Reference

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/
pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

Syntax Diagrams

This guide uses syntax diagrams built with the following components to describe

the syntax for statements and all commands other than system-level commands.

 Table 2. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next

line.

>----------------------- Statement continues from

previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---

 ’------LOCAL------’

Optional item.

Introduction xiii

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/

Table 2. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

---+-----ALL-------+---

 +--DISTINCT-----+

 ’---UNIQUE------’

Required item with choice.

One and only one item must

be present.

---+------------------+---

 +--FOR UPDATE-----+

 ’--FOR READ ONLY--’

Optional items with choice

are shown below the main

line, one of which you might

specify.

 .---NEXT---------.

----+----------------+---

 +---PRIOR--------+

 ’---PREVIOUS-----’

The values below the main

line are optional, one of

which you might specify. If

you do not specify an item,

the value above the line will

be used as the default.

 .-------,-----------.

 V |

---+-----------------+---

 +---index_name---+

 ’---table_name---’

Optional items. Several items

are allowed; a comma must

precede each repetition.

>>-| Table Reference |->< Reference to a syntax

segment.

Table Reference

|--+-----view--------+--|

 +------table------+

 ’----synonym------’

Syntax segment.

How to Read a Command-Line Syntax Diagram

The following command-line syntax diagram uses some of the elements listed in

the table in Syntax Diagrams.

Creating a No-Conversion Job

�� onpladm create job job

-p

project
 -n -d device -D database �

� -t table �

�

�

(1)

Setting

the

Run

Mode

-S

server

-T

target

��

xiv IBM Informix Guide to SQL: Reference

Notes:

1 See page Z-1

The second line in this diagram has a segment named “Setting the Run Mode,”

which according to the diagram footnote, is on page Z-1. If this was an actual

cross-reference, you would find this segment in on the first page of Appendix Z.

Instead, this segment is shown in the following segment diagram. Notice that the

diagram uses segment start and end components.

Setting the Run Mode:

-f

d

p

a

 l

c

u

n

N

To see how to construct a command correctly, start at the top left of the main

diagram. Follow the diagram to the right, including the elements that you want.

The elements in this diagram are case sensitive because they illustrate utility

syntax. Other types of syntax, such as SQL, are not case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Type onpladm create job and then the name of the job.

2. Optionally, type -p and then the name of the project.

3. Type the following required elements:

v -n

v -d and the name of the device

v -D and the name of the database

v -t and the name of the table
4. Optionally, you can choose one or more of the following elements and repeat

them an arbitrary number of times:

v -S and the server name

v -T and the target server name

v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally

type l or u.
5. Follow the diagram to the terminator.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except

system-level commands. When a keyword appears in a syntax diagram, it is

shown in uppercase letters. When you use a keyword in a command, you can

write it in uppercase or lowercase letters, but you must spell the keyword exactly

as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as

shown in the syntax diagrams.

Introduction xv

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax diagrams

and examples. You can replace a variable with an arbitrary name, identifier, or

literal, depending on the context. Variables are also used to represent complex

syntax elements that are expanded in additional syntax diagrams. When a variable

appears in a syntax diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a

simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables

column_name and table_name with the name of a specific column and table.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

Feedback at the bottom of the page, fill out the form, and submit your feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xvi IBM Informix Guide to SQL: Reference

mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

Chapter 1. System Catalog Tables

In This Chapter . 1-2

Objects That the System Catalog Tables Track . 1-2

Using the System Catalog . 1-2

Structure of the System Catalog . 1-8

SYSAGGREGATES (IDS) . 1-10

SYSAMS (IDS) . 1-11

SYSATTRTYPES (IDS) . 1-13

SYSBLOBS . 1-13

SYSCASTS (IDS) . 1-14

SYSCHECKS . 1-15

SYSCHECKUDRDEP (IDS) . 1-15

SYSCOLATTRIBS (IDS) . 1-15

SYSCOLAUTH . 1-16

SYSCOLDEPEND . 1-17

SYSCOLUMNS . 1-18

SYSCONSTRAINTS . 1-21

SYSDEFAULTS . 1-22

SYSDEPEND . 1-23

SYSDIRECTIVES (IDS) . 1-23

SYSDISTRIB . 1-24

SYSDOMAINS (IDS) . 1-25

SYSERRORS (IDS) . 1-25

SYSEXTCOLS (XPS) . 1-26

SYSEXTDFILES (XPS) . 1-26

SYSEXTERNAL (XPS) . 1-27

SYSFRAGAUTH (IDS) . 1-27

SYSFRAGMENTS . 1-28

SYSINDEXES . 1-30

SYSINDICES (IDS) . 1-31

SYSINHERITS (IDS) . 1-32

SYSLANGAUTH (IDS) . 1-32

SYSLOGMAP (IDS) . 1-33

SYSNEWDEPEND (XPS) . 1-33

SYSOBJSTATE (IDS) . 1-33

SYSOPCLASSES (IDS) . 1-34

SYSOPCLSTR . 1-35

SYSPROCAUTH . 1-36

SYSPROCBODY . 1-36

SYSPROCCOLUMNS . 1-37

SYSPROCEDURES . 1-37

SYSPROCPLAN . 1-40

SYSREFERENCES . 1-41

SYSREPOSITORY (XPS) . 1-41

SYSROLEAUTH . 1-42

SYSROUTINELANGS (IDS) . 1-42

SYSSECLABELCOMPONENTS . 1-42

SYSSECLABELCOMPONENTELEMENTS . 1-43

SYSSECPOLICIES . 1-43

SYSSECPOLICYCOMPONENTS . 1-44

SYSSECPOLICYEXEMPTIONS . 1-44

SYSSECLABELS . 1-44

SYSSECLABELNAMES . 1-45

SYSSECLABELAUTH . 1-45

SYSSEQUENCES (IDS) . 1-45

SYSSYNONYMS . 1-45

© Copyright IBM Corp. 1996, 2008 1-1

SYSSYNTABLE . 1-46

SYSTABAMDATA (IDS) . 1-46

SYSTABAUTH . 1-47

SYSTABLES . 1-48

SYSTRACECLASSES (IDS) . 1-50

SYSTRACEMSGS (IDS) . 1-50

SYSTRIGBODY . 1-51

SYSTRIGGERS . 1-51

SYSUSERS . 1-52

SYSVIEWS . 1-53

SYSVIOLATIONS . 1-53

SYSXADATASOURCES . 1-54

SYSXASOURCETYPES . 1-54

SYSXTDDESC (IDS) . 1-54

SYSXTDTYPEAUTH (IDS) . 1-55

SYSXTDTYPES (IDS) . 1-55

Information Schema (IDS) . 1-56

Generating the Information Schema Views . 1-57

Accessing the Information Schema Views . 1-57

Structure of the Information Schema Views . 1-57

In This Chapter

The system catalog consists of tables that describe the structure of the database.

Sometimes called the data dictionary, these tables contain everything that the

database knows about itself. Each system catalog table contains specific

information about elements in the database.

This chapter provides information about the structure, content, and use of the

system catalog tables. It also discusses the Information Schema, which provides

information about the tables, views, and columns on the current database server.

Objects That the System Catalog Tables Track

The system catalog tables maintain information about the database, including the

following categories of database objects:

v Tables, views, and synonyms

v Columns, constraints, indexes, and fragments

v Triggers

v Procedures, functions, routines, and associated messages

v Authorized users, roles, and privileges to access database objects

v Data types and casts (IDS)

v Aggregate functions (IDS)

v Access methods and operator classes (IDS)

v Sequence objects (IDS)

v External optimizer directives (IDS)

v Inheritance relationships (IDS)

Using the System Catalog

Informix database servers automatically generate the system catalog tables when

you create a database. You can query the system catalog tables as you would query

any other table in the database. The system catalog tables for a newly created

database reside in a common area of the disk called a dbspace. Every database has

1-2 IBM Informix Guide to SQL: Reference

its own system catalog tables. All tables and views in the system catalog have the

prefix sys (for example, the systables system catalog table).

Not all tables with the prefix sys are true system catalog tables. For example, the

syscdr database supports the Enterprise Replication feature. Non-catalog tables,

however, have a tabid >= 100. System catalog tables all have a tabid < 100. See

later in this section and “SYSTABLES” on page 1-48 for more information about

tabid numbers that the database server assigns to tables, views, synonyms, and (in

Dynamic Server) sequence objects.

Tip: Do not confuse the system catalog tables of a database with the tables in the

sysmaster, sysutils, syscdr, or (for Dynamic Server) the sysuser databases.

The names of tables in those databases also have the sys prefix, but they

contain information about an entire database server, which might manage

multiple databases. Information in the sysmaster, sysutils, syscdr, and

sysuser tables is primarily useful for database server administrators (DBSAs).

See also the IBM Informix Administrator’s Guide and IBM Informix

Administrator’s Reference.

The database server accesses the system catalog constantly. Each time an SQL

statement is processed, the database server accesses the system catalog to

determine system privileges, add or verify table or column names, and so on.

For example, the following CREATE SCHEMA block adds the customer table, with

its indexes and privileges, to the stores_demo database. This block also adds a

view, california, which restricts the data of the customer table to only the first and

last names of the customer, the company name, and the telephone number for all

customers who reside in California.

CREATE SCHEMA AUTHORIZATION maryl

CREATE TABLE customer (customer_num SERIAL(101), fname CHAR(15),

 lname CHAR(15), company CHAR(20), address1 CHAR(20), address2 CHAR(20),

 city CHAR(15), state CHAR(2), zipcode CHAR(5), phone CHAR(18))

GRANT ALTER, ALL ON customer TO cathl WITH GRANT OPTION AS maryl

GRANT SELECT ON customer TO public

GRANT UPDATE (fname, lname, phone) ON customer TO nhowe

CREATE VIEW california AS

 SELECT fname, lname, company, phone FROM customer WHERE state = ’CA’

CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)

CREATE INDEX state_ix ON customer (state)

To process this CREATE SCHEMA block, the database server first accesses the

system catalog to verify the following information:

v The new table and view names do not already exist in the database. (If the

database is ANSI-compliant, the database server verifies that the new names do

not already exist for the specified owners.)

v The user has permission to create tables and grant user privileges.

v The column names in the CREATE VIEW and CREATE INDEX statements exist

in the customer table.

In addition to verifying this information and creating two new tables, the database

server adds new rows to the following system catalog tables:

v systables

v syscolumns

v sysviews

v systabauth

v syscolauth

Chapter 1. System Catalog Tables 1-3

v sysindexes

v sysindices (IDS)

The following two new rows of information are added to the systables system

catalog table after the CREATE SCHEMA block is run.

 Column Name First Row Second Row

tabname customer california

owner maryl maryl

partnum 16778361 0

tabid 101 102

rowsize 134 134

ncols 10 4

nindexes 2 0

nrows 0 0

created 01/26/2007 01/26/2007

version 1 0

tabtype T V

locklevel P B

npused 0 0

fextsize 16 0

nextsize 16 0

flags 0 0

site

dbname

Each table recorded in the systables system catalog table is assigned a tabid, a

system-assigned sequential number that uniquely identifies each table in the

database. The system catalog tables receive 2-digit tabid numbers, and the

user-created tables receive sequential tabid numbers that begin with 100.

The CREATE SCHEMA block adds 14 rows to the syscolumns system catalog

table. These rows correspond to the columns in the table customer and the view

california, as the following example shows.

1-4 IBM Informix Guide to SQL: Reference

colname tabid colno coltype collength colmin colmax

customer_num 101 1 262 4

fname 101 2 0 15

lname 101 3 0 15

company 101 4 0 20

address1 101 5 0 20

address2 101 6 0 20

city 101 7 0 15

state 101 8 0 2

zipcode 101 9 0 5

phone 101 10 0 18

fname 102 1 0 15

lname 102 2 0 15

company 102 3 0 20

phone 102 4 0 18

In the syscolumns table, each column within a table is assigned a sequential

column number, colno, that uniquely identifies the column within its table. In the

colno column, the fname column of the customer table is assigned the value 2 and

the fname column of the view california is assigned the value 1.

The colmin and colmax columns are empty. These columns contain values when a

column is the first key (or the only key) in an index, has no NULL or duplicate

values, and the UPDATE STATISTICS statement has been run.

The database server also adds rows to the sysviews system catalog table, whose

viewtext column contains each line of the CREATE VIEW statement that defines

the view. In that column, the x0 that precedes the column names in the statement

(for example, x0.fname) operates as an alias that distinguishes among the same

columns that are used in a self-join.

The CREATE SCHEMA block also adds rows to the systabauth system catalog

table. These rows correspond to the user privileges granted on customer and

california tables, as the following example shows.

 grantor grantee tabid tabauth

maryl public 101 su-idx--

maryl cathl 101 SU-IDXAR

maryl nhowe 101 --*-----

maryl 102 SU-ID---

The tabauth column specifies the table-level privileges granted to users on the

customer and california tables. This column uses an 8-byte pattern, such as s

(Select), u (Update), * (column-level privilege), i (Insert), d (Delete), x (Index), a

(Alter), and r (References), to identify the type of privilege. In this example, the

user nhowe has column-level privileges on the customer table. Where a hyphen (-

) appears, the user has not been granted the privilege whose position the hyphen

occupies within the tabauth value.

Chapter 1. System Catalog Tables 1-5

If the tabauth privilege code appears in uppercase (for example, S for Select), the

user has this privilege and can also grant it to others; but if the privilege code is

lowercase (for example, s for Select), the user cannot grant it to others.

In addition, three rows are added to the syscolauth system catalog table. These

rows correspond to the user privileges that are granted on specific columns in the

customer, table as the following example shows.

 grantor grantee tabid colno colauth

maryl nhowe 101 2 -u-

maryl nhowe 101 3 -u-

maryl nhowe 101 10 -u-

The colauth column specifies the column-level privileges that are granted on the

customer table. This column uses a 3-byte, pattern such as s (Select), u (Update),

and r (References), to identify the type of privilege. For example, the user nhowe

has Update privileges on the second column (because the colno value is 2) of the

customer table (indicated by tabid value of 101).

The CREATE SCHEMA block adds two rows to the sysindexes system catalog

table (the sysindices table for Dynamic Server). These rows correspond to the

indexes created on the customer table, as the following example shows.

1-6 IBM Informix Guide to SQL: Reference

idxname c_num_ix state_ix

owner maryl maryl

tabid 101 101

idxtype U D

clustered

part1 1 8

part2 0 0

part3 0 0

part4 0 0

part5 0 0

part6 0 0

part7 0 0

part8 0 0

part9 0 0

part10 0 0

part11 0 0

part12 0 0

part13 0 0

part14 0 0

part15 0 0

part16 0 0

levels

leaves

nunique

clust

idxflags

In this table, the idxtype column identifies whether the created index requires

unique values (U) or accepts duplicate values (D). For example, the c_num_ix index

on the customer.customer_num column is unique.

Accessing the System Catalog

Normal user access to the system catalog is read-only. Users with Connect or

Resource privileges cannot alter the catalog, but they can access data in the system

catalog tables on a read-only basis using standard SELECT statements.

For example, the following SELECT statement displays all the table names and

corresponding tabid codes of user-created tables in the database:

SELECT tabname, tabid FROM systables WHERE tabid > 99

When you use DB–Access, only the tables that you created are displayed. To

display the system catalog tables, enter the following statement:

SELECT tabname, tabid FROM systables WHERE tabid < 100

You can use the SUBSTR or SUBSTRING function to select only part of a source

string. To display the list of tables in columns, enter the following statement:

Chapter 1. System Catalog Tables 1-7

SELECT SUBSTR(tabname, 1, 18), tabid FROM systables

Although user informix can modify most system catalog tables, it is strongly

recommended that you do not update, delete, or insert any rows in them.

Modifying system catalog tables can destroy the integrity of the database. The

ALTER TABLE statement cannot modify the size of the next extent of system

catalog tables.

For certain catalog tables of Dynamic Server, however, it is valid to add entries to

the system catalog tables. For instance, in the case of the syserrors system catalog

table and the systracemsgs system catalog table, a DataBlade module developer

can directly insert entries that appear in these system catalog tables.

Updating System Catalog Data

In Informix database servers, the optimizer determines the most efficient strategy

for executing SQL queries. The optimizer allows you to query the database without

having to consider fully which tables to search first in a join or which indexes to

use. The optimizer uses information from the system catalog to determine the best

query strategy.

If you use the UPDATE STATISTICS statement to update the system catalog before

executing a query, you can ensure that the information provided to the optimizer is

current. When you delete or modify a table, the database server does not

automatically update the related statistical data in the system catalog. For example,

if you delete one or more rows in a table with the DELETE statement, the nrows

column in the systables system catalog table, which holds the number of rows for

that table, is not updated automatically.

The UPDATE STATISTICS statement causes the database server to recalculate data

in the systables, sysdistrib, syscolumns, and sysindexes (sysindices for Dynamic

Server) system catalog tables. After you run UPDATE STATISTICS, the systables

system catalog table holds the correct value in the nrows column. If you specify

MEDIUM or HIGH mode when you run UPDATE STATISTICS, the sysdistrib

system catalog table holds the updated data-distribution data.

Whenever you modify a data table extensively, use the UPDATE STATISTICS

statement to update data in the system catalog. For more information on the

UPDATE STATISTICS statement, see the IBM Informix Guide to SQL: Syntax.

Structure of the System Catalog

The following system catalog tables describe the structure of an Informix database.

Here X indicates whether IDS, XPS, or both support the table.

 System Catalog Table XPS IDS Page

sysaggregates X 1-10

sysams X 1-11

sysattrtypes X 1-13

sysblobs X X 1-13

syscasts X 1-14

syschecks X X 1-15

syscheckudrdep X 1-15

syscolattribs X 1-15

1-8 IBM Informix Guide to SQL: Reference

System Catalog Table XPS IDS Page

syscolauth X X 1-16

syscoldepend X X 1-17

syscolumns X X 1-18

sysconstraints X X 1-21

sysdefaults X X 1-22

sysdepend X X 1-23

sysdirectives X 1-23

sysdistrib X X 1-24

sysdomains X 1-25

syserrors X 1-25

sysextcols X 1-26

sysextdfiles X 1-26

sysexternal X 1-27

sysfragauth X 1-27

sysfragments X X 1-28

sysindexes X X 1-30

sysindices X 1-31

sysinherits X 1-32

syslangauth X 1-32

syslogmap X 1-33

sysnewdepend X 1-33

sysobjstate X 1-33

sysopclasses X 1-34

sysopclstr X X 1-35

sysprocauth X X 1-36

sysproccolumns X X 1-37

sysprocbody X X 1-36

sysprocedures X X 1-37

sysprocplan X X 1-40

sysreferences X X 1-41

sysrepository X 1-41

sysroleauth X X 1-42

sysroutinelangs X 1-42

sysseclabelcomponents X 1-42

sysseclabelcomponentelements X 1-43

syssecpolicies X 1-43

syssecpolicycomponents X 1-44

syssecpolicyexemptions X 1-44

sysseclabels X 1-44

sysseclabelnames X 1-45

sysseclabelauth X 1-45

Chapter 1. System Catalog Tables 1-9

System Catalog Table XPS IDS Page

syssequences X 1-45

syssynonyms X X 1-45

syssyntable X X 1-46

systabamdata X 1-46

systabauth X X 1-47

systables X X 1-48

systraceclasses X 1-50

systracemsgs X 1-50

systrigbody X X 1-51

systriggers X X 1-51

sysusers X X 1-52

sysviews X X 1-53

sysviolations X X 1-53

sysxadatasources X 1-54

sysxasourcetypes X 1-54

sysxtddesc X 1-54

systdtypeauth X 1-55

sysxtdtypes X 1-55

In the default database locale (U. S. English, ISO 8859-1 codeset), character column

types in these tables are CHAR and VARCHAR. For all other locales, character

column types are national character types, NCHAR and NVARCHAR. For

information about collation order of data types, see the IBM Informix GLS User’s

Guide. See also Chapter 2 of this publication.

SYSAGGREGATES (IDS)

The sysaggregates system catalog table records user-defined aggregates (UDAs).

The sysaggregates table has the following columns.

 Column Type Explanation

name VARCHAR(128) Name of the aggregate

owner CHAR(32) Name of the owner of the aggregate

aggid SERIAL Unique code identifying the aggregate

init_func VARCHAR(128) Name of initialization UDR

iter_func VARCHAR(128) Name of iterator UDR

combine_func VARCHAR(128) Name of combine UDR

final_func VARCHAR(128) Name of finalization UDR

handlesnulls BOOLEAN NULL-handling indicator:

t = handles NULLs

f = does not handle NULLs

Each user-defined aggregate has one entry in sysaggregates that is uniquely

identified by its identifying code (the aggid value). Only user-defined aggregates

(aggregates that are not built in) have entries in sysaggregates.

1-10 IBM Informix Guide to SQL: Reference

Both a simple index on the aggid column and a composite index on the name and

owner columns require unique values.

SYSAMS (IDS)

The sysams system catalog table contains information that is needed to use built-in

access methods as well as those created by the CREATE ACCESS METHOD

statement of SQL that is described in the IBM Informix Guide to SQL: Syntax. The

sysams table has the following columns.

 Column Type Explanation

am_name VARCHAR(128) Name of the access method

am_owner CHAR(32) Name of the owner of the access method

am_id INTEGER Unique identifying code for an access method

This corresponds to the am_id columns in the

systables, sysindices, and sysopclasses tables.

am_type CHAR(1) Type of access method:

P = Primary

S = Secondary

am_sptype CHAR(3) Types of spaces where the access method can exist:

A or a = all types: extspaces, dbspaces, and

sbspaces. If the access method is not user-defined

(that is, if it is built in or registered during database

creation by the server), it supports dbspaces.

D or d = dbspaces only

S or s = sbspaces only (smart-large-object space)

X or x = extspaces only

am_defopclass INTEGER Unique identifying code for default-operator class

Value is the opclassid from the entry for this

operator class in the sysopclasses table.

am_keyscan INTEGER Whether a secondary access method supports a key

scan

(An access method supports a key scan if it can

return a key as well as a rowid from a call to the

am_getnext function.)

(0 = FALSE; Non-zero = TRUE)

am_unique INTEGER Whether a secondary access method can support

unique keys

(0 = FALSE; Non-zero = TRUE)

am_cluster INTEGER Whether a primary access method supports

clustering

(0 = FALSE; Non-zero = TRUE)

am_rowids INTEGER Whether a primary access method supports rowids

(0 = FALSE; Non-zero = TRUE)

am_readwrite INTEGER Whether a primary access method can both read

and write

0 = access method is read-only

Non-zero = access method is read/write

am_parallel INTEGER Whether an access method supports parallel

execution

(0 = FALSE; Non-zero = TRUE)

Chapter 1. System Catalog Tables 1-11

Column Type Explanation

am_costfactor SMALLFLOAT The value to be multiplied by the cost of a scan in

order to normalize it to costing done for built-in

access methods

The scan cost is the output of the am_scancost

function.

am_create INTEGER The routine specified for the AM_CREATE purpose

for this access method

Value = procid for the routine in the sysprocedures

table.

am_drop INTEGER The routine specified for the AM_DROP purpose

function for this access method

am_open INTEGER The routine specified for the AM_OPEN purpose

function for this access method

am_close INTEGER The routine specified for the AM_CLOSE purpose

function for this access method

am_insert INTEGER The routine specified for the AM_INSERT purpose

function for this access method

am_delete INTEGER The routine specified for the AM_DELETE purpose

function for this access method

am_update INTEGER The routine specified for the AM_UPDATE purpose

function for this access method

am_stats INTEGER The routine specified for the AM_STATS purpose

function for this access method

am_scancost INTEGER The routine specified for the AM_SCANCOST

purpose function for this access method

am_check INTEGER The routine specified for the AM_CHECK purpose

function for this access method

am_beginscan INTEGER Routine specified for the AM_BEGINSCAN purpose

function for this access method

am_endscan INTEGER The routine specified for the AM_ENDSCAN

purpose function for this access method

am_rescan INTEGER The routine specified for the AM_RESCAN purpose

function for this access method

am_getnext INTEGER The routine specified for the AM_GETNEXT

purpose function for this access method

am_getbyid INTEGER The routine specified for the AM_GETBYID purpose

function for this access method

am_build INTEGER The routine specified for the AM_BUILD purpose

function for this access method

am_init INTEGER The routine specified for the AM_INIT purpose

function for this access method

am_truncate INTEGER The routine specified for the AM_TRUNCATE

purpose function for this access method

For each of the nearly 20 columns that follow am_costfactor, the value is the

sysprocedures.procid value for the corresponding routine.

The am_sptype column can have multiple entries. For example:

1-12 IBM Informix Guide to SQL: Reference

v A means the access method supports extspaces and sbspaces. If the access

method is built-in, such as a B-tree, it also supports dbspaces.

v DS means the access method supports dbspaces and sbspaces.

v sx means the access method supports sbspaces and extspaces.

A composite index on the am_name and am_owner columns in this table allows

only unique values. The am_id column has a unique index.

For information about access method functions, refer to the documentation of your

access method.

SYSATTRTYPES (IDS)

The sysattrtypes system catalog table contains information about members of a

complex data type. Each row of sysattrtypes contains information about elements

of a collection data type or fields of a row data type.

The sysattrtypes table has the following columns.

 Column Type Explanation

extended_id INTEGER Identifying code of an extended data type

Value is the same as in the sysxtdtypes table

(“SYSXTDTYPES (IDS)” on page 1-55).

seqno SMALLINT Identifying code of an entry having extended_id type

levelno SMALLINT Position of member in collection hierarchy

parent_no SMALLINT Value in the seqno column of the complex data type

that contains this member

fieldname VARCHAR(128) Name of the field in a row type

Null for other complex data types

fieldno SMALLINT Field number sequentially assigned by system (from

left to right within each row type)

type SMALLINT Code for the data type

See the description of syscolumns.coltype (page 1-18).

length SMALLINT Length (in bytes) of the member

xtd_type_id INTEGER Code identifying this data type

See the description of sysxtdtypes.extended_id

(“SYSXTDTYPES (IDS)” on page 1-55).

Two indexes on the extended_id column and the xtd_type_id column allow

duplicate values. A composite index on the extended_id and seqno columns

allows only unique values.

SYSBLOBS

The sysblobs system catalog table specifies the storage location of BYTE and TEXT

column values. Its name is based on a legacy term for BYTE and TEXT columns,

blobs (also known as simple large objects), and does not refer to the BLOB data type

of Dynamic Server. The sysblobs table contains one row for each BYTE or TEXT

column, and has the following columns.

Chapter 1. System Catalog Tables 1-13

Column Type Explanation

spacename VARCHAR(128) Name of partition, dbspace, or family

type CHAR(1) Code identifying the type of storage media:

M = Magnetic

O = Optical (IDS)

tabid INTEGER Code identifying the table

colno SMALLINT Column number within its table

A composite index on tabid and colno allows only unique values.

For information about the location and size of chunks of blobspaces, dbspaces, and

sbspaces for TEXT, BYTE, BLOB, and CLOB columns, see the IBM Informix

Administrator’s Guide and the IBM Informix Administrator’s Reference.

SYSCASTS (IDS)

The syscasts system catalog table describes the casts in the database. It contains

one row for each built-in cast, each implicit cast, and each explicit cast that a user

defines. The syscasts table has the following columns.

 Column Type Explanation

owner CHAR(32) Owner of cast (user informix for built-in casts and

user name for implicit and explicit casts)

argument_type SMALLINT Source data type on which the cast operates

argument_xid INTEGER Code for the source data type specified in the

argument_type column

result_type SMALLINT Code for the data type returned by the cast

result_xid INTEGER Data type code of the data type named in the

result_type column

routine_name VARCHAR(128) Function or procedure implementing the cast

routine_owner CHAR(32) Name of owner of the function or procedure

specified in the routine_name column

class CHAR(1) Type of cast:

E = Explicit cast

I = Implicit cast

S = Built-in cast

If routine_name and routine_owner have NULL values, this indicates that the cast

is defined without a routine. This can occur if both of the data types specified in

the argument_type and result_type columns have the same length and alignment,

and are passed by reference, or passed by value.

A composite index on columns argument_type, argument_xid, result_type, and

result_xid allows only unique values. A composite index on columns result_type

and result_xid allows duplicate values.

1-14 IBM Informix Guide to SQL: Reference

SYSCHECKS

The syschecks system catalog table describes each check constraint defined in the

database. Because the syschecks table stores both the ASCII text and a binary

encoded form of the check constraint, it contains multiple rows for each check

constraint. The syschecks table has the following columns.

 Column Type Explanation

constrid INTEGER Unique code identifying the constraint

type CHAR(1) Form in which the check constraint is stored:

B = Binary encoded

s = Select

T = Text

seqno SMALLINT Line number of the check constraint

checktext CHAR(32) Text of the check constraint

The text in the checktext column associated with B type in the type column is in

computer-readable format. To view the text associated with a particular check

constraint, use the following query with the appropriate constrid code:

SELECT * FROM syschecks WHERE constrid=10 AND type=’T’

Each check constraint described in the syschecks table also has its own row in the

sysconstraints table.

A composite index on the constrid, type, and seqno columns allows only unique

values.

SYSCHECKUDRDEP (IDS)

The syscheckudrdep system catalog table describes each check constraint that is

referenced by a user-defined routine (UDR) in the database. The syscheckudrdep

table has the following columns.

 Column Type Explanation

udr_id INTEGER Unique code identifying the UDR

constraint_id INTEGER Unique code identifying the check constraint

Each check constraint described in the syscheckudrdep table also has its own row

in the sysconstraints system catalog table, where the constrid column has the same

value as the constraint_id column of syscheckudrdep.

A composite index on the udr_id and constraint_id columns requires that

combinations of these values be unique.

SYSCOLATTRIBS (IDS)

The syscolattribs system catalog table describes the characteristics of smart large

objects, namely CLOB and BLOB data types. It contains one row for each sbspace

listed in the PUT clause of the CREATE TABLE statement.

 Column Type Explanation

tabid INTEGER Code uniquely identifying the table

Chapter 1. System Catalog Tables 1-15

Column Type Explanation

colno SMALLINT Number of the column that contains the smart large object

extentsize INTEGER Pages in smart-large-object extent, expressed in kilobytes

flags INTEGER Integer representation of the combination (by addition) of hexadecimal values

of the following parameters:

LO_NOLOG

(0x00000001 = 1)

The smart large object is not

logged.

LO_LOG

(0x00000010 = 2)

Logging of smart large objects

conforms to current log mode of

the database.

LO_KEEP_LASTACCESS_TIME

(0x00000100 = 4)

A record is kept of the most

recent access of this

smart-large-object column by a

user.

LO_NOKEEP_LASTACCESS_TIME

(0x00001000 = 8)

No record is kept of the most

recent access of this

smart-large-object column by a

user.

HI_INTEG

(0x00010000= 16)

Data pages have headers and

footers to detect incomplete

writes and data corruption.

MODERATE_INTEG

(Not available at this time)

Data pages do not have headers

and footers.

flags1 INTEGER Reserved for future use

sbspace VARCHAR(128) Name of the sbspace

A composite index on the tabid, colno, and sbspace columns allows only unique

combinations of these values.

SYSCOLAUTH

The syscolauth system catalog table describes each set of privileges granted on a

column. It contains one row for each set of column privileges granted in the

database. The syscolauth table has the following columns.

 Column Type Explanation

grantor VARCHAR(32) Name of the grantor of privilege

grantee VARCHAR(32) Name of the grantee of privilege

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Column number within its table

colauth CHAR(3) 3-byte pattern that specifies column privileges:

s or S = Select

u or U = Update

r or R = References

If the colauth privilege code is uppercase (for example, S for Select), a user who

has this privilege can also grant it to others. If the colauth privilege code is

lowercase (for example, s for Select), the user who has this privilege cannot grant

it to others. A hyphen (-) indicates the absence of the privilege corresponding to

that position within the colauth pattern.

1-16 IBM Informix Guide to SQL: Reference

A composite index on the tabid, grantor, grantee, and colno columns allows only

unique values. A composite index on the tabid and grantee columns allows

duplicate values.

SYSCOLDEPEND

The syscoldepend system catalog table tracks the table columns specified in check

and NOT NULL constraints. Because a check constraint can involve more than one

column in a table, the syscoldepend table can contain multiple rows for each check

constraint; one row is created for each column involved in the constraint. The

syscoldepend table has the following columns.

 Column Type Explanation

constrid INTEGER Code uniquely identifying the constraint

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Column number within the table

A composite index on the constrid, tabid, and colno columns allows only unique

values. A composite index on the tabid and colno columns allows duplicate

values.

See also the syscheckudrdep system catalog table in “SYSCHECKUDRDEP (IDS)”

on page 1-15, which lists every check constraint that is referenced by a

user-defined routine.

See also the sysnewdepend table in “SYSNEWDEPEND (XPS)” on page 1-33,

which describes the column dependencies of generalized-key indexes.

See also the sysreferences table in “SYSREFERENCES” on page 1-41, which

describes dependencies of referential constraints.

Chapter 1. System Catalog Tables 1-17

SYSCOLUMNS

The syscolumns system catalog table describes each column in the database. One

row exists for each column that is defined in a table or view.

 Column Type Explanation

colname VARCHAR(128) Column name

tabid INTEGER Identifying code of table containing the column

colno SMALLINT Column number

The system sequentially assigns this (from left to right

within each table).

coltype SMALLINT Code indicating the data type of the column:

0 = CHAR

1 = SMALLINT

2 = INTEGE R

3 = FLOAT

4 = SMALLFLOAT

5 = DECIMAL

6 = SERIAL *

7 = DATE

8 = MONEY

9 = NULL

10 = DATETIME

11 = BYTE

12 = TEXT

13 = VARCHAR

14 = INTERVAL

15 = NCHAR

16 = NVARCHAR

17 = INT8

18 = SERIAL8 *

19 = SET

20 = MULTISET

21 = LIST

22 = Unnamed ROW

40 = Variable-length

opaque type

4118 = Named ROW

collength SMALLINT Column length (in bytes)

colmin INTEGER Minimum column length (in bytes)

colmax INTEGER Maximum column length (in bytes)

extended_id
(IDS)

INTEGER Data type code, from the sysxtdtypes table, of the

data type specified in the coltype column

SECLABLID INTEGER The label ID of the security label associated with the

column if it is a protected column. Null otherwise.

* In DB–Access, an offset value of 256 is always added to these coltype codes

because DB–Access sets SERIAL and SERIAL8 columns to NOT NULL.

Extended Parallel Server does not support opaque data types, nor the complex

data types SET, MULTISET, LIST, unnamed and named ROW.

A composite index on tabid and colno allows only unique values.

The coltype codes listed on the previous page can be incremented by bitmaps

showing the following features of the column.

Bit Value Significance When Bit Is Set

0x0100 NULL values are not allowed

0x0200 Value is from a host variable

0x0400 Float-to-decimal for networked database server

0x0800 DISTINCT data type

0x1000 Named ROW type

0x2000 DISTINCT type from LVARCHAR base type

1-18 IBM Informix Guide to SQL: Reference

0x4000 DISTINCT type from BOOLEAN base type

0x8000 Collection is processed on client system

 For example, the coltype value 4118 for named row types is the decimal

representation of the hexadecimal value 0x1016, which is the same as the

hexadecimal coltype value for an unnamed row type (0 x 016), with the

named-row-type bit set. (The file $INFORMIXDIR/incl/esql/sqltypes.h contains

additional information about syscolumns.coltype codes.)

NOT NULL Constraints

Similarly, the coltype value is incremented by 256 if the column does not allow

NULL values. To determine the data type for such columns, subtract 256 from the

value and evaluate the remainder, based on the possible coltype values. For

example, if the coltype value is 262, subtracting 256 leaves a remainder of 6,

indicating that the column has a SERIAL data type.

Storing the Column Data Type

The database server stores the coltype value as bitmap, as listed in

“SYSCOLUMNS” on page 1-18.

Opaque Data Types (IDS)

The BOOLEAN, BLOB, CLOB, and LVARCHAR data types are implemented by the

database server as built-in opaque data types.

A built-in opaque data type is one for which the database server provides the type

definition. Because these data types are built-in opaque types, they do not have a

unique coltype value. Instead, they have one of the coltype values for opaque

types: 41 (fixed-length opaque type), or 40 (varying-length opaque type). The

different fixed-length opaque types are distinguished by the extended_id column

in the sysxtdtypes system catalog table.

The following are the coltype values for the built-in opaque data types.

 Predefined Data Type Value for coltype Column

BLOB

CLOB

BOOLEAN

LVARCHAR

41

41

41

40

Storing Column Length

The collength column value depends on the data type of the column.

Integer-Based Data Types

A collength value for a BIGINT, BIGSERIAL, DATE, INTEGER, INT8, SERIAL,

SERIAL8, or SMALLINT column is machine-independent. The database server uses

the following lengths for these integer-based data types of the SQL language.

Chapter 1. System Catalog Tables 1-19

Integer-Based Data Types Length (in Bytes)

SMALLINT 2

DATE

INTEGER

SERIAL

4

4

4

INT8

SERIAL8

10 (IDS), 8 (XPS)

10 (IDS), 8 (XPS)

BIGINT

BIGSERIAL

8

8

Varying-Length Character Data Types

For Dynamic Server columns of the LVARCHAR type, collength has the value of

max from the data type declaration, or 2048 if no maximum was specified.

For VARCHAR or NVARCHAR columns, the max_size and min_space values are

encoded in the collength column using one of these formulas:

v If the collength value is positive:

collength = (min_space * 256) + max_size

v If the collength value is negative:

collength + 65536 = (min_space * 256) + max_size

Time Data Types

As noted previously, DATE columns have a value of 4 in the collength column.

For columns of type DATETIME or INTERVAL, collength is determined using the

following formula:

(length * 256) + (first_qualifier * 16) + last_qualifier

The length is the physical length of the DATETIME or INTERVAL field, and

first_qualifier and last_qualifier have values that the following table shows.

 Field Qualifier Value Field Qualifier Value

YEAR 0 FRACTION(1) 11

MONTH 2 FRACTION(2) 12

DAY 4 FRACTION(3) 13

HOUR 6 FRACTION(4) 14

MINUTE 8 FRACTION(5) 15

SECOND 10

For example, if a DATETIME YEAR TO MINUTE column has a length of 12 (such

as YYYY:DD:MO:HH:MI), a first_qualifier value of 0 (for YEAR), and a last_qualifier

value of 8 (for MINUTE), then the collength value is 3080 (from (256 * 12) + (0

* 16) + 8).

Fixed-Point Data Types

The collength value for a MONEY or DECIMAL (p, s) column can be calculated

using the following formula:

(precision * 256) + scale

1-20 IBM Informix Guide to SQL: Reference

Simple-Large-Object Data Types

If the data type of the column is BYTE or TEXT, collength holds the length of the

descriptor.

Storing Maximum and Minimum Values

The colmin and colmax column values hold the second-smallest and

second-largest data values in the column, respectively. For example, if the values in

an indexed column are 1, 2, 3, 4, and 5, the colmin value is 2 and the colmax value

is 4. Storing the second-smallest and second-largest data values lets the database

server make assumptions about the range of values in a given column and, in turn,

further optimize search strategies.

The colmin and colmax columns contain values only if the column is indexed and

you have run the UPDATE STATISTICS statement. If you store BYTE or TEXT data

in the tblspace, the colmin value is -1.

The colmin and colmax columns are valid only for data types that fit into four

bytes: SMALLFLOAT, SMALLINT, INTEGER, and the first four bytes of CHAR.

The values for all other noninteger column types are the initial four bytes of the

maximum or minimum value, which are treated as integers.

It is better to use UPDATE STATISTICS MEDIUM than to depend on colmin and

colmax values. UPDATE STATISTICS MEDIUM gives better information and is

valid for all data types.

Dynamic Server does not calculate colmin and colmax values for user-defined data

types. These columns, however, have values for user-defined data types if a

user-defined secondary access method supplies them.

SYSCONSTRAINTS

The sysconstraints system catalog table lists the constraints placed on the columns

in each database table. An entry is also placed in the sysindexes system catalog

table (or sysindices view for Dynamic Server) for each unique, primary key, or

referential constraint that does not already have a corresponding entry in

sysindexes or sysindices. Because indexes can be shared, more than one constraint

can be associated with an index. The sysconstraints table has the following

columns.

Chapter 1. System Catalog Tables 1-21

Column Type Explanation

constrid SERIAL Code uniquely identifying the constraint

constrname VARCHAR(128) Name of the constraint

owner VARCHAR(32) Name of the owner of the constraint

tabid INTEGER Code uniquely identifying the table

constrtype CHAR(1) Code identifying the constraint type:

C = Check constraint

N = Not NULL

P = Primary key

R = Referential

T = Table

U = Unique

idxname VARCHAR(128) Name of index corresponding to constraint

collation

(IDS)

CHAR(32) Collating order at the time when the constraint was

created.

A composite index on the constrname and owner columns allows only unique

values. An index on the tabid column allows duplicate values, and an index on the

constrid column allows only unique values.

For check constraints (where constrtype = C), the idxname is always NULL.

Additional information about each check constraint is contained in the syschecks

and syscoldepend system catalog tables.

SYSDEFAULTS

The sysdefaults system catalog table lists the user-defined defaults that are placed

on each column in the database. One row exists for each user-defined default

value. The sysdefaults table has the following columns.

 Column Type Explanation

tabid INTEGER Code uniquely identifying a table

colno SMALLINT Code uniquely identifying a column

type CHAR(1) Code identifying the type of default value:

C = Current

L = Literal value

N = NULL

S = Dbservername or Sitename

T = Today

U = User

default CHAR(256) If sysdefaults.type = L, a literal default value

class (IDS) CHAR(1) Code identifying what kind of column:

T = table

t = ROW type

If no default is specified explicitly in the CREATE TABLE or the ALTER TABLE

statement, then no entry exists for that column in the sysdefaults table.

If you specify a literal for the default value, it is stored in the default column as

ASCII text. If the literal value is not of one of the data types listed in the next

paragraph, the default column consists of two parts. The first part is the 6-bit

1-22 IBM Informix Guide to SQL: Reference

representation of the binary value of the default value structure. The second part is

the default value in ASCII text. A blank space separates the two parts.

If the data type of the column is not CHAR, NCHAR, NVARCHAR, or VARCHAR,

or (for Dynamic Server) BOOLEAN or LVARCHAR, a binary representation of the

default value is encoded in the default column.

A composite index on the tabid, colno, and class columns allows only unique

values. (For Extended Parallel Server, this index omits the class column.)

SYSDEPEND

The sysdepend system catalog table describes how each view or table depends on

other views or tables. One row exists in this table for each dependency, so a view

based on three tables has three rows. The sysdepend table has the following

columns.

 Column Type Explanation

btabid INTEGER Code uniquely identifying the base table or view

btype CHAR(1) Base object type:

T = Table

V = View

dtabid INTEGER Code uniquely identifying a dependent table or view

dtype CHAR(1) Code for the type of dependent object; currently, only view

(V = View) is implemented

The btabid and dtabid columns are indexed and allow duplicate values.

SYSDIRECTIVES (IDS)

The sysdirectives table stores external optimizer directives that can be applied to

queries. Whether queries in client applications can use these optimizer directives

depends on the setting of the IFX_EXTDIRECTIVES environment variable on the

client system, as described in Chapter 3, and on the EXT_DIRECTIVES setting in

the configuration file of the database server.

The sysdirectives table has the following columns.

 Column Type Explanation

id SERIAL Unique code identifying the optimizer directive

query TEXT Text of the query as it appears in the application

directives TEXT Text of the optimizer directive, without comments

active SMALLINT Integer code that identifyies whether this entry is

active (= 1) or test only (= 2)

hash_code SMALLINT For internal use only

NULL values are not valid in the query column. There is a unique index on the id

column.

Chapter 1. System Catalog Tables 1-23

SYSDISTRIB

The sysdistrib system catalog table stores data-distribution information for the

database server to use. Data distributions provide detailed table and column

information to the optimizer to improve the choice of execution paths of SELECT

statements. The sysdistrib table has the following columns.

 Column Type Explanation

tabid INTEGER Code uniquely identifying the table where data

values were gathered

colno SMALLINT Column number in the source table

seqno INTEGER Ordinal number for multiple entries

constructed YEAR TO

FRACTION(5)

Date when the data distribution was created

mode CHAR(1) Optimization level:

M = Medium

H = High

resolution SMALLFLOAT Specified in the UPDATE STATISTICS

statement

confidence SMALLFLOAT Specified in the UPDATE STATISTICS

statement

encdat STAT

CHAR(256)

IDS

XPS

Statistics information

type

(IDS)

CHAR(1) Type of statistics:

A = encdat has ASCII-encoded histogram in

fixed-length character field

S = encdat has user-defined statistics

smplsize

(IDS)

SMALLFLOAT A value greater than zero up to 1.0 indicating a

percentage of the total rows in the table that

USTATS samples. Values greater than 1.0

indicate the actual number of rows used that

USTATS samples. A value of zero indicates that

the sample size is not specified. USTATS HIGH

always updates all rows.

Information is stored in the sysdistrib table when an UPDATE STATISTICS

statement with mode MEDIUM or HIGH is executed for a table. (UPDATE

STATISTICS LOW does not insert a value into the mode column.)

Only user informix can select the encdat column.

Each row in the sysdistrib system catalog table is keyed by the tabid and colno for

which the statistics are collected.

For built-in data type columns, the type field is set to A. The encdat column stores

an ASCII-encoded histogram that is broken down into multiple rows, each of

which contains 256 bytes.

In Dynamic Server, for columns of user-defined data types, the type field is set to

S. The encdat column stores the statistics collected by the statcollect user-defined

routine in multirepresentational form. Only one row is stored for each tabid and

colno pair. A composite index on the tabid, colno, and seqno columns requires

unique combinations of values.

1-24 IBM Informix Guide to SQL: Reference

SYSDOMAINS (IDS)

The sysdomains view is not used. It displays columns of other system catalog

tables. It has the following columns.

 Column Type Explanation

id SERIAL Unique code identifying the domain

owner CHAR(32) Name of the owner of the domain

name VARCHAR(128) Name of the domain

type SMALLINT Code identifying the type of domain

There is no index on this view.

SYSERRORS (IDS)

The syserrors system catalog table stores information about error, warning, and

informational messages returned by DataBlade® modules and user-defined routines

using the mi_db_error_raise() DataBlade API function. For more information on

these messages, see IBM Informix Error Messages.

The syserrors table has the following columns.

 Column Type Explanation

sqlstate CHAR(5) SQLSTATE value associated with the error

For more information about SQLSTATE values and

their meanings, see the GET DIAGNOSTICS

statement in the IBM Informix Guide to SQL: Syntax.

locale CHAR(36) The locale with which this version of the message is

associated (for example, en_us.8859-1)

level SMALLINT Reserved for future use

seqno SMALLINT Reserved for future use

message VARCHAR(255) Message text

To create a new message, insert a row directly into the syserrors table. By default,

all users can view this table, but only users with the DBA privilege can modify it.

A composite index on the sqlstate, locale, level, and seqno columns allows only

unique values.

Chapter 1. System Catalog Tables 1-25

SYSEXTCOLS (XPS)

The sysextcols system catalog table contains a row that describes each of the

internal columns in external table tabid of format type (fmttype) FIXED. The

sysextcols table has the following columns.

 Column Type Explanation

tabid INTEGER Unique identifying code of a table

colno SMALLINT Code identifying the column

exttype SMALLINT Code identifying an external column type

extstart SMALLINT Starting position of column in the external data file

extlength SMALLINT External column length (in bytes)

nullstr CHAR(256) Represents NULL in external data

picture CHAR(256) Reserved for future use

decimal SMALLINT Precision for external decimals

extstype VARCHAR(128) External type name

No entries are stored in sysextcols for DELIMITED or Informix format external

files.

You can use the DBSCHEMA utility to write out the description of the external

tables. To query these system catalog tables about an external table, use the tabid

as stored in systables with tabtype = ‘E’.

An index on the tabid column allows duplicate values.

SYSEXTDFILES (XPS)

For each external table, at least one row exists in the sysextdfiles system catalog

table, which has the following columns.

 Column Type Explanation

tabid INTEGER Unique identifying code of an external table

dfentry CHAR(152) Data file entry

You can use DBSCHEMA to write out the description of the external tables. To

query these system catalog tables about an external table, use the tabid as stored in

systables with tabtype = ‘E’.

An index on the tabid column allows duplicate values.

1-26 IBM Informix Guide to SQL: Reference

SYSEXTERNAL (XPS)

For each external table, a single row exists in the sysexternal system catalog table.

The tabid column associates the external table in this system catalog table with an

entry in systables.

 Column Type Explanation

tabid INTEGER Unique identifying code of an external table

fmttype CHAR(1) Type of format:

D = (delimited)

F = (fixed)

I = (Informix)

codeset VARCHAR(128) ASCII, EBCDIC

recdelim CHAR(4) The record delimiter

flddelim CHAR(4) The field delimiter

datefmt CHAR(8) Reserved for future use

moneyfmt CHAR(20) Reserved for future use

maxerrors INTEGER Number of errors to allow per coserver

rejectfile CHAR(128) Name of reject file

flags INTEGER Optional load flags

ndfiles INTEGER Number of data files in sysextdfiles

You can use DBSCHEMA to write out the description of the external tables. To

query these system catalog tables about an external table, use the tabid as stored in

systables with tabtype = ‘E’.

An index on the tabid column allows only unique values.

SYSFRAGAUTH (IDS)

The sysfragauth system catalog table stores information about the privileges that

are granted on table fragments. This table has the following columns.

 Column Type Explanation

grantor CHAR(32) Name of the grantor of privilege

grantee CHAR(32) Name of the grantee of privilege

tabid INTEGER Identifying code of the fragmented table

fragment VARCHAR(128) Name of dbspace where fragment is stored

fragauth CHAR(6) A 6-byte pattern specifying fragment privileges

(including 3 bytes reserved for future use):

u or U = Update

i or I = Insert

d or D = Delete

In the fragauth column, an uppercase code (such as U for Update) means that the

grantee can grant the privilege to other users; a lowercase (for example, u for

Update) means the user cannot grant the privilege to others. Hyphen (-) indicates

the absence of the privilege for that position within the pattern.

Chapter 1. System Catalog Tables 1-27

A composite index on the tabid, grantor, grantee, and fragment columns allows

only unique values. A composite index on the tabid and grantee columns allows

duplicate values.

The following example displays the fragment-level privileges for one base table, as

they appear in the sysfragauth table. In this example, the grantee ted can grant the

Update, Delete, and Insert privileges to other users.

 grantor grantee tabid fragment fragauth

dba dick 101 dbsp1 -ui---

dba jane 101 dbsp3 --i---

dba mary 101 dbsp4 --id--

dba ted 101 dbsp2 -UID--

SYSFRAGMENTS

The sysfragments system catalog table stores fragmentation information for tables

and indexes. One row exists for each table or index fragment.

The sysfragments table has the following columns.

 Column Type Explanation

fragtype CHAR(1) Code indicating the type of fragmented object:

I = Original index fragment

i = Duplicated index fragment (XPS)

T = Original table fragment

t = Duplicated table fragment (XPS)

B = TEXT or BYTE data (XPS)

i = Index fragments of a duplicated table (XPS)

d = Data fragments of a duplicated table (XPS)

tabid INTEGER Unique identifying code of table

indexname VARCHAR(128) Name of index

colno INTEGER Identifying code of TEXT or BYTE column (IDS)

Identifying code of replica identifier (XPS)

partn INTEGER Identifying code of physical location

strategy CHAR(1) Code for type of fragment distribution strategy:

R = Round-robin fragmentation strategy

E = Expression-based fragmentation strategy

I = IN DBSPACE clause specifies a specific location as

part of fragmentation strategy

T = Table-based fragmentation strategy

H = Table is a subtable witin a table hierarchy (IDS)

Hash-based fragmentation strategy (XPS)

location CHAR(1) Reserved for future use; shows L for local

servername VARCHAR(128) Reserved for future use

evalpos INTEGER Position of fragment in the fragmentation list

exprtext TEXT Expression for fragmentation strategy (IDS)

Contains names of the columns that are hashed and

composite information for hybrid fragmentation

strategies; shows hashed columns followed by the

fragmentation expression of the dbslice. (XPS)

1-28 IBM Informix Guide to SQL: Reference

Column Type Explanation

exprbin BYTE Binary version of expression

exprarr BYTE Range-partitioning data to optimize expression in

range-expression fragmentation strategy

flags INTEGER Used internally (IDS)

Bitmap indicating a hybrid fragmentation strategy

(value = 0x00000010) (XPS)

Also, an additional flag (value = 0x00000020) is set on

the first fragment of a globally detached index. (XPS)

dbspace VARCHAR(128) Name of dbspace for fragment

levels SMALLINT Number of B+ tree index levels

npused FLOAT For table-fragmentation strategy, npused is the

number of data pages; for index-fragmentation

strategy, npused is the number of leaf pages.

nrows FLOAT For tables, nrows represents the number of rows in

the fragment; for indexes, nrows represents the

number of unique keys.

clust FLOAT Degree of index clustering; smaller numbers

correspond to greater clustering.

hybdpos INTEGER Contains the relative position of the hybrid fragment

within a dbslice or list of dbspaces associated with a

particular expression. The hybrid fragmentation

strategy (and the set of fragments against which the

hybrid strategy is applied) determine the relative

position. The first fragment has a hybdpos value of

zero (0). (XPS)

partname VARCHAR(128) Name of partition within dbspace for fragment (IDS)

In certain situations, you can duplicate selected tables across coservers to improve

performance. If you have a duplicate copy of a small table on each coserver, then

the database server can execute some small queries (queries that do not need rows

from a table fragment on any other coserver and that do not require more than 128

kilobytes of memory per operator) as serial plans instead of as parallel plans that

the Resource Grant Manager (RGM) manages. This performance feature applies

only to OLTP-type transactions.

The following query returns the owner and name for each of the duplicated tables

in the current database:

SELECT DISTINCT st.owner, st.tabname

 FROM systables st, sysfragments sf

 WHERE st.tabid = sf.tabid AND sf.fragtype = ’t’

For more information about duplicating tables, refer to the description of the

CREATE DUPLICATE statement in IBM Informix Guide to SQL: Syntax.

The strategy type T is used for attached indexes. (This is a fragmented index

whose fragmentation is the same as the table fragmentation.)

In Dynamic Server, a composite index on the fragtype, tabid, indexname, and

evalpos columns allows duplicate values.

Chapter 1. System Catalog Tables 1-29

In Extended Parallel Server, a composite index on the fragtype, tabid, indexname,

evalpos, and hybdpos columns allows duplicate values.

SYSINDEXES

The sysindexes table is a view on the sysindices table. It contains one row for each

index in the database. The sysindexes table has the following columns.

 Column Type Explanation

idxname VARCHAR(128) Index name

owner VARCHAR(32) Owner of index (user informix for system catalog tables

and username for database tables) (IDS)

tabid INTEGER Unique identifying code of table

idxtype CHAR(1) Index type:

U = Unique

D = Duplicates allowed

G = Nonbitmap generalized-key index (XPS)

g = Bitmap generalized-key index

u = unique, bitmap

d = nonunique, bitmap

clustered CHAR(1) Clustered or nonclustered index

(C = Clustered)

part1 SMALLINT Column number (colno) of a single index or the 1st

component of a composite index

part2 SMALLINT 2nd component of a composite index

part3 SMALLINT 3rd component of a composite index

part4 SMALLINT 4th component of a composite index

part5 SMALLINT 5th component of a composite index

part6 SMALLINT 6th component of a composite index

part7 SMALLINT 7th component of a composite index

part8 SMALLINT 8th component of a composite index

part9 SMALLINT 9th component of a composite index

part10 SMALLINT 10th component of a composite index

part11 SMALLINT 11th component of a composite index

part12 SMALLINT 12th component of a composite index

part13 SMALLINT 13th component of a composite index

part14 SMALLINT 14th component of a composite index

part15 SMALLINT 15th component of a composite index

part16 SMALLINT 16th component of a composite index

levels SMALLINT Number of B-tree levels

leaves INTEGER Number of leaves

nunique INTEGER Number of unique keys in the first column

clust INTEGER Degree of clustering; smaller numbers correspond to

greater clustering

idxflags INTEGER Bitmap storing the current locking mode of the index

Normal = 0x00000001 (XPS)

Coarse = 0x00000002 (XPS)

1-30 IBM Informix Guide to SQL: Reference

As with most system catalog tables, changes that affect existing indexes are

reflected in this table only after you run the UPDATE STATISTICS statement.

Each part1 through part16 column in this table holds the column number (colno)

of one of the 16 possible parts of a composite index. If the component is ordered in

descending order, the colno is entered as a negative value. The columns are filled

in for B-tree indexes that do not use user-defined data types or functional indexes.

For generic B-trees and all other access methods, the part1 through part16 columns

all contain zeros.

The clust column is blank until the UPDATE STATISTICS statement is run on the

table. The maximum value is the number of rows in the table, and the minimum

value is the number of data pages in the table.

In Extended Parallel Server, the tabid column is indexed and allows duplicate

values. A composite index on the idxname, owner, and tabid columns allows only

unique values.

SYSINDICES (IDS)

The sysindices system catalog table describes the indexes in the database. It

contains one row for each index that is defined in the database.

 Column Type Explanation

idxname VARCHAR(128) Name of index

owner VARCHAR(32) Name of owner of index (user informix for system

catalog tables and username for database tables)

tabid INTEGER Unique identifying code of table

idxtype CHAR(1) Index type:

U = Unique

D = Duplicates allowed

clustered CHAR(1) Clustered or nonclustered index

(C = Clustered)

levels SMALLINT Number of tree levels

leaves FLOAT Number of leaves

nunique FLOAT Number of unique keys in the first column

clust FLOAT Degree of clustering; smaller numbers correspond to

greater clustering. The maximum value is the number

of rows in the table, and the minimum value is the

number of data pages in the table. This column is

blank until UPDATE STATISTICS is run on the table.

nrows FLOAT Estimated number of rows in the table (zero until

UPDATE STATISTICS is run on the table).

indexkeys INDEX-KEYARRAY Column can have up to three fields, in the format:

procid, (col1, ... , coln), opclassid where 1 < n < 341

amid INTEGER Unique identifying code of the access method that

implements this index. (Value = am_id for that access

method in the sysams table.)

amparam LVARCHAR List of parameters used to customize the behavior of

this access method.

collation CHAR(32) Collating order at the time of index creation.

Chapter 1. System Catalog Tables 1-31

Tip: This system catalog table is changed from Version 7.2 of Informix database

servers. The earlier schema of this system catalog table is still available as a

view and can be accessed under its original name: sysindexes.

Changes that affect existing indexes are reflected in this system catalog table only

after you run the UPDATE STATISTICS statement.

The fields within the indexkeys columns have the following significance:

v The procid (as in sysprocedures) appears only for a functional index on return

values of a function defined on columns of the table.

v The list of columns (col1, ... , coln) in the second field identifies the columns on

which the index is defined. The maximum is language-dependent: up to 341 for

an SPL or Java™ UDR; up to 102 for a C UDR.

v The opclassid identifies the secondary access method that the database server

used to build and to search the index. This . is the same as the

sysopclasses.opclassid value for the access method.

The tabid column is indexed and allows duplicate values. A composite index on

the idxname, owner, and tabid columns allows only unique values.

SYSINHERITS (IDS)

The sysinherits system catalog table stores information about table and named

ROW type inheritance. Every supertype, subtype, supertable, and subtable in the

database has a corresponding row in the sysinherits table.

 Column Type Explanation

child INTEGER Identifying code of the subtable or subtype

parent INTEGER Identifying code of the supertable or supertype

class CHAR(1) Inheritance class:

t = named ROW type

T = table

The child and parent values are from sysxtdtypes.extended_id for named ROW

types, or from systables.tabid for tables. Simple indexes on the child and parent

columns allow duplicate values.

SYSLANGAUTH (IDS)

The syslangauth system catalog table contains the authorization information on

computer languages that are used to write user-defined routines (UDRs).

 Column Type Explanation

grantor VARCHAR(32) Name of the grantor of the language authorization

grantee VARCHAR(32) Name of the grantee of the language authorization

langid INTEGER Identifying code of language in sysroutinelangs table

langauth CHAR(1) The language authorization:

u = Usage privilege granted

U = Usage privilege granted WITH GRANT OPTION

1-32 IBM Informix Guide to SQL: Reference

A composite index on the langid, grantor, and grantee columns allows only

unique values. A composite index on the langid and grantee columns allows

duplicate values.

SYSLOGMAP (IDS)

The syslogmap system catalog table contains fragmentation information.

 Column Type Explanation

tabloc INTEGER Code for the location of an external table

tabid INTEGER Unique identifying code of the table

fragid INTEGER Identifying code of the fragment

flags INTEGER Bitmap of modifiers from declaration of fragment

A simple index on the tabloc column and a composite index on the tabid and

fragid columns do not allow duplicate values.

SYSNEWDEPEND (XPS)

The sysnewdepend system catalog table contains information about

generalized-key indexes that are not available in the sysindexes table. The

dependencies between a generalized-key index and the tables in the FROM clause

of the CREATE INDEX statement are stored in the sysnewdepend table, which has

the following columns.

 Column Type Explanation

scrid1 VARCHAR(128) Name of the generalized-key index

scrid2 INTEGER Unique identifying code (= tabid) of the indexed table

type INTEGER Code for the type of generalized-key index

destid1 INTEGER The systables.tabid value for the table on which the

generalized-key index depends

destid2 INTEGER The column number within the destid1 table

A composite index on the scrid1, scrid2, and type columns allows duplicate values.

Another composite index on the destid1, destid2, and type columns also allows

duplicate values.

SYSOBJSTATE (IDS)

The sysobjstate system catalog table stores information about the state (object

mode) of database objects. The types of database objects that are listed in this table

are indexes, triggers, and constraints.

Every index, trigger, and constraint in the database has a corresponding row in the

sysobjstate table if a user creates the object. Indexes that the database server

creates on the system catalog tables are not listed in the sysobjstate table because

their object mode cannot be changed.

Chapter 1. System Catalog Tables 1-33

The sysobjstate table has the following columns.

 Column Type Explanation

objtype CHAR(1) Code for the type of database object:

C = Constraint

I = Index

T = Trigger

owner VARCHAR(32) Name of the owner of the database object

name VARCHAR(128) Name of the database object

tabid INTEGER Identifying code of table on which the object is defined

state CHAR(1) The current state (object mode) of the database object.

This value can be one of the following codes:

D = Disabled

E = Enabled

F = Filtering with no integrity-violation errors

G = Filtering with integrity-violation errors

A composite index on the objtype, name, owner, and tabid columns allows only

unique combinations of values. A simple index on the tabid column allows

duplicate values.

SYSOPCLASSES (IDS)

The sysopclasses system catalog table contains information about operator classes

associated with secondary access methods. It contains one row for each operator

class that has been defined in the database. The sysopclasses table has the

following columns.

 Column Type Explanation

opclassname VARCHAR(128) Name of the operator class

owner VARCHAR(32) Name of the owner of the operator class

amid INTEGER Identifying code of the secondary access method

associated with this operator class

opclassid SERIAL Identifying code of the operator class

ops LVARCHAR List of names of the operators that belong to this

operator class

support LVARCHAR List of names of support functions defined for this

operator class

The opclassid value corresponds to the sysams.am_defopclass value that specifies

the default operator class for the secondary access method that the amid column

specifies.

The sysopclasses table has a composite index on the opclassname and owner

columns and an index on opclassid column. Both indexes allow only unique

values.

1-34 IBM Informix Guide to SQL: Reference

SYSOPCLSTR

The sysopclstr system catalog table defines each optical cluster in the database. It

contains one row for each optical cluster. The sysopclstr table has the following

columns.

 Column Type Explanation

owner VARCHAR(32) Name of the owner of the optical cluster

clstrname VARCHAR(128) Name of the optical cluster

clstrsize INTEGER Size of the optical cluster

tabid INTEGER Unique identifying code for the table

blobcol1 SMALLINT BYTE or TEXT column number 1

blobcol2 SMALLINT BYTE or TEXT column number 2

blobcol3 SMALLINT BYTE or TEXT column number 3

blobcol4 SMALLINT BYTE or TEXT column number 4

blobcol5 SMALLINT BYTE or TEXT column number 5

blobcol6 SMALLINT BYTE or TEXT column number 6

blobcol7 SMALLINT BYTE or TEXT column number 7

blobcol8 SMALLINT BYTE or TEXT column number 8

blobcol9 SMALLINT BYTE or TEXT column number 9

blobcol10 SMALLINT BYTE or TEXT column number 10

blobcol11 SMALLINT BYTE or TEXT column number 11

blobcol12 SMALLINT BYTE or TEXT column number 12

blobcol13 SMALLINT BYTE or TEXT column number 13

blobcol14 SMALLINT BYTE or TEXT column number 14

blobcol15 SMALLINT BYTE or TEXT column number 15

blobcol16 SMALLINT BYTE or TEXT column number 16

clstrkey1 SMALLINT Cluster key number 1

clstrkey2 SMALLINT Cluster key number 2

clstrkey3 SMALLINT Cluster key number 3

clstrkey4 SMALLINT Cluster key number 4

clstrkey5 SMALLINT Cluster key number 5

clstrkey6 SMALLINT Cluster key number 6

clstrkey7 SMALLINT Cluster key number 7

clstrkey8 SMALLINT Cluster key number 8

clstrkey9 SMALLINT Cluster key number 9

clstrkey10 SMALLINT Cluster key number 10

clstrkey11 SMALLINT Cluster key number 11

clstrkey12 SMALLINT Cluster key number 12

clstrkey13 SMALLINT Cluster key number 13

clstrkey14 SMALLINT Cluster key number 14

clstrkey15 SMALLINT Cluster key number 15

clstrkey16 SMALLINT Cluster key number 16

Chapter 1. System Catalog Tables 1-35

The contents of this table are sensitive to CREATE OPTICAL CLUSTER, ALTER

OPTICAL CLUSTER, and DROP OPTICAL CLUSTER statements that have been

executed on databases that support optical cluster subsystems. Changes that affect

existing optical clusters are reflected in this table only after you run the UPDATE

STATISTICS statement.

A composite index on the clstrname and owner columns allows only unique

values. A simple index on the tabid column allows duplicate values.

SYSPROCAUTH

The sysprocauth system catalog table describes the privileges granted on a

procedure or function. It contains one row for each set of privileges that is granted.

The sysprocauth table has the following columns.

 Column Type Explanation

grantor VARCHAR(32) Name of grantor of privileges to access the routine

grantee VARCHAR(32) Name of grantee of privileges to access the routine

procid INTEGER Unique identifying code of the routine

procauth CHAR(1) Type of privilege granted on the routine:

e = Execute privilege on routine

E = Execute privilege WITH GRANT OPTION

A composite index on the procid, grantor, and grantee columns allows only

unique values. A composite index on the procid and grantee columns allows

duplicate values.

SYSPROCBODY

The sysprocbody system catalog table describes the compiled version of each

procedure or function in the database. Because the sysprocbody table stores the

text of the routine, each routine can have multiple rows. The sysprocbody table

has the following columns.

 Column Type Explanation

procid INTEGER Unique identifying code for the routine

datakey CHAR(1) Type of information in the data column:

A = Routine alter SQL (will not change this value after

update statistics)

D = Routine user documentation text

E = Time of creation information

L = Literal value (that is, literal number or quoted

string)

P = Interpreter instruction code (p-code)

R = Routine return value type list

S = Routine symbol table

T = Routine text creation SQL

seqno INTEGER Line number within the routine

data CHAR(256) Actual text of the routine

The A flag indicates the procedure modifiers are altered. ALTER ROUTINE

statement updates only modifiers and not the routine body. UPDATE STATISTICS

updates the query plan and not the routine modifiers, and the value of datakey

1-36 IBM Informix Guide to SQL: Reference

will not be changed from A. The A flag marks all the procedures and functions

that have altered modifiers, including overloaded procedures and functions. The T

flag is used for routine creation text.

The data column contains actual data, which can be in one of these formats:

v Encoded return values list

v Encoded symbol table

v Literal data

v P-code for the routine

v Compiled code for the routine

v Text of the routine and its documentation

A composite index on the procid, datakey, and seqno columns allows only unique

values.

SYSPROCCOLUMNS

The sysproccolumns system catalog table stores information about return types

and parameter names of all UDRs in SYSPROCEDURES.

A composite index on the procid and paramid columns in this table allows only

unique values.

 Column Type Explanation

procid INTEGER Unique identifying code of the routine

paramid INTEGER Unique identifying code of the parameter

paramname VARCHAR

(IDENTSIZE)

Name of the parameter

paramtype SMALLINT Identifies the type of parameter

paramlen SMALLINT Specifies the length of the parameter

pxid INTEGER Specifies the extended type ID for the parameter

paramattr INTEGER 0 = Parameter is of unknown type

1 = Parameter is INPUT mode

2 = Parameter is INOUT mode

3 = Parameter is multiple return value

4 = Parameter is OUT mode

5 = Parameter is a return value

SYSPROCEDURES

The sysprocedures system catalog table lists the characteristics for each function

and procedure in the database. It contains one row for each routine.

Each function in sysprocedures has a unique value, procid, called a routine

identifier. Throughout the system catalog, a function is identified by its routine

identifier, not by its name.

Chapter 1. System Catalog Tables 1-37

For Extended Parallel Server, sysprocedures has the following columns.

 Column Type Explanation

procname VARCHAR(128) Name of routine

owner VARCHAR(32) Name of owner

procid SERIAL Unique identifying code for the routine

mode CHAR(1) Mode type:

D or d = DBA

O or o = Owner

P or p = Protected

R or r = Restricted

T or t = Trigger

retsize INTEGER Compiled size (in bytes) of values

symsize INTEGER Compiled size (in bytes) of symbol table

datasize INTEGER Compiled size (in bytes) of constant data

codesize INTEGER Compiled size (in bytes) of routine instruction code

numargs INTEGER Number of arguments to routine

A composite index on procname and owner requires unique values.

For Dynamic Server sysprocedures has the following columns.

 Column Type Explanation

procname VARCHAR(128) Name of routine

owner VARCHAR(32) Name of owner

procid SERIAL Unique identifying code for the routine

mode CHAR(1) Mode type:

D or d = DBA

O or o = Owner

P or p = Protected

R or r = Restricted

T or t = Trigger

retsize INTEGER Compiled size (in bytes) of returned values

symsize INTEGER Compiled size (in bytes) of symbol table

datasize INTEGER Compiled size (in bytes) of constant data

codesize INTEGER Compiled size (in bytes) of routine code

numargs INTEGER Number of arguments to routine

isproc CHAR(1) Whether routine is a procedure or a function:

t = procedure

f = function

specificname VARCHAR(128) Specific name for the routine

externalname VARCHAR(255) Location of the external routine. This item is

language-specific in content and format.

paramstyle CHAR(1) Parameter style: I = Informix

langid INTEGER Language code (in sysroutinelangs table)

paramtypes RTNPARAMTYPES Information describing returned parameters

1-38 IBM Informix Guide to SQL: Reference

Column Type Explanation

variant BOOLEAN Whether the routine is VARIANT or not:

t = is VARIANT

f = is not VARIANT

client BOOLEAN Reserved for future use

handlesnulls BOOLEAN NULL handling indicator:

t = handles NULLs

f =does not handle NULLs

percallcost INTEGER Amount of CPU per call

Integer cost to execute UDR: cost/call - 0

-(2^31-1)

commutator VARCHAR(128) Name of commutator function

negator VARCHAR(128) Name of negator function

selfunc VARCHAR(128) Name of function to estimate selectivity of UDR

internal BOOLEAN Whether the routine can be called from SQL:

t = routine is internal, not callable from SQL

f = routine is external, callable from SQL

class CHAR(18) CPU class in which routine should be executed

stack INTEGER Stack size in bytes required per invocation

parallelizable BOOLEAN Parallelization indicator for UDR:

t = parallelizable

f = not parallelizable

costfunc VARCHAR(128) Name of cost function for UDR

selconst SMALLFLOAT Selectivity constant for UDR

In the mode column, the R mode is a special case of the O mode. A routine is in

restricted (R) mode if it was created with a specified owner who is different from

the routine creator. If routine statements involving a remote database are executed,

the database server uses the permissions of the user who executes the routine

instead of the permissions of the routine owner. In all other scenarios, R-mode

routines behave the same as O-mode routines.

You cannot use the DROP FUNCTION, DROP ROUTINE, or DROP PROCEDURE

statements to delete a protected routine. Protected routines are indicated by

lowercase in the mode column. In earlier versions, protected SPL routines (which

cannot be deleted) were indicated by a p. Protected SPL routines are treated as

DBA routines and cannot be Owner routines. Thus D and O indicate DBA and

Owner routines, and d and o indicate protected DBA and protected Owner

routines.

A database server can create protected SPL routines for internal use. These

protected SPL routines have p in the mode column. You cannot modify, drop, or

display protected SPL routines.

Important: After you issue the SET SESSION AUTHORIZATION statement, the

database server assigns a restricted mode to all owner routines that

you created while using the new identity.

Chapter 1. System Catalog Tables 1-39

The database server can create protected routines. for internal use. The

sysprocedures table identifies these protected routines with the letter P or p in the

mode column. You cannot modify or drop protected routines, nor can you display

them through DBSCHEMA.

A unique index is on the procid column. A composite index on the procname,

isproc, numargs, and owner columns allows duplicate values, as does a composite

index on the specificname and owner columns.

SYSPROCPLAN

The sysprocplan system catalog table describes the query-execution plans and

dependency lists for data-manipulation statements within each routine. Because

different parts of a routine plan can be created on different dates, this table can

contain multiple rows for each routine.

 Column Type Explanation

procid INTEGER Identifying code for the routine

planid INTEGER Identifying code for the plan

datakey CHAR(1) Type of information stored in data column:

D = Dependency list

I = Information record

Q = Execution plan

seqno INTEGER Line number within the plan

created DATE Date when plan was created

datasize INTEGER Size (in bytes) of the list or plan

data CHAR(256) Encoded (compiled) list or plan (IDS)

Text of the SPL routine (XPS)

collation CHAR(32) Collating order at the time when routine was created

Before a routine is run, its dependency list in the data column is examined. If the

major version number of a table accessed by the plan has changed, or if any object

that the routine uses has been modified since the plan was optimized (for example,

if an index has been dropped), then the plan is optimized again. When datakey is

I, the data column stores information about UPDATE STATISTICS and

PDQPRIORITY.

It is possible to delete all the plans for a given routine by using the DELETE

statement on sysprocplan. When the routine is subsequently executed, new plans

are automatically generated and recorded in sysprocplan. The UPDATE

STATISTICS FOR PROCEDURE statement also updates this table.

A composite index on the procid, planid, datakey, and seqno columns allows only

unique values.

1-40 IBM Informix Guide to SQL: Reference

SYSREFERENCES

The sysreferences system catalog table lists all referential constraints on columns.

It contains a row for each referential constraint in the database.

 Column Type Explanation

constrid INTEGER Code uniquely identifying the constraint

primary INTEGER Identifying code of the corresponding primary key

ptabid INTEGER Identifying code of the table that is the primary key

updrule CHAR(1) Reserved for future use; displays an R

delrule CHAR(1) Whether constraint uses cascading delete or restrict rule:

C = Cascading delete

R = Restrict (default)

matchtype CHAR(1) Reserved for future use; displays an N

pendant CHAR(1) Reserved for future use; displays an N

The constrid column is indexed and allows only unique values. The primary

column is indexed and allows duplicate values.

SYSREPOSITORY (XPS)

The sysrepository system catalog table contains data about generalized-key

indexes that the sysindexes system catalog table does not provide.

 Column Type Explanation

id1 VARCHAR(128) Index from the generalized-key (GK) index

id2 INTEGER Tabid of table with the generalized-key index

type INTEGER Integer code for type of object

In this release, the only value that can appear is 1,

indicating a GK index type.

seqid SERIAL Reserved for future use

(This value is not related to syssequences.seqid.)

desc TEXT The CREATE INDEX statement of a GK index

bin BYTE Internal representation of the generalized-key index

The contents of the sysrepository table are useful when a generalized-key index

has to be rebuilt during a recovery or if a user wants to see the CREATE statement

for a specific generalized-key index.

The desc column contains the CREATE statement for each generalized-key index in

the database.

An index on the seqid column allows duplicate values. A composite index on the

id1, id2, and type columns requires unique combinations of values.

Chapter 1. System Catalog Tables 1-41

SYSROLEAUTH

The sysroleauth system catalog table describes the roles that are granted to users.

It contains one row for each role that is granted to a user in the database. The

sysroleauth table has the following columns.

 Column Type Explanation

rolename VARCHAR(32) Name of the role

grantee VARCHAR(32) Name of the grantee of the role

is_grantable CHAR(1) Specifies whether the role is grantable:

Y = Grantable

N = Not grantable

The is_grantable column indicates whether the role was granted with the WITH

GRANT OPTION of the GRANT statement.

A composite index on the rolename and grantee columns allows only unique

values.

SYSROUTINELANGS (IDS)

The sysroutinelangs system catalog table lists the supported programming

languages for user-defined routines (UDRs). It has these columns.

 Column Type Explanation

langid SERIAL Code uniquely identifying a supported language

langname CHAR(30) Name of the language, such as C or SPL

langinitfunc VARCHAR(128) Name of initialization function for the language

langpath CHAR(255) Directory path for the UDR language

langclass CHAR(18) Name of the class of the UDR language

An index on the langname column allows duplicate values.

SYSSECLABELCOMPONENTS

The sysseclabelcomponents system catalog table records security label

components. It has these columns.

 Column Type Explanation

compname VARCHAR(128) Component name

compid SERIAL Component ID

comptype CHAR(1) The component type:

A = array

S = set

T = tree

numelements INTEGER Number of elements in the component

coveringinfo VARCHAR(128) Internal encoding information

numalters SMALLINT Numbers of alter operations that have

been performed on the component

1-42 IBM Informix Guide to SQL: Reference

SYSSECLABELCOMPONENTELEMENTS

The sysseclabelcomponentelementss system catalog table records the values of

component elements of security labels. It has these columns.

 Column Type Explanation

compid INTEGER Component ID

element VARCHAR(32) Element name

elementencoding CHAR(8) Encoded form of the element

parentelement VARCHAR(32) The name of the parent elements for

tree components. The value is NULL

for the following items:

Set components

Array components

Root nodes of a tree component

alterversion SMALLINT The number of the alter operation

when the element is added. This value

is used by the dbexport and dbimport

commands.

SYSSECPOLICIES

The syssecpolicies system catalog table records security policies It has these

columns.

 Column Type Explanation

secpolicyname VARCHAR(128) Security policy name

secpolicyid SERIAL Security policy ID

numcomps SMALLINT Number of security label components

in the security policy

comptypelist CHAR(16) An ordered list of the type of each

component in the policy.

A = array

S = set

T = tree

– = Beyond NUMCOMPS

overrideseclabel CHAR(1) Indicates the behavior when a user’s

security label and exemption

credentials do not allow them to insert

or update a data row with the security

that is label provided on the INSERT or

UPDATE SQL statement.

v Y: The security label provided is

ignored and replaced by the user’s

security lable for write access.

v N: Return an error when not

authorized to write a security label.

Chapter 1. System Catalog Tables 1-43

SYSSECPOLICYCOMPONENTS

The syssecpolicycomponents system catalog table records the components for each

security policies. It has these columns.

 Column Type Explanation

secpolicyid INTEGER Security policy ID

compid INTEGER ID of a component of the label security

policy

compno SMALLINT Position of the security label

component as it appears in the security

policy, starting with position 1.

SYSSECPOLICYEXEMPTIONS

The syssecpolicyexemptions system catalog table records the exemptions that have

been given to users. It has these columns.

 Column Type Explanation

grantee CHAR(32) The user who has this exemption

secpolicyid INTEGER ID of the policy on which the

exemption is granted

exemption CHAR(6) The exemption given to the user who is

identified in the GRANTEE column.

The six characters have the following

meanings:

1 = Read array

2 = Read set

3 = Read tree

4 = Write array

5 = Write set

6 = Write tree

Each character has one of the following

values:

E = Exempt

D = Write down examption

U = Write up exemption

– = No exemption

SYSSECLABELS

The sysseclabels system catalog table records the security label encoding. It has

these columns.

 Column Type Explanation

secpolicyid INTEGER ID of the security policy to which the

security label belongs

seclabelid INTEGER Security label ID

sysseclabelnames VARCHAR(128) Security label encoding

1-44 IBM Informix Guide to SQL: Reference

SYSSECLABELNAMES

The sysseclabelnames system catalog table records the security label names. It has

these columns.

 Column Type Explanation

secpolicyid INTEGER The ID of the security policy to which

the security label belongs.

seclabelname VARCHAR(128) The name of the security label

seclabelid INTEGER The ID of the security label

SYSSECLABELAUTH

The sysseclabelauth system catalog table records the labels that have been granted

to users.. It has these columns.

 Column Type Explanation

GRANTEE CHAR(32) The name of the label grantee

secpolicyid INTEGER The ID of the security policy to which

the security label belongs.

readseclabelid INTEGER The security label ID of the security

label granted for read access

writeseclabelid INTEGER The security label ID of the security

label granted for write access

SYSSEQUENCES (IDS)

The syssequences system catalog table lists the sequence objects that exist in the

database. The syssequences table has the following columns.

 Column Type Explanation

seqid SERIAL Code uniquely identifying the sequence object

tabid INTEGER Identifying code of the sequence as a table object

start_val INT8 Starting value of the sequence

inc_val INT8 Value of the increment between successive values

max_val INT8 Largest possible value of the sequence

min_val INT8 Smallest possible value of the sequence

cycle CHAR(1) Zero means NOCYCLE, 1 means CYCLE

cache INTEGER Number of preallocated values in sequence cache

order CHAR(1) Zero means NOORDER, 1 means ORDER

SYSSYNONYMS

The syssynonyms system catalog table lists the synonyms for each table or view.

Except for database servers that have migrated from certain interim releases of

Version 1.10 Informix database servers, only the syssyntable table describes

synonyms, and the syssynonyms table is unused. It has the following columns.

Chapter 1. System Catalog Tables 1-45

Column Type Explanation

owner VARCHAR(32) Name of the owner of the synonym

synname VARCHAR(128) Name of the synonym

created DATE Date when the synonym was created

tabid INTEGER Identifying code of a table, sequence, or view

A composite index on the owner and synonym columns allows only unique

values. The tabid column is indexed and allows duplicate values.

SYSSYNTABLE

The syssyntable system catalog table outlines the mapping between each public or

private synonym and the database object (table, sequence, or view) that it

represents. It contains one row for each entry in the systables table that has a

tabtype value of Por S. The syssyntable table has the following columns.

 Column Type Explanation

tabid INTEGER Identifying code of the public synonym

servername VARCHAR(128) Name of an external database server

dbname VARCHAR(128) Name of an external database

owner VARCHAR(32) Name of the owner of an external object

tabname VARCHAR(128) Name of an external table or view

btabid INTEGER Identifying code of a base table, sequence, or view

ANSI-compliant databases do not support public synonyms; their syssyntable

tables can describe only synonyms whose syssyntable.tabtype value is P.

If you define a synonym for an object that is in your current database, only the

tabid and btabid columns are used. If you define a synonym for a table that is

external to your current database, the btabid column is not used, but the tabid,

servername, dbname, owner, and tabname columns are used.

The tabid column maps to systables.tabid. With the tabid information, you can

determine additional facts about the synonym from systables.

An index on the tabid column allows only unique values. The btabid column is

indexed to allow duplicate values.

SYSTABAMDATA (IDS)

The systabamdata system catalog table stores the table-specific hashing parameters

of tables that were created with a primary access method.

The systabamdata table has the following columns.

 Column Type Explanation

tabid INTEGER Identifying code of the table

am_param CHAR(256) Access method parameter choices

am_space VARCHAR(128) Name of the storage space holding the data values

1-46 IBM Informix Guide to SQL: Reference

The am_param column stores configuration parameters that determine how a

primary access method accesses a given table. Each configuration parameter in the

am_param list has the format keyword=value or keyword.

The am_space column specifies the location of the table. It might reside in a

cooked file, a different database, or an sbspace within the database server.

The tabid column is the primary key to the systables table. This column is indexed

and must contain unique values.

SYSTABAUTH

The systabauth system catalog table describes each set of privileges that are

granted on a table, view, sequence, or synonym. It contains one row for each set of

table privileges that are granted in the database; the REVOKE statement can

modify a row. The systabauth table has the following columns.

 Column Type Explanation

grantor VARCHAR(32) Name of the grantor of privilege

grantee VARCHAR(32) Name of the grantee of privilege

tabid INTEGER Value from systables.tabid for database object

tabauth CHAR(9)

CHAR(8)

IDS

XPS

Pattern that specifies privileges on the table, view,

synonym, or (IDS) sequence:

s or S = Select

u or U = Update

* = Column-level privilege

i or I = Insert

d or D = Delete

x or X = Index

a or A = Alter

r or R = References

n or N = Under privilege (IDS)

If the tabauth column shows a privilege code in uppercase (for example, S for

Select), this indicates that the user also has the option to grant that privilege to

others. Privilege codes listed in lowercase (for example, s for select) indicate that

the user has the specified privilege, but cannot grant it to others.

A hyphen (-) indicates the absence of the privilege corresponding to that position

within the tabauth pattern.

A tabauth value with an asterisk (*) means column-level privileges exist; see also

syscolauth (page 1-30). (In DB–Access, the Privileges option of the Info command

for a specified table can display the column-level privileges on that table.)

A composite index on tabid, grantor, and grantee allows only unique values. A

composite index on tabid and grantee allows duplicate values.

Chapter 1. System Catalog Tables 1-47

SYSTABLES

The systables system catalog table contains a row for each table object (a table,

view, synonym, or in Dynamic Server, a sequence) that has been defined in the

database, including the tables and views of the system catalog.

 Column Type Explanation

tabname VARCHAR(128) Name of table, view, synonym, or (for

IDS) sequence

owner VARCHAR(32) Owner of table (user informix for

system catalog tables and username for

database tables)

partnum INTEGER Physical location code

tabid SERIAL System-assigned sequential identifying

number

rowsize SMALLINT Row size

ncols SMALLINT Number of columns in the table

nindexes SMALLINT Number of indexes on the table

nrows FLOAT Number of rows in the table

created DATE Date when the table was created or

modified

version INTEGER Number that changes when table is

altered

tabtype CHAR(1) Code indicating the type of object:

T = Table

E = External Table

V = View

Q = Sequence (IDS)

P = Private synonym

S = Public synonym (Type S is not

available in an ANSI-compliant

database.)

locklevel CHAR(1) Lock mode for the table:

B = Page

P = Page

R = Row

T = Table (XPS)

npused FLOAT Number of data pages that have ever

been initialized in the tablespace by

the database server

fextsize INTEGER Size of initial extent (in kilobytes)

nextsize INTEGER Size of all subsequent extents (in

kilobytes)

flags SMALLINT Codes for classifying permanent

tables:

ST_RAW (= 0x00000010) (IDS)

RAW (= 0x00000002) (XPS)

STATIC (= 0x00000004) (XPS)

OPERATIONAL (= 0x00000008)

(XPS)

STANDARD (= 0x00000010) (XPS)

EXTERNAL (= 0x00000020) (XPS)

1-48 IBM Informix Guide to SQL: Reference

Column Type Explanation

site VARCHAR(128) Reserved for future use

dbname VARCHAR(128) Reserved for future use

type_xid
(IDS)

INTEGER Code from sysxtdtypes.extended_id

for typed tables, or 0 for untyped

tables

am_id
(IDS)

INTEGER Access method code (key to sysams

table)

NULL or 0 indicates built-in storage

manager

minrowsize SMALLINT XPS Minimum row size

ustatlow YEAR TO

FRACTION(5)

Date and time of the last USTAT LOW

run

secpolicyid INTEGER ID of the SECURITY policy attached

to the table. NULL for non protected

tables

protgranularity CHAR(1) LBAC granularity level:

v R: Row level granularity

v C: Column level granularity

v B: Both column and row granularity

v Blank for non-protected tables

Each table, view, sequence, and synonym recorded in the systables table is

assigned a tabid, which is a system-assigned SERIAL value that uniquely identifies

the object. The first 99 tabid values are reserved for the system catalog. The tabid

of the first user-defined table object in a database is always 100.

The tabid column is indexed and contains only unique values. A composite index

on the tabname and owner columns also requires unique values.

The version column contains an encoded number that is stored in systables when a

new table is created. Portions of this value are incremented when data-definition

statements, such as ALTER INDEX, ALTER TABLE, DROP INDEX, and CREATE

INDEX, are performed on the table.

In the flags column, ST_RAW represents a nonlogging permanent table in a

database that supports transaction logging.

When a prepared statement that references a database table is executed, the version

value is checked to make sure that nothing has changed since the statement was

prepared. If the version value has been changed by DDL operations that modified

the table schema while automatic recompilation was disabled by the

IFX_AUTO_REPREPARE setting, the prepared statement is not executed, and you

must prepare the statement again.

The npused column does not reflect the number of pages used for BYTE or TEXT

data, nor the number of pages that are freed in DELETE or TRUNCATE

operations.

Chapter 1. System Catalog Tables 1-49

The systables table has two rows that store information about the database locale:

GL_COLLATE with a tabid of 90 and GL_CTYPE with a tabid of 91. To view these

rows, enter the following SELECT statement:

SELECT * FROM systables WHERE tabid=90 OR tabid=91

SYSTRACECLASSES (IDS)

The systraceclasses system catalog table contains the names and identifiers of trace

classes. The systraceclasses table has the following columns.

 Column Type Explanation

name CHAR(18) Name of the class of trace messages

classid SERIAL Identifying code of the trace class

A trace class is a category of trace messages that you can use in the development

and testing of new DataBlade modules and user-defined routines. Developers use

the tracing facility by calling the appropriate DataBlade API routines within their

code.

To create a new trace class, insert a row directly into the systraceclasses table. By

default, all users can view this table, but only users with the DBA privilege can

modify it.

The database cannot support tracing unless the MITRACE_OFF configuration

parameter is undefined.

A unique index on the name column requires each trace class to have a unique

name. The database server assigns to each class a unique sequential code. The

index on this classid column also allows only unique values.

SYSTRACEMSGS (IDS)

The systracemsgs system catalog table stores internationalized trace messages that

you can use in debugging user-defined routines.

The systracemsgs table has the following columns.

 Column Type Explanation

name VARCHAR(128) Name of the message

msgid SERIAL Identifying code of the message template

locale CHAR(36) Locale with which this version of the message is

associated (for example, en_us.8859-1)

seqno SMALLINT Reserved for future use

message VARCHAR(255) The message text

DataBlade module developers create a trace message by inserting a row directly

into the systracemsgs table. Once a message is created, the development team can

specify it either by name or by msgid code, using trace statements that the

DataBlade API provides.

1-50 IBM Informix Guide to SQL: Reference

To create a trace message, you must specify its name, locale, and text. By default,

all users can view the systracemsgs table, but only users with the DBA privilege

can modify it.

The database cannot support tracing unless the MITRACE_OFF configuration

parameter is undefined.

A unique composite index is defined on the name and locale columns. Another

unique index is defined on the msgid column.

SYSTRIGBODY

The systrigbody system catalog table contains the ASCII text of the trigger

definition and the linearized code for the trigger. Linearized code is binary data and

code that is represented in ASCII format.

Important: The database server uses the linearized code that is stored in

systrigbody. You must not alter the content of rows that contain

linearized code.

The systrigbody table has the following columns.

 Column Type Explanation

trigid INTEGER Identifying code of the trigger

datakey CHAR(1) Code specifying the type of data:

A = ASCII text for the body, triggered actions

B = Linearized code for the body

D = English text for the header, trigger definition

H = Linearized code for the header

S = Linearized code for the symbol table

seqno INTEGER Page number of this data segment

data CHAR(256) English text or linearized code

collation CHAR(32) Collating order at the time when trigger was created

A composite index on the trigid, datakey, and seqno columns allows only unique

values.

SYSTRIGGERS

The systriggers system catalog table contains information about the SQL triggers in

the database. This information includes the triggering event and the correlated

reference specification for the trigger. The systriggers table has the following

columns.

Chapter 1. System Catalog Tables 1-51

Column Type Explanation

trigid SERIAL Identifying code of the trigger

trigname VARCHAR(128) Name of the trigger

owner VARCHAR(32) Name of the owner of the trigger

tabid INTEGER Identifying code of the triggering table

event CHAR(1) Code for the type of triggering event:

D = Delete trigger

I = Insert trigger

U = Update trigger

S = Select trigger

d = INSTEAD OF Delete trigger

i = INSTEAD OF Insert trigger

u = INSTEAD OF Update trigger (IDS)

old VARCHAR(128) Name of value before update

new VARCHAR(128) Name of value after update

mode CHAR(1) Reserved for future use

A composite index on the trigname and owner columns allows only unique

values. An index on the trigid column also requires unique values. An index on

the tabid column allows duplicate values.

SYSUSERS

The sysusers system catalog table describes each set of privileges that are granted

on the database. It contains one row for each user or role that has privileges on the

database. This system catalog table has the following columns.

 Column Type Explanation

username VARCHAR(32) Name of the database user or role

usertype CHAR(1) Code specifying database-level privileges:

C = Connect (work within existing tables)

D = DBA (all privileges)

G = Role

R = Resource (create permanent tables, user-defined data

types, and indexes)

priority SMALLINT Reserved for future use

password CHAR(16) Reserved for future use

defrole VARCHAR(32) Name of the default role

An index on username allows only unique values. The username value can be the

login name of a user or the name of a role.

1-52 IBM Informix Guide to SQL: Reference

SYSVIEWS

The sysviews system catalog table describes each view in the database. Because it

stores the SELECT statement that created the view, sysviews can contain multiple

rows for each view. It has the following columns.

 Column Type Explanation

tabid INTEGER Identifying code of the view

seqno SMALLINT Line number of the SELECT statement

viewtext CHAR(64) Actual SELECT statement used to create the view

A composite index on tabid and seqno allows only unique values.

SYSVIOLATIONS

The sysviolations system catalog table stores information about the constraint

violations for base tables. Every table in the database that has a violations table

and a diagnostics table associated with it has a corresponding row in the

sysviolations table, which has the following columns.

 Column Type Explanation

targettid INTEGER Identifying code of the target table (the base table on which the

violations table and the diagnostic table are defined)

viotid INTEGER Identifying code of the violations table

diatid INTEGER Identifying code of the diagnostics table

maxrows INTEGER Maximum number of rows that can be inserted into the

diagnostics table by a single insert, update, or delete operation

on a target table that has a filtering mode object defined on it

(IDS)

The maximum number of rows allowed in the violations table

for each coserver (XPS)

The maxrows column also signifies the maximum number of rows that can be

inserted in the diagnostics table during a single operation that enables a disabled

object or that sets a disabled object to filtering mode (provided that a diagnostics

table exists for the target table). If no maximum is specified for the diagnostics or

violations table, then maxrows contains a NULL value.

Extended Parallel Server does not use the diagnostic table when a constraint

violation occurs. Rather, the database server stores additional information in the

violations table. The violations table contains the data that the transaction refused

and an indication of the cause.

The primary key of this table is the targettid column. An additional unique index

is also defined on the viotid column.

Dynamic Server also has a unique index on the diatid column.

Chapter 1. System Catalog Tables 1-53

SYSXADATASOURCES

The sysxadatasources system catalog table stores XA data sources. The

sysxadatasources table has the following columns.

 Column Type Explanation

xa_datasrc_owner CHAR(32) The user ID of the XA data source owner

xa_datasrc_name VARCHAR(128) The name of the XA data source

xa_datasrc_rmid SERIAL Unique RMID of the XA data source

xa_source_typeid INTEGER XA data source type ID

SYSXASOURCETYPES

The sysxasourcetypes system catalog table stores XA data source types. The

sysxasourcetypes table has the following columns.

 Column Type Explanation

xa_source_typeid SERIAL A unique identifier for the source type

xa_source_owner CHAR(32) The user ID of the owner

xa_source_name VARCHAR(128) The name of the source type

xa_flags INTEGER

xa_version INTEGER

xa_open INTEGER UDR ID of xa_open_entry

xa_close INTEGER UDR ID of xa_close_entry

xa_end INTEGER UDR ID of xa_end_entry

xa_rollback INTEGER UDR ID of xa_rollback_entry

xa_prepare INTEGER UDR ID of xa_prepare_entry

xa_commit INTEGER UDR ID of xa_commit_entry

xa_recover INTEGER UDR ID of xa_recover_entry

xa_forget INTEGER UDR ID of xa_forget_entry

xa_complete INTEGER UDR ID of xa_complete_entry

SYSXTDDESC (IDS)

The sysxtddesc system catalog table provides a text description of each UDT

defined in the database. The sysxtddesc table has the following columns.

 Column Type Explanation

extended_id INTEGER Code uniquely identifying the extended data types

seqno SMALLINT Value to order and identify one line of the description

of the UDT

A new line is created only if the remaining text string is

larger than 255 bytes.

description CHAR(256) Textual description of the extended data type

A composite index on extended_id and seqno allows duplicate values.

1-54 IBM Informix Guide to SQL: Reference

SYSXTDTYPEAUTH (IDS)

The sysxtdtypeauth system catalog table identifies the privileges for each UDT

(user-defined data type). The sysxtdtypeauth table contains one row for each set of

privileges granted and has the following columns.

 Column Type Explanation

grantor VARCHAR(32) Name of grantor of privilege

grantee VARCHAR(32) Name of grantee of privilege

type INTEGER Code identifying the UDT

auth CHAR(2) Code identifying privileges on the UDT:

n or N = Under privilege

u or U = Usage privilege

If the privilege code in the auth column is upper case (for example, ’U’ for usage),

a user who has this privilege can also grant it to others. If the code is in lower

case, a user who has the privilege cannot grant it to others.

A composite index on type, grantor, and grantee allows only unique values. A

composite index on the type and grantee columns allows duplicate values.

SYSXTDTYPES (IDS)

The sysxtdtype system catalog table has an entry for each UDT (user-defined data

type), including opaque and distinct data types and complex data types (named

ROW type, unnamed ROW type, and COLLECTION type), that is defined in the

database. The sysxtdtypes table has the following columns.

Chapter 1. System Catalog Tables 1-55

Column Type Explanation

extended_id SERIAL Unique identifying code for extended data type

domain CHAR(1) Code for the domain of the UDT

mode CHAR(1) Code classifying the UDT:

B = Base (opaque) type

C = Collection type or unnamed ROW type

D = Distinct type

R = Named ROW type

’ ’ (blank) = Built-in type

owner VARCHAR(32) Name of the owner of the UDT

name VARCHAR(128) Name of the UDT

type SMALLINT Code classifying the UDT

source INTEGER The sysxtdtypes reference (for distinct types only)

Zero (0) indicates that a distinct UDT was created

from a built-in data type.

maxlen INTEGER The maximum length for variable-length data types

Zero indicates a fixed-length UDT.

length INTEGER The length in bytes for fixed-length data types

Zero indicates a variable-length UDT.

byvalue CHAR(1) ’T’ = UDT is passed by value

’F’ = UDT is not passed by value

cannothash CHAR(1) ’T’ = UDT is hashable by default hash function

’F’ = UDT is not hashable by default function

align SMALLINT Alignment (= 1, 2, 4, or 8) for this UDT

locator INTEGER Locator key for unnamed ROW type

Each extended data type is characterized by a unique identifier, called an extended

identifier (extended_id), a data type identifier (type), and the length and

description of the data type.

For distinct types created from built-in data types, the type column codes

correspond to the value of the syscolumns.coltype column (indicating the source

type) as listed on page 1-18, but incremented by the hexadecimal value 0x0000800.

The file $INFORMIXDIR/incl/esql/sqltypes.h contains information about

sysxtdtypes.type and syscolumns.coltype codes.

An index on the extended_id column allows only unique values. An index on the

locator column allows duplicate values, as does a composite indexes on the name

and owner columns. A composite index on the type and source columns also

allows duplicate values.

Information Schema (IDS)

The Information Schema consists of read-only views that provide information

about all the tables, views, and columns in the current database server to which

you have access. These views also provide information about SQL dialects (such as

Informix, Oracle, or Sybase) and SQL standards. Note that unlike a system catalog,

whose tables describes an individual database, these views describe the Dynamic

Server instance, rather than a single database.

1-56 IBM Informix Guide to SQL: Reference

This version of the Information Schema views is an X/Open CAE standard. These

standards are provided so that applications developed on other database systems

can obtain Informix system catalog information without accessing the Informix

system catalog tables directly.

Important: Because the X/Open CAE standards Information Schema views differ

from ANSI-compliant Information Schema views, it is recommended

that you do not install the X/Open CAE Information Schema views on

ANSI-compliant databases.

The following Information Schema views are available:

v tables

v columns

v sql_languages

v server_info

Sections that follow contain information about how to generate and access

Information Schema views as well as information about their structure.

Generating the Information Schema Views

The Information Schema views are generated automatically when you, as DBA,

run the following DB–Access command:

dbaccess database-name $INFORMIXDIR/etc/xpg4_is.sql

The views display data from the system catalog tables. If tables, views, or routines

exist with any of the same names as the Information Schema views, you must

either rename those database objects or rename the views in the script before you

can install the views. You can drop the views with the DROP VIEW statement on

each view. To re-create the views, rerun the script.

Important: In addition to the columns specified for each Information Schema view,

individual vendors might include additional columns or change the

order of the columns. It is recommended that applications not use the

forms SELECT * or SELECT table-name* to access an Information

Schema view.

Accessing the Information Schema Views

All Information Schema views have the Select privilege granted to PUBLIC WITH

GRANT OPTION so that all users can query the views. Because no other privileges

are granted on the Information Schema views, they cannot be updated.

You can query the Information Schema views as you would query any other table

or view in the database.

Structure of the Information Schema Views

The following Information Schema views are described in this section:

v tables

v columns

v sql_languages

v server_info

Chapter 1. System Catalog Tables 1-57

In order to accept long identifier names, most of the columns in the views are

defined as VARCHAR data types with large maximum sizes.

The tables Information Schema View

The tables Information Schema view contains one row for each table to which you

have access. It contains the following columns.

 Column Data Type Explanation

table_schema VARCHAR(32) Name of owner of table

table_name VARCHAR(128) Name of table or view

table_type VARCHAR(128) BASE TABLE for table or VIEW for view

remarks VARCHAR(255) Reserved for future use

The visible rows in the tables view depend on your privileges. For example, if you

have one or more privileges on a table (such as Insert, Delete, Select, References,

Alter, Index, or Update on one or more columns), or if privileges are granted to

PUBLIC, you see the row that describes that table.

The columns Information Schema View

The columns Information Schema view contains one row for each accessible

column. It contains the following columns.

 Column Data Type Explanation

table_schema VARCHAR(128) Name of owner of table

table_name VARCHAR(128) Name of table or view

column_name VARCHAR(128) Name of the column in the table or view

ordinal_position INTEGER Position of the column within its table

The ordinal_position value is a sequential

number that starts at 1 for the first column.

This is an Informix extension to XPG4.

data_type VARCHAR(254) Name of the data type of the column, such

as CHARACTER or DECIMAL

char_max_length INTEGER Maximum length (in bytes) for character

data types; NULL otherwise

numeric_precision INTEGER Uses one of the following values:

v Total number of digits for exact numeric

data types (DECIMAL, INTEGER,

MONEY, SMALLINT)

v Number of digits of mantissa precision

(machine-dependent) for approximate

data types (FLOAT, SMALLFLOAT)

v NULL for all other data types.

numeric_prec_radix INTEGER Uses one of the following values:

v 2 = Approximate data types (FLOAT and

SMALLFLOAT)

v 10 = Exact numeric data types

(DECIMAL, INTEGER, MONEY, and

SMALLINT)

v NULL for all other data types

1-58 IBM Informix Guide to SQL: Reference

Column Data Type Explanation

numeric_scale INTEGER Number of significant digits to the right of

the decimal point for DECIMAL and

MONEY data types

0 for INTEGER and SMALLINT types

NULL for all other data types

datetime_precision INTEGER Number of digits in the fractional part of the

seconds for DATE and DATETIME columns;

NULL otherwise

This column is an Informix extension to

XPG4.

is_nullable VARCHAR(3) Indicates whether a column allows NULL

values; either YES or NO

remarks VARCHAR(254) Reserved for future use

The sql_languages Information Schema View

The sql_languages Information Schema view contains a row for each instance of

conformance to standards that the current database server supports. The

sql_languages view contains the following columns.

 Column Data Type Explanation

source VARCHAR(254) Organization defining this SQL version

source_year VARCHAR(254) Year the source document was approved

conformance VARCHAR(254) Standard to which the server conforms

integrity VARCHAR(254) Indication of whether this is an integrity

enhancement feature; either YES or NO

implementation VARCHAR(254) Identification of the SQL product of the

vendor

binding_style VARCHAR(254) Direct, module, or other binding style

programming_lang VARCHAR(254) Host language for which binding style is

adapted

The sql_languages view is completely visible to all users.

The server_info Information Schema View

The server_info Information Schema view describes the database server to which

the application is currently connected. It contains two columns.

 Column Data Type Explanation

server_attribute VARCHAR(254) An attribute of the database server

attribute_value VARCHAR(254) Value of the server_attribute as it applies to the

current database server

Each row in this view provides information about one attribute. X/Open-compliant

databases must provide applications with certain required information about the

database server.

Chapter 1. System Catalog Tables 1-59

The server_info view includes the following server_attribute information.

 server_attribute Explanation

identifier_length Maximum number of bytes for a user-defined identifier

row_length Maximum number of bytes in a row

userid_length Maximum number of bytes in a user name

txn_isolation Initial transaction isolation level for the database server:

Read Uncommitted (= Default isolation level for databases with no

transaction logging; also called Dirty Read)

Read Committed (= Default isolation level for databases that are not

ANSI-compliant, but that support explicit transaction logging)

Serializable (= Default isolation level for ANSI-compliant

databases; also called Repeatable Read)

collation_seq Assumed ordering of the character set for the database server

The following values are possible:

ISO 8859-1 EBCDIC

The default Informix representation shows ISO 8859-1.

The server_info view is completely visible to all users.

1-60 IBM Informix Guide to SQL: Reference

Chapter 2. Data Types

In This Chapter . 2-2

Summary of Data Types . 2-2

Description of Data Types . 2-5

BIGINT . 2-5

BIGSERIAL . 2-5

BLOB (IDS) . 2-5

BOOLEAN (IDS) . 2-6

BYTE . 2-6

CHAR(n) . 2-7

CHARACTER(n) . 2-8

CHARACTER VARYING(m,r) . 2-8

CLOB (IDS) . 2-8

DATE . 2-9

DATETIME . 2-10

DEC . 2-12

DECIMAL . 2-12

Distinct (IDS) . 2-14

DOUBLE PRECISION . 2-15

FLOAT(n) . 2-15

IDSSECURITYLABEL . 2-15

INT . 2-16

INT8 . 2-16

INTEGER . 2-16

INTERVAL . 2-16

LIST(e) (IDS) . 2-18

LVARCHAR(m) (IDS) . 2-19

MONEY(p,s) . 2-20

MULTISET(e) (IDS) . 2-21

NCHAR(n) . 2-21

NUMERIC(p,s) . 2-22

NVARCHAR(m,r) . 2-22

Opaque (IDS) . 2-22

REAL . 2-22

ROW, Named (IDS) . 2-23

ROW, Unnamed (IDS) . 2-24

SERIAL(n) . 2-25

SERIAL8(n) . 2-26

SET(e) (IDS) . 2-27

SMALLFLOAT . 2-28

SMALLINT . 2-28

TEXT . 2-28

VARCHAR(m,r) . 2-30

Built-In Data Types . 2-31

Large-Object Data Types . 2-32

Simple Large Objects . 2-32

Smart Large Objects (IDS) . 2-32

Time Data Types . 2-33

Extended Data Types (IDS) . 2-38

Complex Data Types . 2-38

Collection Data Types . 2-39

ROW Data Types . 2-40

Distinct Data Types . 2-40

Opaque Data Types . 2-40

Data Type Casting and Conversion . 2-41

Using Built-in Casts . 2-41

© Copyright IBM Corp. 1996, 2008 2-1

Converting from Number to Number . 2-42

Converting Between Number and Character . 2-42

Converting Between INTEGER and DATE . 2-43

Converting Between DATE and DATETIME . 2-43

Using User-Defined Casts . 2-43

Implicit Casts . 2-43

Explicit Casts . 2-44

Determining Which Cast to Apply . 2-44

Casts for Distinct Types . 2-44

What Extended Data Types Can Be Cast? . 2-45

Operator Precedence . 2-45

In This Chapter

Every column in a table in a database is assigned a data type. The data type

precisely defines the kinds of values that you can store in that column.

This chapter describes built-in and extended data types, casting between two data

types, and operator precedence.

Summary of Data Types

Figure 2-1 shows the logical categories of data types that Informix database servers

support. Shaded categories are for Dynamic Server only.

This diagram is simplified; some built-in types are implemented as opaque types,

and are only supported on Dynamic Server. That is, opaque and built-in are not

disjunct categories, though most built-in data types are not opaque.

Built-in data types (which are system-defined) and extended data types (which you

can define) share the following characteristics. You can:

v Use them to create columns within database tables.

v Declare them as arguments and as returned types of routines.

v Use them as base types from which to create DISTINCT data types.

v Cast them to other data types.

v Declare and access host variables of these types in SPL and ESQL/C.

For exceptions, see the description of each data type. For an overview, see “Built-In

Data Types” on page 2-31 and “Extended Data Types (IDS)” on page 2-38.

Data types

Extended data types

Complex data types User-defined data types

Collection Row Opaque Distinct

Character

Numeric Large-object

Time

Built-in data types

IDS

Figure 2-1. Overview of Supported Data Types

2-2 IBM Informix Guide to SQL: Reference

You assign data types to columns with the CREATE TABLE statement and change

them with the ALTER TABLE statement. When you change an existing column

data type, all data is converted to the new data type, if possible.

For information on the ALTER TABLE and CREATE TABLE statements, on SQL

statements that create specific data types, that create and drop casts, and on other

data type topics, refer to the IBM Informix Guide to SQL: Syntax.

For information about how to create and use complex data types of Dynamic

Server, see the IBM Informix Database Design and Implementation Guide. For

information about how to create user-defined data types, see IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

All Informix database servers support the data types that Table 2-1 lists. This

chapter describes each of these built-in data types.

 Table 2-1. Data Types That All Informix Database Servers Support

Data Type Explanation Page

BIGINT Stores 8-byte integer values from -(263 -1) to 263 -1 2-5

BIGSERIAL Stores sequential, 8-byte integers from 1 to 263 -1 2-5

BYTE Stores any kind of binary data, up to 231 bytes in length 2-6

CHAR(n) Stores character strings; collation is in code-set order 2-7

CHARACTER(n) Is a synonym for CHAR 2-8

CHARACTER

VARYING(m,r)

Stores character strings of varying length

(ANSI compliant); collation is in code-set order

2-8

DATE Stores calendar dates 2-9

DATETIME Stores calendar date combined with time of day 2-10

DEC Is a synonym for DECIMAL 2-12

DECIMAL(p) Stores floating-point numbers with definable precision; if

database is ANSI-compliant, the scale is zero

2-12

DECIMAL(p, s) Stores fixed-point numbers of defined scale and precision 2-13

DOUBLE PRECISION Synonym for FLOAT 2-15

FLOAT(n) Stores double-precision floating-point numbers

corresponding to the double data type in C

2-15

IDSSECURITYLABEL Defines the row security label column. 2-15

INT Is a synonym for INTEGER 2-16

INT8 Stores 8-byte integer values from -(263 -1) to 263 -1 2-16

INTEGER Stores whole numbers from -2,147,483,647 to +2,147,483,647 2-16

INTERVAL

(Year|Month)

Stores a span of time (or level of effort) in units of years

and months.

2-16

INTERVAL

(Day|Fraction)

Stores a span of time in a contiguous set of units of days,

hours, minutes, seconds, and fractions of a second

2-16

MONEY(p,s) Stores currency amounts 2-20

NCHAR(n) Same as CHAR, but can support localized collation 2-21

NUMERIC(p,s) Synonym for DECIMAL(p,s) 2-22

NVARCHAR(m,r) Same as VARCHAR, but can support localized collation 2-22

REAL Is a synonym for SMALLFLOAT 2-22

SERIAL Stores sequential integers (> 0) in positive range of INT 2-25

Chapter 2. Data Types 2-3

Table 2-1. Data Types That All Informix Database Servers Support (continued)

Data Type Explanation Page

SERIAL8 Stores sequential integers (> 0) in positive range of INT8 2-26

SMALLFLOAT Stores single-precision floating-point numbers

corresponding to the float data type of the C language

2-28

SMALLINT Stores whole numbers from -32,767 to +32,767 2-28

TEXT Stores any kind of text data, up to 231 bytes in length 2-28

VARCHAR(m,r) Stores character strings of varying length (up to 255 bytes);

collation is in code-set order

2-30

For the character data types (CHAR, CHAR VARYING, LVARCHAR, NCHAR,

NVARCHAR, and VARCHAR), a data string can include letters, digits,

punctuation, whitespace, diacritical marks, ligatures, and other printable symbols

from the code set of the database locale. (For some East Asian locales, multibyte

characters are supported within data strings.)

Dynamic Server also supports additional data types that Table 2-2 lists.

 Table 2-2. Additional Data Types That Dynamic Server Supports

Data Type Explanation Page

BLOB Stores binary data in random-access chunks 2-5

BOOLEAN Stores Boolean values true and false 2-6

CLOB Stores text data in random-access chunks 2-8

Distinct Stores data in a user-defined type that has the same format as

a source type on which it is based, but its casts and functions

can differ from those on the source type

2-14

LIST(e) Stores a sequentially ordered collection of elements, all of the

same data type, e; allows duplicate values

2-18

LVARCHAR(m) Stores variable-length strings of up to 32,739 bytes 2-19

MULTISET(e) Stores a non-ordered collection of values, with elements all of

the same data type, e; allows duplicate values.

2-21

Opaque Stores a user-defined data type whose internal structure is

inaccessible to the database server

2-22

ROW, Named Stores a named ROW type 2-23

ROW, Unnamed Stores an unnamed ROW type 2-24

SET(e) Stores a non-ordered collection of elements, all of the same

data type, e; does not allow duplicate values

2-27

Distributed DML operations and function calls that access databases of other

database servers cannot return these extended data types of Dynamic Server,

which are individually described in this chapter. (Cross-database operations on

other databases of the same Dynamic Server instance, however, can access

BOOLEAN, BLOB, CLOB, and LVARCHAR data types, which are implemented as

built-in opaque types. Such operations can also access DISTINCT types whose base

types are built-in types, and user-defined types (UDTs), if the UDTs and DISTINCT

types are explicitly cast to built-in types, and if all of the UDTs, casts, and

DISTINCT types are defined in all the participating databases.)

2-4 IBM Informix Guide to SQL: Reference

For information about Informix internal data types that SQL statements support

(such as IMPEX, IMPEXBIN, and SENDRECV), see IBM Informix User-Defined

Routines and Data Types Developer’s Guide.

Description of Data Types

This section describes the data types that Informix database servers support.

BIGINT

The BIGINT data type stores integers from -(263 -1) to 263 -1, which is

–9,223,372,036,854,775,807 to 9,223,372,036,854,775,807, in eight bytes. This data type

has storage advantages over INT8 and advantages for some arithmetic operations

and sort comparisons over INT8 and DECIMAL data types.

BIGSERIAL

The BIGSERIAL data type stores a sequential integer, in the positive range of the

BIGINT data type, which is 1 to 263 -1. The value is assigned automatically by the

database server when a new row is inserted. The behavior of the BIGSERIAL data

type is similar to the SERIAL data type, but with a larger range. A table can have

only one SERIAL column and one BIGSERIAL column.

BLOB (IDS)

The BLOB data type stores any kind of binary data in random-access chunks,

called sbspaces. Binary data typically consists of saved spreadsheets, program-load

modules, digitized voice patterns, and so on. The database server performs no

interpretation of the contents of a BLOB column. A BLOB column can be up to 4

terabytes (4*240 bytes) in length, though your system resources might impose a

lower practical limit.

The term smart large object refers to BLOB and CLOB data types. Use CLOB data

types (see page 2-8) for random access to text data. For general information about

BLOB and CLOB data types, see “Smart Large Objects (IDS)” on page 2-32.

You can use these SQL functions to perform operations on a BLOB column:

v FILETOBLOB copies a file into a BLOB column.

v LOTOFILE copies a BLOB (or CLOB) value into an operating-system file.

v LOCOPY copies an existing smart large object to a new smart large object.

For more information on these SQL functions, see the IBM Informix Guide to SQL:

Syntax.

Within SQL, you are limited to the equality (=) comparison operation and the

encryption and decryption functions for BLOB data. (The encryption and

decryption functions are described in the IBM Informix Guide to SQL: Syntax.) To

perform additional operations, you must use one of the application programming

interfaces (APIs) from within your client application.

You can insert data into BLOB columns in the following ways:

v With the dbload or onload utilities

v With the LOAD statement (DB–Access)

v With the FILETOBLOB function

v From BLOB (ifx_lo_t) host variables (IBM Informix ESQL/C)

Chapter 2. Data Types 2-5

If you select a BLOB column using DB–Access, only the string <SBlob value> is

returned; no actual value is displayed.

BOOLEAN (IDS)

The BOOLEAN data type stores TRUE or FALSE data values as a single byte. This

table shows internal and literal representations of the BOOLEAN data type.

 Logical Value Internal Representation Literal Representation

TRUE \0 ’t’

FALSE \1 ’f’

NULL Internal Use Only NULL

You can compare two BOOLEAN values to test for equality or inequality. You can

also compare a BOOLEAN value to the Boolean literals ’t’ and ’f’. BOOLEAN

values are case insensitive; ’t’ is equivalent to ’T’ and ’f’ to ’F’.

You can use a BOOLEAN column to store what a Boolean expression returns. In

the following example, the value of boolean_column is ’t’ if column1 is less than

column2, ’f’ if column1 is greater than or equal to column2, and NULL if the

value of either column1 or column2 is unknown:

UPDATE my_table SET boolean_column = lessthan(column1, column2)

BYTE

The BYTE data type stores any kind of binary data in an undifferentiated byte

stream. Binary data typically consists of digitized information, such as

spreadsheets, program load modules, digitized voice patterns, and so on. The term

simple large object refers to BYTE and text data types. No more than 195 columns of

the same table can be declared as BYTE and text data types.

The BYTE data type has no maximum size. A BYTE column has a theoretical limit

of 231 bytes and a practical limit that your disk capacity determines.

You can store, retrieve, update, or delete the contents of a BYTE column. You

cannot, however, use BYTE operands in arithmetic or string operations, nor assign

literals to BYTE columns with the SET clause of the UPDATE statement. You also

cannot use BYTE items in any of the following ways:

v With aggregate functions

v With the IN clause

v With the MATCHES or LIKE clauses

v With the GROUP BY clause

v With the ORDER BY clause

BYTE operands are valid in Boolean expressions only when you are testing for

NULL values with the IS NULL or IS NOT NULL operators.

You can insert data into BYTE columns in the following ways:

v With the dbload or onload utilities

v With the LOAD statement (DB–Access)

v From BYTE host variables (IBM Informix ESQL/C)

2-6 IBM Informix Guide to SQL: Reference

You cannot use a quoted text string, number, or any other actual value to insert or

update BYTE columns.

When you select a BYTE column, you can choose to receive all or part of it. To

retrieve it all, use the regular syntax for selecting a column. You can also select any

part of a BYTE column by using subscripts, as the next example, which reads the

first 75 bytes of the cat_picture column associated with the catalog number 10001:

SELECT cat_picture [1,75] FROM catalog WHERE catalog_num = 10001

A built-in cast converts BYTE values to BLOB values. For more information, see

the IBM Informix Database Design and Implementation Guide.

If you select a BYTE column using the DB–Access Interactive Schema Editor, only

the string ’’<BYTE value>’’ is returned; no data value is displayed.

Important: If you try to return a BYTE column from a subquery, an error results,

even if the column is not used in a Boolean expression nor with an

aggregate.

CHAR(n)

The CHAR data type stores any string of letters, numbers, and symbols. It can

store single-byte and multibyte characters, based on the database locale. (For more

information on East Asian locales that support multibyte code sets, see “Multibyte

Characters with VARCHAR” on page 2-31.)

A CHAR(n) column has a length of n bytes, where 1 ≤ n ≤ 32,767. If you do not

specify n, CHAR(1) is the default length. Character columns typically store

alphanumeric strings, such as names, addresses, phone numbers, and so on. When

a value is retrieved or stored as CHAR(n), exactly n bytes of data are transferred. If

the string is shorter than n bytes, the string is extended with blank spaces up to

the declared length. If the data value is longer than n bytes, a data string of length

n that has been truncated from the right is inserted or retrieved, without the

database server raising an exception.

This does not create partial characters in multibyte locales. In right-to-left locales,

such as Arabic, Hebrew, or Farsi, the truncation is from the left.

Treating CHAR Values as Numeric Values

If you plan to perform calculations on numbers stored in a column, you should

assign a number data type to that column. Although you can store numbers in

CHAR columns, you might not be able to use them in some arithmetic operations.

For example, if you insert a sum into a CHAR column, you might experience

overflow problems if the CHAR column is too small to hold the value. In this case,

the insert fails. Numbers that have leading zeros (such as some zip codes) have the

zeros stripped if they are stored as number types INTEGER or SMALLINT.

Instead, store these numbers in CHAR columns.

Sorting and Relational Comparisons

In general, the collating order for sorting CHAR values is the order of characters in

the code set. (An exception is the MATCHES operator with ranges; see “Collating

VARCHAR Values” on page 2-31.) For more information about collation order, see

the IBM Informix GLS User’s Guide.

For multibyte locales, the database supports any multibyte characters in the code

set. When storing multibyte characters in a CHAR data type, make sure to

Chapter 2. Data Types 2-7

calculate the number of bytes needed. For more information on multibyte

characters and locales, see the IBM Informix GLS User’s Guide.

CHAR values are compared to other CHAR values by padding the shorter value

on the right with blank spaces until the values have equal length, and then

comparing the two values, using the code-set order for collation.

Nonprintable Characters with CHAR

A CHAR value can include tab, newline, whitespace, and nonprintable characters.

You must, however, use an application to insert nonprintable characters into host

variables and the host variables into your database. After passing nonprintable

characters to the database server, you can store or retrieve them. After you select

nonprintable characters, fetch them into host variables and display them with your

own display mechanism.

An important exception is the first value in the ASCII code set is used as the

end-of-data terminator symbol in columns of the CHAR data type. For this reason,

any subsequent characters in the same string cannot be retrieved from a CHAR

column, because the database server reads only the characters (if any) that precede

this null terminator. For example, you cannot use the following 7-byte string as a

CHAR data type value with a length of 7 bytes:

abc\0def

If you try to display nonprintable characters with DB–Access your screen returns

inconsistent results. (Which characters are nonprintable is locale-dependent. For

more information see the discussion of code-set conversion between the client and

the database server in the IBM Informix GLS User’s Guide.)

CHARACTER(n)

The CHARACTER data type is a synonym for CHAR.

CHARACTER VARYING(m,r)

The CHARACTER VARYING data type stores a string of letters, digits, and

symbols of varying length, where m is the maximum size of the column (in bytes)

and r is the minimum number of bytes reserved for that column. The

CHARACTER VARYING data type complies with ANSI/ISO standard for SQL; the

non-ANSI VARCHAR data type supports the same functionality. For more

information, see the description of the VARCHAR type in “VARCHAR(m,r)” on

page 2-30.

CLOB (IDS)

The CLOB data type stores any kind of text data in random-access chunks, called

sbspaces. Text data can include text-formatting information, as long as this

information is also textual, such as PostScript®, Hypertext Markup Language

(HTML), Standard Graphic Markup Language (SGML), or Extensible Markup

Language (XML) data.

The term smart large object refers to CLOB and BLOB data types. The CLOB data

type supports special operations for character strings that are inappropriate for

BLOB values. A CLOB value can be up to 4 terabytes (4*240 bytes) in length.

Use the BLOB data type (see “BLOB (IDS)” on page 2-5) for random access to

binary data. For general information about the CLOB and BLOB data types, see

“Smart Large Objects (IDS)” on page 2-32.

2-8 IBM Informix Guide to SQL: Reference

The following SQL functions can perform operations on a CLOB column:

v FILETOCLOB copies a file into a CLOB column.

v LOTOFILE copies a CLOB (or BLOB) value into a file.

v LOCOPY copies a CLOB (or BLOB) value to a new smart large object.

v ENCRYPT_DES or ENCRYPT_TDES creates an encrypted BLOB value from a

plain-text CLOB argument.

v DECRYPT_BINAR or DECRYPT_CHAR returns an unencrypted BLOB value

from an encrypted BLOB argument (that ENCRYPT_DES or ENCRYPT_TDES

created from a plain-text CLOB value).

For more information on these SQL functions, see the IBM Informix Guide to SQL:

Syntax.

No casts exist for CLOB data. Therefore, the database server cannot convert data of

the CLOB type to any other data type, except by using these encryption and

decryption functions to return a BLOB. Within SQL, you are limited to the equality

(=) comparison operation for CLOB data. To perform additional operations, you

must use one of the application programming interfaces from within your client

application.

Multibyte Characters with CLOB

You can insert data into CLOB columns in the following ways:

v With the dbload or onload utilities

v With the LOAD statement (DB–Access)

v From CLOB (ifx_lo_t) host variables (ESQL/C).

For examples of CLOB types, see the IBM Informix Guide to SQL: Tutorial and the

IBM Informix Database Design and Implementation Guide.

With GLS, the following rules apply:

v Multibyte CLOB characters must be defined in the database locale.

v The CLOB data type is collated in code-set order.

v The database server handles code-set conversions for CLOB data.

For more information on database locales, collation order, and code-set conversion,

see the IBM Informix GLS User’s Guide.

DATE

The DATE data type stores the calendar date. DATE data types require four bytes.

A calendar date is stored internally as an integer value equal to the number of

days since December 31, 1899.

Because DATE values are stored as integers, you can use them in arithmetic

expressions. For example, you can subtract a DATE value from another DATE

value. The result, a positive or negative INTEGER value, indicates the number of

days that elapsed between the two dates. (You can use a UNITS DAY expression to

convert the result to an INTERVAL DAY TO DAY data type.)

The following example shows the default display format of a DATE column:

mm/dd/yyyy

In this example, mm is the month (1-12), dd is the day of the month (1-31), and

yyyy is the year (0001-9999). You can specify a different order of time units and a

Chapter 2. Data Types 2-9

different time-unit separator than / (or no separator) by setting the DBDATE

environment variable. For more information, see “DBDATE” on page 3-20.

In non-default locales, you can display dates in culture-specific formats. The locale

and the GL_DATE and DBDATE environment variables (as described in the next

chapter) affect the display formatting of DATE values. They do not, however, affect

the internal storage format for DATE columns in the database. For more

information, see the IBM Informix GLS User’s Guide.

DATETIME

The DATETIME data type stores an instant in time expressed as a calendar date

and time of day. You choose how precisely a DATETIME value is stored; its

precision can range from a year to a fraction of a second.

DATETIME stores a data value as a contiguous series of fields that represents each

time unit (year, month, day, and so forth) in the data type declaration.

Field qualifiers to specify a DATETIME data type have this format:

DATETIME largest_qualifier TO smallest_qualifier

This resembles an INTERVAL field qualifier (see “INTERVAL” on page 2-16), but

DATETIME represents a point in time, rather than (like INTERVAL) a span of time.

These differences exist between DATETIME and INTERVAL qualifiers:

v The DATETIME keyword replaces the INTERVAL keyword.

v DATETIME field qualifiers cannot specify a non-default precision for the

largest_qualifier time unit.

v A DATETIME value that includes YEAR and/or MONTH time units can also

include smaller time units, whereas an INTERVAL data type that stores days (or

smaller time units) cannot store months or years.

The largest_qualifier and smallest_qualifier of a DATETIME data type can be any of

the fields that Table 2-3 lists, provided that smallest_qualifier does not specify a

larger time unit than largest_qualifier. (The largest and smallest time units can be

the same; for example, DATETIME YEAR TO YEAR.)

 Table 2-3. DATETIME Field Qualifiers

Qualifier Field Valid Entries

YEAR A year numbered from 1 to 9,999 (A.D.)

MONTH A month numbered from 1 to 12

DAY A day numbered from 1 to 31, as appropriate to the month

HOUR An hour numbered from 0 (midnight) to 23

MINUTE A minute numbered from 0 to 59

SECOND A second numbered from 0 to 59

FRACTION A decimal fraction-of-a-second with up to 5 digits of scale. The

default scale is 3 digits (a thousandth of a second). For

smallest_qualifier to specify another scale, write FRACTION(n), where

n is the desired number of digits from 1 to 5.

The declaration of a DATETIME column need not include the full YEAR to

FRACTION range of time units. It can include any contiguous subset of these time

units, or even only a single time unit.

2-10 IBM Informix Guide to SQL: Reference

For example, you can enter a MONTH TO HOUR value in a column declared as

YEAR TO MINUTE, as long as each entered value contains information for a

contiguous series of time units. You cannot, however, enter a value for only the

MONTH and HOUR; the entry must also include a value for DAY.

If you use the DB–Access TABLE menu, and you do not specify the DATETIME

qualifiers, a default DATETIME qualifier, YEAR TO YEAR, is assigned.

A valid DATETIME literal must include the DATETIME keyword, the values to be

entered, and the field qualifiers. You must include these qualifiers because, as

noted earlier, the value that you enter can contain fewer fields than were declared

for that column. Acceptable qualifiers for the first and last fields are identical to

the list of valid DATETIME fields that Table 2-3 on page 2-10 lists.

Write values for the field qualifiers as integers and separate them with delimiters.

Table 2-4 lists the delimiters that are used with DATETIME values in the default

U.S. English locale. (These are a superset of the delimiters that are used in

INTERVAL values; see Table 2-6 on page 2-18.)

 Table 2-4. Delimiters Used with DATETIME

Delimiter Placement in DATETIME Literal

Hyphen (-) Between the YEAR, MONTH, and DAY time-unit values

Blank space () Between the DAY and HOUR time-unit values

Colon (:) Between the HOUR, MINUTE, and SECOND time-unit values

Decimal point (.) Between the SECOND and FRACTION time-unit values

Figure 2-2 shows a DATETIME YEAR TO FRACTION(3) value with delimiters.

When you enter a value with fewer time-unit fields than in the column, the value

that you enter is expanded automatically to fill all the declared time-unit fields. If

you leave out any more significant fields, that is, time units larger than any that

you include, those fields are filled automatically with the current values for those

time units from the system clock calendar. If you leave out any less-significant

fields, those fields are filled with zeros (or with 1 for MONTH and DAY) in your

entry.

You can also enter DATETIME values as character strings. The character string

must include information for each field defined in the DATETIME column. The

INSERT statement in the following example shows a DATETIME value entered as

a character string:

INSERT INTO cust_calls (customer_num, call_dtime, user_id,

 call_code, call_descr)

 VALUES (101, ’2001-01-14 08:45’, ’maryj’, ’D’,

 ’Order late - placed 6/1/00’)

Fraction

SecondHour

Minute

Month

Dayyear

2003-09-23 12:42:06.001

Figure 2-2. Example DATETIME Value with Delimiters

Chapter 2. Data Types 2-11

If call_dtime is declared as DATETIME YEAR TO MINUTE, the character string

must include values for the year, month, day, hour, and minute fields.

If the character string does not contain information for all the declared fields (or if

it adds additional fields), then the database server returns an error.

All fields of a DATETIME column are two-digit numbers except for the year and

fraction fields. The year field is stored as four digits. When you enter a two-digit

value in the year field, how the abbreviated year is expanded to four digits

depends on the setting of the DBCENTURY environment variable.

For example, if you enter 02 as the year value, whether the year is interpreted as

1902, 2002, or 2102 depends on the setting of DBCENTURY and on the value of

the system clock calendar at execution time. If you do not set DBCENTURY, the

leading digits of the current year are appended by default. For information about

setting DBCENTURY, see “DBCENTURY” on page 3-18.

The fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number.

You can use the following formula (rounded up to a whole number of bytes) to

calculate the number of bytes that a DATETIME value requires:

(total number of digits for all fields) /2 + 1

For example, a YEAR TO DAY qualifier requires a total of eight digits (four for

year, two for month, and two for day). According to the formula, this data value

requires 5, or (8/2) + 1, bytes of storage.

For information on how to use DATETIME values in arithmetic and relational

expressions, see “Manipulating DATE with DATETIME and INTERVAL Values” on

page 2-35. For more information on the DATETIME data type see the IBM Informix

Guide to SQL: Syntax.

If you specify a locale other than U.S. English, the locale defines the

culture-specific display formats for DATETIME values. To change the default

display format, change the setting of the GL_DATETIME environment variable.

With an ESQL API, the DBTIME environment variable also affects DATETIME

formatting. Non-default locales and settings of the GL_DATE and DBDATE

environment variables also affect the display of datetime data. They do not,

however, affect the internal storage format of a DATETIME column.

The USEOSTIME configuration parameter can affect the subsecond granularity

when the database server obtains the current time from the operating system in

SQL statements; for details, see the IBM Informix Administrator’s Reference.

For more information on DBTIME, see “DBTIME” on page 3-31. For more

information on DBCENTURY, see “DBCENTURY” on page 3-18. For more

information on locales and GLS environment variables that can specify end-user

DATETIME formats, see the IBM Informix GLS User’s Guide.

DEC

The DEC data type is a synonym for DECIMAL.

DECIMAL

The DECIMAL data type can take two forms: DECIMAL(p) floating point and

DECIMAL(p,s) fixed point. In an ANSI-compliant database, however, all DECIMAL

2-12 IBM Informix Guide to SQL: Reference

numbers are fixed point. By default, literal numbers that include a decimal (.)

point are interpreted by the database server as DECIMAL values.

DECIMAL(p) Floating Point

The DECIMAL data type stores decimal floating-point numbers up to a maximum

of 32 significant digits, where p is the total number of significant digits (the

precision).

Specifying precision is optional. If you specify no precision (p), DECIMAL is

treated as DECIMAL(16), a floating-point decimal with a precision of 16 places.

DECIMAL(p) has an absolute exponent range between 10-130 and 10124.

If you declare a DECIMAL(p) column in an ANSI-compliant database, the scale

defaults to DECIMAL(p, 0), meaning that only integer values can be stored in this

data type.

In a database that is not ANSI-compliant, a DECIMAL(p) is a floating-point data

type of a scale large enough to store the exponential notation for a value.

For example, the following calculation shows how many bytes of storage a

DECIMAL(5) column requires in the default locale (where the decimal point

occupies a single byte):

 1 byte for the sign of the data value

1 byte for the first digit

1 byte for the decimal point

4 bytes for the rest of the digits in the declared precision of (5) - 1

1 byte for the ’e’ symbol

1 byte for the sign of the exponent

3 bytes for the exponent

12 bytes (Total)

Thus, ″12345″ in a DECIMAL(5) column is displayed as ″12345.00000″ (that is, with

a scale of 6) in a database that is not ANSI-compliant.

DECIMAL (p,s) Fixed Point

In fixed-point numbers, DECIMAL(p,s), the decimal point is fixed at a specific

place, regardless of the value of the number. When you specify a column of this

type, you declare its precision (p) as the total number of digits that it can store,

from 1 to 32. You declare its scale (s) as the total number of digits in the fractional

part (that is, to the right of the decimal point).

All numbers with an absolute value less than 0.5 * 10-s have the value zero. The

largest absolute value of a DECIMAL(p,s) data type that you can store without an

overflow error is 10p-s -10-s. A DECIMAL column typically stores numbers with

fractional parts that must be stored and displayed exactly (for example, rates or

percentages). In an ANSI-compliant database, all DECIMAL numbers must have

absolute values in the range 10-32 to 10+31.

DECIMAL Storage

The database server uses one byte of disk storage to store two digits of a decimal

number, plus an additional byte to store the exponent and sign, with the first byte

representing a sign bit and a 7-bit exponent in excess-65 format. The rest of the

bytes express the mantissa as base-100 digits. The significant digits to the left of

the decimal and the significant digits to the right of the decimal are stored in

Chapter 2. Data Types 2-13

separate groups of bytes. At the maximum precision specification, DECIMAL(32,s)

data types can store s-1 decimal digits to the right of the decimal point, if s is an

odd number.

How the database server stores decimal numbers is illustrated in the following

example. If you specify DECIMAL(6,3), the data type consists of three significant

digits in the integral part and three significant digits in the fractional part (for

instance, 123.456). The three digits to the left of the decimal are stored on 2 bytes

(where one of the bytes only holds a single digit) and the three digits to the right

of the decimal are stored on another 2 bytes, as Figure 2-3 illustrates.

(The exponent byte is not shown.) With the additional byte required for the

exponent and sign, DECIMAL(6,3) requires a total of 5 bytes of storage.

You can use the following formulas (rounded down to a whole number of bytes) to

calculate the byte storage (N) for a DECIMAL(p,s) data type (where N includes the

byte that is required to store the exponent and the sign):

If the scale is odd: N = (precision + 4) / 2

If the scale is even: N = (precision + 3) / 2

For example, the data type DECIMAL(5,3) requires 4 bytes of storage (9/2 rounded

down equals 4).

There is one caveat to these formulas. The maximum number of bytes the database

server uses to store a decimal value is 17. One byte is used to store the exponent

and sign, leaving 16 bytes to store up to 32 digits of precision. If you specify a

precision of 32 and an odd scale, however, you lose 1 digit of precision. Consider,

for example, the data type DECIMAL(32,31). This decimal is defined as 1 digit to

the left of the decimal and 31 digits to the right. The 1 digit to the left of the

decimal requires 1 byte of storage. This leaves only 15 bytes of storage for the

digits to the right of the decimal. The 15 bytes can accommodate only 30 digits, so

1 digit of precision is lost.

Distinct (IDS)

A distinct type is a data type that is derived from one of the following source types

(called the base type):

v A built-in type

v An existing distinct type

v An existing named ROW type

v An existing opaque type

A distinct type inherits from its source type the length and alignment on the disk.

A distinct type thus makes efficient use of the preexisting functionality of the

database server.

-1 23 45 6-

Byte 1 Byte 2 Byte 3 Byte 4

Significant digits to the
left of decimal

Significant digits to the
right of decimal

Figure 2-3. Schematic That Illustrates the Storage of Digits in a Decimal (p,s) Value

2-14 IBM Informix Guide to SQL: Reference

When you create a distinct data type, the database server automatically creates two

explicit casts: one cast from the distinct type to its source type and one cast from

the source type to the distinct type. A distinct type based on a built-in source type

does not inherit the built-in casts that are provided for the built-in type. A distinct

type does inherit, however, any user-defined casts that have been defined on the

source type.

A distinct type cannot be compared directly to its source type. To compare the two

types, you must first explicitly cast one type to the other.

You must define a distinct type in the database. Definitions of distinct types are

stored in the sysxtdtypes system catalog table. The following SQL statements

maintain the definitions of distinct types in the database:

v The CREATE DISTINCT TYPE statement adds a distinct type to the database.

v The DROP TYPE statement removes a previously defined distinct type from the

database.

For more information about the SQL statements mentioned above, see the IBM

Informix Guide to SQL: Syntax. For information about casting distinct data types, see

“Casts for Distinct Types” on page 2-44. For examples that show how to create and

register cast functions for a distinct type, see the IBM Informix Database Design and

Implementation Guide.

DOUBLE PRECISION

The DOUBLE PRECISION keywords are a synonym for the FLOAT keyword.

FLOAT(n)

The FLOAT data type stores double-precision floating-point numbers with up to 17

significant digits. FLOAT corresponds to IEEE 4-byte floating-point, and to the

double data type in C. The range of values for the FLOAT data type is the same as

the range of the C double data type on your computer.

You can use n to specify the precision of a FLOAT data type, but SQL ignores the

precision. The value n must be a whole number between 1 and 14.

A column with the FLOAT data type typically stores scientific numbers that can be

calculated only approximately. Because floating-point numbers retain only their

most significant digits, the number that you enter in this type of column and the

number the database server displays can differ slightly.

The difference between the two values depends on how your computer stores

floating-point numbers internally. For example, you might enter a value of

1.1000001 into a FLOAT field and, after processing the SQL statement, the database

server might display this value as 1.1. This situation occurs when a value has more

digits than the floating-point number can store. In this case, the value is stored in

its approximate form with the least significant digits treated as zeros.

FLOAT data types usually require 8 bytes of storage per value. Conversion of a

FLOAT value to a DECIMAL value results in 17 digits of precision.

IDSSECURITYLABEL

The IDSSECURITYLABEL type stores a security label in a table that is protected by

a security policy. Only a user who holds the DBSECADM role can create, alter, or

drop a column of this data type. IDSSECURITYLABEL is a built-in DISTINCT OF

Chapter 2. Data Types 2-15

VARCHAR(128) data type. A table that has a security policy can have only one

IDSSECURITYLABEL column. A table with no security policy can have none. You

cannot encrypt the security label in a column of type IDSSECURITY label.

INT

The INT data type is a synonym for INTEGER.

INT8

The INT8 data type stores whole numbers that can range in value from

–9,223,372,036,854,775,807 to 9,223,372,036,854,775,807 [or -(263-1) to 263-1], for 18 or

19 digits of precision. The number –9,223,372,036,854,775,808 is a reserved value

that cannot be used. The INT8 data type is typically used to store large counts,

quantities, and so on.

Dynamic Server stores INT8 data in internal format that can require up to 10 bytes

of storage. Extended Parallel Server stores INT8 values as 8 bytes.

Arithmetic operations and sort comparisons are performed more efficiently on

integer data than on floating-point or fixed-point decimal data, but INT8 cannot

store data with absolute values beyond | 263-1 |. If a value exceeds the numeric

range of INT8, the database server does not store the value.

INTEGER

The INTEGER data type stores whole numbers that range from -2,147,483,647 to

2,147,483,647 for 9 or 10 digits of precision. The number 2,147,483,648 is a reserved

value and cannot be used. The INTEGER value is stored as a signed binary integer

and is typically used to store counts, quantities, and so on.

Arithmetic operations and sort comparisons are performed more efficiently on

integer data than on float or decimal data. INTEGER columns, however, cannot

store absolute values beyond (231-1). If a data value lies outside the numeric range

of INTEGER, the database server does not store the value.

INTEGER data types require 4 bytes of storage per value.

INTERVAL

The INTERVAL data type stores a value that represents a span of time. INTERVAL

types are divided into two classes: year-month intervals and day-time intervals. A

year-month interval can represent a span of years and months, and a day-time

interval can represent a span of days, hours, minutes, seconds, and fractions of a

second.

An INTERVAL value is always composed of one value or a series of values that

represents time units. Within a data-definition statement such as CREATE TABLE

or ALTER TABLE that defines the precision of an INTERVAL data type, the

qualifiers must have the following format:

INTERVAL largest_qualifier(n) TO smallest_qualifier

Here the largest_qualifier and smallest_qualifier keywords are taken from one of the

two INTERVAL classes, as shown in Table 2-5 on page 2-17.

If SECOND (or a larger time unit) is the largest_qualifier, the declaration of an

INTERVAL data type can optionally specify n, the precision of the largest time unit

(for n ranging from 1 to 9); this is not a feature of DATETIME data types.

2-16 IBM Informix Guide to SQL: Reference

If smallest_qualifier is FRACTION, you can also specify a scale in the range from 1

to 5. For FRACTION TO FRACTION qualifiers, the upper limit of n is 5, rather

than 9. There are two incommensurable classes of INTERVAL data types:

v Those with a smallest_qualifier larger than DAY

v Those with a largest_qualifier smaller than MONTH

 Table 2-5. Interval Classes

Interval Class Time Units Valid Entry

YEAR-MONTH

INTERVAL

YEAR A number of years

MONTH A number of months

DAY-TIME

INTERVAL

DAY A number of days

HOUR A number of hours

MINUTE A number of minutes

SECOND A number of seconds

FRACTION A decimal fraction of a second, with up to 5 digits. The

default scale is 3 digits (thousandth of a second). To

specify a non-default scale, write FRACTION(n), where

1 ≤ n ≤ 5.

As with DATETIME data types, you can define an INTERVAL to include only the

subset of time units that you need. But because the construct of “month” (as used

in calendar dates) is not a time unit that has a fixed number of days, a single

INTERVAL value cannot combine months and days; arithmetic that involves

operands of the two different INTERVAL classes is not supported.

A value entered into an INTERVAL column need not include the full range of time

units that were specified in the data-type declaration of the column. For example,

you can enter a value of HOUR TO SECOND precision into a column defined as

DAY TO SECOND. A value must always consist, however, of contiguous time

units. In the previous example, you cannot enter only the HOUR and SECOND

values; you must also include MINUTE values.

A valid INTERVAL literal contains the INTERVAL keyword, the values to be

entered, and the field qualifiers. (See the discussion of literal intervals in the IBM

Informix Guide to SQL: Syntax.) When a value contains only one field, the largest

and smallest fields are the same.

When you enter a value in an INTERVAL column, you must specify the largest

and smallest fields in the value, just as you do for DATETIME values. In addition,

you can optionally specify the precision of the first field (and the scale of the last

field if it is a FRACTION). If the largest and smallest field qualifiers are both

FRACTION, you can specify only the scale in the last field.

Acceptable qualifiers for the largest and smallest fields are identical to the list of

INTERVAL fields that Table 2-5 on page 2-17 displays.

If you use the DB–Access TABLE menu, but you specify no INTERVAL field

qualifiers, then a default INTERVAL qualifier, YEAR TO YEAR, is assigned.

The largest_qualifier in an INTERVAL value can be up to nine digits (except for

FRACTION, which cannot be more than five digits), but if the value that you want

to enter is greater than the default number of digits allowed for that field, you

must explicitly identify the number of significant digits in the value that you enter.

Chapter 2. Data Types 2-17

For example, to define an INTERVAL of DAY TO HOUR that can store up to 999

days, you could specify it the following way:

INTERVAL DAY(3) TO HOUR

INTERVAL literals use the same delimiters as DATETIME literals (except that

MONTH and DAY time units are not valid within the same INTERVAL value).

Table 2-6 shows the INTERVAL delimiters.

 Table 2-6. INTERVAL Delimiters

Delimiter Placement in an INTERVAL Literal

Hyphen Between the YEAR and MONTH portions of the value

Blank space Between the DAY and HOUR portions of the value

Colon Between the HOUR, MINUTE, and SECOND portions of the value

Decimal point Between the SECOND and FRACTION portions of the value

You can also enter INTERVAL values as character strings. The character string

must include information for the same time units that were specified in the

data-type declaration for the column. The INSERT statement in the following

example shows an INTERVAL value entered as a character string:

INSERT INTO manufact (manu_code, manu_name, lead_time)

 VALUES (’BRO’, ’Ball-Racquet Originals’, ’160’)

Because the lead_time column is defined as INTERVAL DAY(3) TO DAY, this

INTERVAL value requires only one field, the span of days required for lead time. If

the character string does not contain information for all fields (or adds additional

fields), the database server returns an error. For additional information on entering

INTERVAL values as character strings, see the IBM Informix Guide to SQL: Syntax.

By default, all fields of an INTERVAL column are two-digit numbers, except for

the year and fraction fields. The year field is stored as four digits. The fraction

field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number. You can use

the following formula (rounded up to a whole number of bytes) to calculate the

number of bytes required for an INTERVAL value:

(total number of digits for all fields)/2 + 1

For example, INTERVAL YEAR TO MONTH requires six digits (four for year and

two for month), and requires 4, or (6/2) + 1, bytes of storage.

For information on using INTERVAL data in arithmetic and relational operations,

see “Manipulating DATE with DATETIME and INTERVAL Values” on page 2-35.

For information on using INTERVAL as a constant expression, see the description

of the INTERVAL Field Qualifier in the IBM Informix Guide to SQL: Syntax.

LIST(e) (IDS)

The LIST data type is a collection type that stores ordered, non-unique elements;

that is, it allows duplicate element values. The elements of a LIST have ordinal

positions; that is, the list has a first element, a second element, and so on. (For a

collection type with no ordinal positions, see “MULTISET(e) (IDS)” on page 2-21

and “SET(e) (IDS)” on page 2-27.)

No more than 97 columns of the same table can be declared as LIST data types.

(The same restriction applies to SET and MULTISET collection types.)

2-18 IBM Informix Guide to SQL: Reference

By default, the database server inserts LIST elements at the end of the list. To

support the ordinal position of a LIST, the INSERT statement provides the AT

clause. This clause allows you to specify the position at which you want to insert a

list-element value. For more information, see the INSERT statement in the IBM

Informix Guide to SQL: Syntax.

All elements in a LIST have the same element type. To specify the element type,

use the following syntax:

LIST(element_type NOT NULL)

The element_type of a LIST can be any of the following data types:

v A built-in type, except SERIAL, SERIAL8, BYTE, and TEXT

v A distinct type

v An unnamed or named row type

v Another collection type

v An opaque type

You must specify the NOT NULL constraint for LIST elements. No other

constraints are valid for LIST columns. For more information on the syntax of the

LIST data type, see the IBM Informix Guide to SQL: Syntax.

You can use LIST where any other data type is valid. For example:

v After the IN predicate in the WHERE clause of a SELECT statement to search for

matching LIST values

v As an argument to the CARDINALITY or mi_collection_card() function to

determine the number of elements in a LIST column

You cannot use LIST values as arguments to an aggregate function such as AVG,

MAX, MIN, or SUM.

Two list values are equal if they have the same elements in the same order. The

following examples both are list values but are not equal. :

LIST{"blue", "green", "yellow"}

LIST{"yellow", "blue", "green"}

The above statements are not equal because the values are not in the same order.

To be equal, the second statement would have to be:

LIST{"blue", "green", "yellow"}

LVARCHAR(m) (IDS)

You can use the LVARCHAR data type to create a column for storing

variable-length character strings whose upper limit (m) can be up to 32,739 bytes.

(You can use the VARCHAR data type for strings no longer than 255 bytes.)

By default, the database server interprets quoted strings as LVARCHAR types. It

also uses LVARCHAR for input and output casts for opaque data types.

The LVARCHAR data type stores opaque data types in the string (external) format.

Each opaque type has an input support function and cast, which convert it from

LVARCHAR to a form that database servers can manipulate. Each opaque type

also has an output support function and cast, which convert it from its internal

representation to LVARCHAR.

Chapter 2. Data Types 2-19

Important: When LVARCHAR is declared (with no size specification) as the data

type of a column in a database table, the default maximum size is 2

kilobytes (2048 bytes), but you can specify an explicit maximum length

of up to 32,739 bytes. When LVARCHAR is used in I/O operations on

an opaque data type, however, the maximum size is limited only by

the operating system.

LVARCHAR is implemented as a built-in opaque UDT. Only a subset of the string

operations on CHAR and VARCHAR values are valid for LVARCHAR, and like

other opaque types, LVARCHAR columns of remote tables are not accessible in

distributed queries. For more information about LVARCHAR, see IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

MONEY(p,s)

The MONEY data type stores currency amounts. Like the DECIMAL(p,s) data type,

MONEY can store fixed-point numbers up to a maximum of 32 significant digits,

where p is the total number of significant digits (the precision) and s is the number

of digits to the right of the decimal point (the scale).

Unlike the DECIMAL data type, the MONEY data type is always treated as a

fixed-point decimal number. The database server defines the data type MONEY(p)

as DECIMAL(p,2). If the precision and scale are not specified, the database server

defines a MONEY column as DECIMAL(16,2).

You can use the following formula (rounded down to a whole number of bytes) to

calculate the byte storage for a MONEY data type:

If the scale is odd: N = (precision + 4) / 2

If the scale is even: N = (precision + 3) / 2

For example, a MONEY data type with a precision of 16 and a scale of 2

(MONEY(16,2)) requires 10 or (16 + 3)/2, bytes of storage.

In the default locale, client applications format values from MONEY columns with

the following currency notation:

v A currency symbol: a dollar sign ($) at the front of the value

v A thousands separator: a comma (,) that separates every three digits in the

integer part of the value

v A decimal point: a period (.) between the integer and fractional parts of the

value

To change the format for MONEY values, change the DBMONEY environment

variable. For valid DBMONEY settings, see “DBMONEY” on page 3-24.

The default value that the database server uses for scale is locale-dependent. The

default locale specifies a default scale of two. For non-default locales, if the scale is

omitted from the declaration, the database server creates MONEY values with a

locale-specific scale.

The currency notation that client applications use is locale-dependent. If you

specify a nondefault locale, the client uses a culture-specific format for MONEY

values that might differ from the default U.S. English format in the leading (or

trailing) currency symbol, thousands separator, and decimal separator, depending

on what the locale files specify. For more information on locale dependency, see the

IBM Informix GLS User’s Guide.

2-20 IBM Informix Guide to SQL: Reference

MULTISET(e) (IDS)

The MULTISET data type is a collection type that stores a non-ordered set that can

include duplicate element values. The elements in a MULTISET have no ordinal

position. That is, there is no concept of a first, second, or third element in a

MULTISET. (For a collection type with ordinal positions for elements, see “LIST(e)

(IDS)” on page 2-18.)

All elements in a MULTISET have the same element type. To specify the element

type, use the following syntax:

MULTISET(element_type NOT NULL)

The element_type of a collection can be any of the following types:

v Any built-in type, except SERIAL, SERIAL8, BYTE, and TEXT

v An unnamed or a named ROW type

v Another collection type or opaque type

You can use MULTISET anywhere that you use any other data type, unless

otherwise indicated. For example:

v After the IN predicate in the WHERE clause of a SELECT statement to search for

matching MULTISET values

v As an argument to the CARDINALITY or mi_collection_card() function to

determine the number of elements in a MULTISET column

You cannot use MULTISET values as arguments to an aggregate function such as

AVG, MAX, MIN, or SUM.

You must specify the NOT NULL constraint for MULTISET elements. No other

constraints are valid for MULTISET columns. For more information on the

MULTISET collection type, see the IBM Informix Guide to SQL: Syntax.

Two multiset data values are equal if they have the same elements, even if the

elements are in different positions within the set. The following examples are both

multiset values but are not equal:

MULTISET {"blue", "green", "yellow"}

MULTISET {"blue", "green", "yellow", "blue"}

The following multiset values are equal:

MULTISET {"blue", "green", "blue", "yellow"}

MULTISET {"blue", "green", "yellow", "blue"}

No more than 97 columns of the same table can be declared as MULTISET data

types. (The same restriction applies to SET and LIST collection types.)

Named ROW

See “ROW, Named (IDS)” on page 2-23.

NCHAR(n)

The NCHAR data type stores fixed-length character data. The data can be a string

of single-byte or multibyte letters, digits, and other symbols that are supported by

the code set of the database locale. The main difference between CHAR and

NCHAR data types is the collating order.

Chapter 2. Data Types 2-21

The collation order of the CHAR data type follows the code-set order, but the

collating order of the NCHAR data type can be a localized order, if DB_LOCALE

(or SET COLLATION) specifies a localized collation. For more information about

NCHAR, see the description of “DBNLS (IDS)” on page 3-25.

NUMERIC(p,s)

The NUMERIC data type is a synonym for fixed-point DECIMAL.

NVARCHAR(m,r)

The NVARCHAR data type stores strings of varying lengths. The string can

include digits, symbols, and single-byte and (in some locales) multibyte characters.

The main difference between VARCHAR and NVARCHAR data types is the

collation order. Collation of VARCHAR data follows code-set order, but

NVARCHAR collation can be locale specific, if DB_LOCALE (or SET

COLLATION) has specified a localized collation. (The section “Collating

VARCHAR Values” on page 2-31 describes an exception.)

A column declared as NVARCHAR, without parentheses or parameters, has a

maximum size of one byte, and a reserved size of zero.

No more than 195 columns of the same table can be NVARCHAR data types.

Opaque (IDS)

An opaque type is a data type for which you must provide the following

information to the database server:

v A data structure for how the data values are stored on disk

v Support functions to determine how to convert between the disk storage format

and the user format for data entry and display

v Secondary access methods that determine how the index on this data type is

built, used, and manipulated

v User functions that use the data type

v A system catalog entry to register the opaque type in the database

The internal structure of an opaque type is not visible to the database server and

can only be accessed through user-defined routines. Definitions for opaque types

are stored in the sysxtdtypes system catalog table. These SQL statements maintain

the definitions of opaque types in the database:

v The CREATE OPAQUE TYPE statement registers a new opaque type in the

database.

v The DROP TYPE statement removes a previously defined opaque type from the

database.

For more information on the above-mentioned SQL statements, see the IBM

Informix Guide to SQL: Syntax. For information on how to create opaque types and

an example of an opaque type, see IBM Informix User-Defined Routines and Data

Types Developer’s Guide.

REAL

The REAL data type is a synonym for SMALLFLOAT.

2-22 IBM Informix Guide to SQL: Reference

ROW, Named (IDS)

A named ROW type is declared by its name. That identifier must be unique within

the schema. An unnamed ROW type is a ROW type that contains fields but has no

user-defined name. Only named ROW types support data type inheritance. For

more information, see “ROW Data Types” on page 2-40.

Defining Named ROW Types

You must declare and register in the database a new named ROW type by using

the CREATE ROW TYPE statement of SQL. Definitions for named ROW types are

stored in the sysxtdtypes system catalog table.

The fields of a ROW data type can be any built-in data type or UDT, but TEXT or

BYTE fields of a ROW type are valid in typed tables only. If you want to assign a

ROW type to a column, its elements cannot be TEXT or BYTE data types.

In general, the data type of a field of a ROW type can be any of these types:

v A built-in type (except for the TEXT or BYTE data types)

v A collection type (LIST, MULTISET, or SET)

v A distinct type

v Another named or unnamed ROW type

v An opaque type

These SQL statements maintain the definitions of named ROW data types:

v The CREATE ROW TYPE statement adds a named ROW type to the database.

v The DROP ROW TYPE statement removes a previously defined named ROW

type from the database.

No more than 195 columns of the same table can be named ROW types.

For details about these SQL syntax statements, see the IBM Informix Guide to SQL:

Syntax. For examples of how to create and use named ROW types, see the IBM

Informix Database Design and Implementation Guide.

Equivalence and Named ROW Types

No two named ROW types can be equal, even if they have identical structures,

because they have different names. For example, the following named ROW types

have the same structure (the same number of fields and the same order of data

types of fields within the row) but are not equal:

name_t (lname CHAR(15), initial CHAR(1), fname CHAR(15))

emp_t (lname CHAR(15), initial CHAR(1), fname CHAR(15))

Named ROW Types and Inheritance

Named ROW types can be part of a type-inheritance hierarchy. One named ROW

type can be the parent (or supertype) of another named ROW type. A subtype in a

hierarchy inherits all the properties of its supertype. Type inheritance is discussed

in the CREATE ROW TYPE statement in the IBM Informix Guide to SQL: Syntax and

in the IBM Informix Database Design and Implementation Guide.

Typed Tables

Tables that are part of an inheritance hierarchy must be typed tables. Typed tables

are tables that have been assigned a named ROW type. For the syntax you use to

create typed tables, see the CREATE TABLE statement in the IBM Informix Guide to

SQL: Syntax. Table inheritance and its relation to type inheritance is also discussed

Chapter 2. Data Types 2-23

in that section. For information about how to create and use typed tables, see the

IBM Informix Database Design and Implementation Guide.

ROW, Unnamed (IDS)

An unnamed ROW type contains fields but has no user-declared name. An

unnamed ROW type is defined by its structure. Two unnamed ROW types are

equal if they have the same structure (meaning the ordered list of the data types of

the fields). If two unnamed ROW types have the same number of fields, and if the

order of the data type of each field in one ROW type matches the order of data

types of the corresponding fields in the other ROW data type, then the two

unnamed ROW data types are equal.

For example, the following unnamed ROW types are equal:

ROW (lname char(15), initial char(1) fname char(15))

ROW (dept char(15), rating char(1) name char(15))

The following ROW types have the same number of fields and the same data

types, but are not equal, because their fields are not in the same order:

ROW (x integer, y varchar(20), z real)

ROW (x integer, z real, y varchar(20))

A field of an unnamed ROW type can be any of the following data types:

v A built-in type

v A collection type

v A distinct type

v Another ROW type

v An opaque type

Unnamed ROW types cannot be used in typed tables or in type inheritance

hierarchies. For more information on unnamed ROW types, see the IBM Informix

Guide to SQL: Syntax and the IBM Informix Database Design and Implementation

Guide.

Creating Unnamed ROW Types

You can create an unnamed ROW type in several ways:

v You can declare an unnamed ROW type using the ROW keyword. Each field in

a ROW can have a different field type. To specify the field type, use the

following syntax:

ROW(field_name field_type, ...)

The field_name must conform to the rules for SQL identifiers. (See the Identifier

section in the IBM Informix Guide to SQL: Syntax.)

v To generate an unnamed ROW type, use the ROW keyword as a constructor

with a series of values. A corresponding unnamed ROW type is created, using

the default data types of the specified values.

For example, the following declaration:

ROW(1, ’abc’, 5.30)

defines this unnamed ROW data type:

ROW (x INTEGER, y VARCHAR, z DECIMAL)

v You can create an unnamed ROW type by an implicit or explicit cast from a

named ROW type or from another unnamed ROW type.

v The rows of any table (except a table defined on a named ROW type) are

unnamed ROW types.

2-24 IBM Informix Guide to SQL: Reference

No more than 195 columns of the same table can be unnamed ROW types.

Inserting Values into Unnamed ROW Type Columns

When you specify field values for an unnamed ROW type, list the field values

after the constructor and between parentheses. For example, suppose you have an

unnamed ROW-type column. The following INSERT statement adds one group of

field values to this ROW column:

INSERT INTO table1 VALUES (ROW(4, ’abc’))

You can specify a ROW column in the IN predicate in the WHERE clause of a

SELECT statement to search for matching ROW values. For more information, see

the Condition section in the IBM Informix Guide to SQL: Syntax.

SERIAL(n)

The SERIAL data type stores a sequential integer, in the positive range of the INT

data type, that is automatically assigned by the database server when a new row is

inserted. A table can have no more than one SERIAL column, but it can have a

SERIAL column and either a SERIAL8 column or a BIGSERIAL column.

SERIAL values in a column are not automatically unique. You must apply a unique

index or primary key constraint to this column to prevent duplicate serial

numbers. If you use the interactive schema editor in DB–Access to define the table,

a unique index is applied automatically to a SERIAL column.

SERIAL numbers might not be consecutive, because of concurrent users, rollbacks,

and other factors.

The DEFINE variable LIKE column syntax of SPL for indirect typing declares a

variable of the INTEGER data type if column is a SERIAL data type.

The default serial starting number is 1, but you can assign a non-default initial

value, n, when you create or alter the table. Any number greater than 0 can be

your starting number. The maximum SERIAL is 2,147,483,647. If you assign a

number greater than 2,147,483,647, you receive a syntax error. (Use the SERIAL8

data type, rather than SERIAL, if you need a larger range.)

After a nonzero number is assigned, it cannot be changed. You can insert a value

into a SERIAL column (using the INSERT statement) or reset a serial column

(using the ALTER TABLE statement), if the new value does not duplicate any

existing value in the column. To insert into a SERIAL column, your database server

increments by one the previous value (or the reset value, if that is larger) and

assigns the result as the entered value. If ALTER TABLE has reset the next value of

a SERIAL column to a value smaller than values already in that column, however,

the next value follows this formula:

(maximum existing value in SERIAL column) + 1

For example, if you reset the serial value of customer.customer_num to 50, when

the largest existing value is 128, the next assigned number will be 129. For more

details on SERIAL data entry, see the IBM Informix Guide to SQL: Syntax.

A SERIAL column can store unique codes (for example, order, invoice, or customer

numbers). SERIAL data values require four bytes of storage, and have the same

precision as the INTEGER data type. For details of another way to assign unique

whole numbers to each row of a database table, see the CREATE SEQUENCE

statement in IBM Informix Guide to SQL: Syntax.

Chapter 2. Data Types 2-25

SERIAL8(n)

The SERIAL8 data type stores a sequential integer, in the positive range of the

INT8 data type, that is assigned automatically by the database server when a new

row is inserted. It behaves like the SERIAL data type, but with a larger range. (For

more information on how to insert values into SERIAL8 columns, see the IBM

Informix Guide to SQL: Syntax.)

A SERIAL8 data column is commonly used to store large, unique numeric codes

(for example, order, invoice, or customer numbers). SERIAL8 data values have the

same precision and storage requirements as INT8 values (page 2-16). The following

restrictions apply to SERIAL8 columns:

v You can define only one SERIAL8 column in a table.

A table, however, can have one SERIAL8 and one SERIAL column.

v SERIAL8 column values are not automatically unique.

You must apply a unique index or primary key constraint to this column to

prevent duplicate SERIAL8 numbers.

v The SERIAL8 data type does not allow a negative, zero, or NULL value.

The DEFINE variable LIKE column syntax of SPL for indirect typing declares a

variable of the INT8 data type if column is a SERIAL8 data type.

Assigning a Starting Value for SERIAL8

The default serial starting number is 1, but you can assign an initial value, n, when

you create or alter the table. To start the values at 1 in a SERIAL8 column of a

table, give the value 0 for the SERIAL8 column when you insert rows into that

table. The database server will assign the value 1 to the SERIAL8 column of the

first row of the table. The largest SERIAL8 value that you can assign is 263-1

(9,223,372,036,854,775,807). If you assign a value greater than this, you receive a

syntax error. When the database server generates a SERIAL8 value of this

maximum number, it wraps around and starts generating values beginning at 1.

After a nonzero SERIAL8 number is assigned, it cannot be changed. You can,

however, insert a value into a SERIAL8 column (using the INSERT statement) or

reset the SERIAL8 value n (using the ALTER TABLE statement), as long as that

value does not duplicate any existing values in the column.

When you insert a number into a SERIAL8 column or reset the next value of a

SERIAL8 column, your database server assigns the next number in sequence to the

number entered. If you reset the next value of a SERIAL8 column to a value that is

less than the values already in that column, however, the next value is computed

using the following formula:

maximum existing value in SERIAL8 column + 1

For example, if you reset the SERIAL8 value of the customer_num column in the

customer table to 50, when the highest-assigned customer number is 128, the next

customer number assigned is 129.

Using SERIAL8 with INT8

All the arithmetic operators that are valid for INT8 (such as +, -, *, and /) and all

the SQL functions that are valid for INT8 (such as ABS, MOD, POW, and so on)

are also valid for SERIAL8 values. Data conversion rules that apply to INT8 also

apply to SERIAL8, but with a NOT NULL constraint on SERIAL8.

2-26 IBM Informix Guide to SQL: Reference

The value of a SERIAL8 column of one table can be stored in an INT8 columns of

another table. In the second table, however, the INT8 values are not subject to the

constraints on the original SERIAL8 column.

SET(e) (IDS)

The SET data type is an unordered collection type that stores unique elements;

duplicate element values are not valid as explained in IBM Informix Guide to SQL:

Syntax. (For a collection type that supports duplicate values, see the description of

MULTISET in “MULTISET(e) (IDS)” on page 2-21.)

No more than 97 columns of the same table can be declared as SET data types.

(The same restriction also applies to MULTISET and LIST collection types.)

The elements in a SET have no ordinal position. That is, no construct of a first,

second, or third element in a SET exists. (For a collection type with ordinal

positions for elements, see “LIST(e) (IDS)” on page 2-18.) All elements in a SET

have the same element type. To specify the element type, use this syntax:

SET(element_type NOT NULL)

The element_type of a collection can be any of the following types:

v A built-in type, except SERIAL, SERIAL8, BYTE, and TEXT

v A named or unnamed ROW type

v Another collection type

v An opaque type

You must specify the NOT NULL constraint for SET elements. No other constraints

are valid for SET columns. For more information on the syntax of the SET

collection type, see the IBM Informix Guide to SQL: Syntax.

You can use SET anywhere that you use any other data type, unless otherwise

indicated. For example:

v After the IN predicate in the WHERE clause of a SELECT statement to search for

matching SET values

v As an argument to the CARDINALITY or mi_collection_card() function to

determine the number of elements in a SET column

SET values are not valid as arguments to an aggregate function such as AVG,

MAX, MIN, or SUM. For more information, see the Condition and Expression

sections in the IBM Informix Guide to SQL: Syntax.

The following examples declare two sets. The first statement declares a set of

integers and the second declares a set of character elements.

SET(INTEGER NOT NULL)

SET(CHAR(20) NOT NULL)

The following examples construct the same sets from value lists:

SET{1, 5, 13}

SET{"Oakland", "Menlo Park", "Portland", "Lenexa"}

In the following example, a SET constructor function is part of a CREATE TABLE

statement:

Chapter 2. Data Types 2-27

CREATE TABLE tab

(

 c CHAR(5),

 s SET(INTEGER NOT NULL)

);

The following set values are equal:

SET{"blue", "green", "yellow"}

SET{"yellow", "blue", "green"}

SMALLFLOAT

The SMALLFLOAT data type stores single-precision floating-point numbers with

approximately nine significant digits. SMALLFLOAT corresponds to the float data

type in C. The range of values for a SMALLFLOAT data type is the same as the

range of values for the C float data type on your computer.

A SMALLFLOAT data type column typically stores scientific numbers that can be

calculated only approximately. Because floating-point numbers retain only their

most significant digits, the number that you enter in this type of column and the

number the database displays might differ slightly depending on how your

computer stores floating-point numbers internally.

For example, you might enter a value of 1.1000001 in a SMALLFLOAT field and,

after processing the SQL statement, the application might display this value as 1.1.

This difference occurs when a value has more digits than the floating-point

number can store. In this case, the value is stored in its approximate form with the

least significant digits treated as zeros.

SMALLFLOAT data types usually require 4 bytes of storage. Conversion of a

SMALLFLOAT value to a DECIMAL value results in 9 digits of precision.

SMALLINT

The SMALLINT data type stores small whole numbers that range from –32,767 to

32,767. The maximum negative number, –32,768, is a reserved value and cannot be

used. The SMALLINT value is stored as a signed binary integer.

Integer columns typically store counts, quantities, and so on. Because the

SMALLINT data type requires only two bytes per value, arithmetic operations are

performed efficiently. SMALLINT, however, stores only a limited range of values,

compared to other built-in numeric data types. If a number is outside the range of

the minimum and maximum SMALLINT values, the database server does not store

the data value, but instead issues an error message.

TEXT

The TEXT data type stores any kind of text data. It can contain both single-byte

and multibyte characters that the locale supports. The term simple large object refers

to the TEXT and BYTE data types.

A TEXT column has a theoretical limit of 231 bytes (two gigabytes) and a practical

limit that your available disk storage determines.

Important: An error results if you try to return a TEXT column from a subquery,

even if no TEXT column is used in a comparison condition or with the

IN predicate.

2-28 IBM Informix Guide to SQL: Reference

No more than 195 columns of the same table can be declared as TEXT data types.

(The same restriction also applies to BYTE data types.)

You can store, retrieve, update, or delete the values in a TEXT column. You cannot,

however, use TEXT operands in arithmetic or string expressions, nor can you

assign literals to TEXT columns in the SET clause of the UPDATE statement. You

also cannot use TEXT values in any of the following ways:

v With aggregate functions

v With the IN clause

v With the MATCHES or LIKE clauses

v With the GROUP BY clause

v With the ORDER BY clause

You can use TEXT operands in Boolean expressions only when you are testing for

NULL values with the IS NULL or IS NOT NULL operators.

You can insert data into TEXT columns in the following ways:

v With the dbload or onload utilities

v With the LOAD statement (DB–Access)

v From TEXT host variables (ESQL)

You cannot use a quoted text string, number, or any other actual value to insert or

update TEXT columns.

When you select a TEXT column, you can choose to receive all or part of it. To

retrieve it all, use the regular syntax for selecting a column. You can also select any

part of a TEXT column by using subscripts, as this example shows:

SELECT cat_descr [1,75] FROM catalog WHERE catalog_num = 10001

This statement reads the first 75 bytes of the cat_descr column associated with the

catalog_num value 10001.

A built-in cast exists to convert TEXT objects to CLOB objects. For more

information, see the IBM Informix Database Design and Implementation Guide.

Strings of the TEXT data type are collated in code-set order. For more information

on collating orders, see the IBM Informix GLS User’s Guide.

Nonprintable Characters in TEXT Values

TEXT columns typically store documents, program source files, and so on. In the

default U.S. English locale, data objects of type TEXT can contain a combination of

printable ASCII characters and the following control characters:

v Tab (CTRL-I)

v New line (CTRL-J)

v New page (CTRL-L)

Both printable and nonprintable characters can be inserted in text columns. IBM

Informix products do not do any checking of data values that are inserted in a

column of the TEXT data type. (Applications may have difficulty, however, in

displaying TEXT values that include non-printable characters.) For detailed

information on entering and displaying nonprintable characters, refer to

“Nonprintable Characters with CHAR” on page 2-8.

Chapter 2. Data Types 2-29

Unnamed ROW

See “ROW, Unnamed (IDS)” on page 2-24.

VARCHAR(m,r)

The VARCHAR data type stores character strings of varying length that contain

single-byte and (if the locale supports them) multibyte characters, where m is the

maximum size (in bytes) of the column and r is the minimum number of bytes

reserved for that column. A column declared as VARCHAR without parentheses or

parameters has a maximum size of one byte, and a reserved size of zero.

The VARCHAR data type is the Informix implementation of a character varying

data type. The ANSI standard data type for varying-length character strings is

CHARACTER VARYING.

The size of the maximum size (m) parameter of a VARCHAR column can range

from 1 to 255 bytes. If you are placing an index on a VARCHAR column, the

maximum size is 254 bytes. You can store character strings that are shorter, but not

longer, than the m value that you specify.

Specifying the minimum reserved space (r) parameter is optional. This value can

range from 0 to 255 bytes but must be less than the maximum size (m) of the

VARCHAR column. If you do not specify any minimum value, it defaults to 0. You

should specify this parameter when you initially intend to insert rows with short

or NULL character strings in the column but later expect the data to be updated

with longer values.

For variable-length strings longer than 255 bytes, you can use the LVARCHAR data

type, whose upper limit is 32,739 bytes, instead of VARCHAR. Because

LVARCHAR is implemented as a built-in opaque data type, however, you cannot

access LVARCHAR columns in distributed queries of remote tables.

In an index based on a VARCHAR column (or on a NVARCHAR column), each

index key has a length that is based on the data values that are actually entered,

rather than on the declared maximum size of the column. (See, however,

“IFX_PAD_VARCHAR (IDS)” on page 3-44 for information on how you can

configure the effective size of VARCHAR and NVARCHAR data strings that

Dynamic Server sends or receives.)

When you store a string in an VARCHAR column, only the actual data characters

are stored. The database server does not strip a VARCHAR string of any

user-entered trailing blanks, nor pad a VARCHAR value to the declared length of

the column. If you specify a reserved space (r), but some data strings are shorter

than r bytes, some space reserved for rows goes unused.

VARCHAR values are compared to other VARCHAR values (and to other

character-string data types) in the same way that CHAR values are compared. The

shorter value is padded on the right with blank spaces until the values have equal

lengths; then they are compared for the full length.

No more than 195 columns of the same table can be VARCHAR data types.

Nonprintable Characters with VARCHAR

Nonprintable VARCHAR characters are entered, displayed, and treated in the same

way that nonprintable characters in CHAR values are treated. For details, see the

section “Nonprintable Characters with CHAR” on page 2-8.

2-30 IBM Informix Guide to SQL: Reference

Storing Numeric Values in a VARCHAR Column

When you insert a numeric value in a VARCHAR column, the stored value does

not get padded with trailing blanks to the maximum length of the column. The

number of digits in a numeric VARCHAR value is the number of characters that

you need to store that value. For example, in the next example, the value stored in

table mytab is 1.

create table mytab (col1 varchar(10));

insert into mytab values (1);

Tip: VARCHAR treats C null (binary 0) and string terminators as termination

characters for nonprintable characters.

Multibyte Characters with VARCHAR

In some East Asian locales, VARCHAR data types can store multibyte characters if

the database locale supports a multibyte code set. If you store multibyte characters,

make sure to calculate the number of bytes needed. For more information, see the

IBM Informix GLS User’s Guide.

Collating VARCHAR Values

The main difference between the NVARCHAR and the VARCHAR data types (like

the difference between CHAR and NCHAR) is the difference in collating order. In

general, collation of VARCHAR (like CHAR and LVARCHAR) values is in the

order of the characters as they appear in the code set.

An exception is the MATCHES operator, which applies a localized collation to

NVARCHAR and VARCHAR values (as well as to CHAR, LVARCHAR, and

NCHAR values) if you use bracket ([]) symbols to define ranges when

DB_LOCALE (or SET COLLATION) has specified a localized collating order. For

more information, see the IBM Informix GLS User’s Guide.

Built-In Data Types

Informix database servers support the following built-in data types.

 Category Data Types

Character CHAR, CHARACTER VARYING, LVARCHAR,

NCHAR, NVARCHAR, VARCHAR,

IDSSECURITYLABEL

Large-object Simple-large-object types: BYTE, TEXT

Smart-large-object types: BLOB, CLOB

Logical BOOLEAN

Numeric BIGINT, BIGSERIAL, DECIMAL, FLOAT, INT8,

INTEGER, MONEY, SERIAL, SERIAL8, SMALLFLOAT,

SMALLINT

Time DATE, DATETIME, INTERVAL

Extended Parallel Server does not support BLOB, CLOB, or LVARCHAR. For a

description of character, numeric, and miscellaneous data types, refer to the

appropriate entry in “Description of Data Types” on page 2-5. Page references are

in the alphabetical list in Table 2-1 on page 2-3.

Sections that follow provide additional information on large-object and time data

types.

Chapter 2. Data Types 2-31

Large-Object Data Types

A large object is a data object that is logically stored in a table column but

physically stored independent of the column. Large objects are stored separate

from the table because they typically store a large amount of data. Separation of

this data from the table can increase performance.

Figure 2-4 shows the large-object data types.

Only Dynamic Server supports BLOB and CLOB data types.

For the relative advantages and disadvantages of simple and smart large objects,

see the IBM Informix Database Design and Implementation Guide.

Simple Large Objects

Simple large objects are a category of large objects that have a theoretical size limit

of 231 bytes and a practical limit that your disk capacity determines. Informix

database servers support these simple-large-object data types:

BYTE Stores binary data. For more detailed information about this data

type, see the description on page 2-6.

TEXT Stores text data. For more detailed information about this data

type, see the description on page 2-28.

 No more than 195 columns of the same table can be declared as BYTE or TEXT

data types. Unlike smart large objects, simple large objects do not support random

access to the data. When you transfer a simple large object between a client

application and the database server, you must transfer the entire BYTE or TEXT

value. If the data cannot fit into memory, you must store the data value in an

operating-system file and then retrieve it from that file.

The database server stores simple large objects in blobspaces. A blobspace is a logical

storage area that contains one or more chunks that only store BYTE and TEXT

data. For information on how to define blobspaces, see your IBM Informix

Administrator’s Guide.

Smart Large Objects (IDS)

Smart large objects are a category of large objects that support random access to

the data and are generally recoverable. The random access feature allows you to

seek and read through the smart large object as if it were an operating-system file.

Smart large objects are also useful for opaque data types with large storage

requirements. (See the description of opaque data types in “Opaque Data Types”

on page 2-40.) They have a theoretical size limit of 242 bytes and a practical limit

that your disk capacity determines.

Dynamic Server supports the following smart-large-object data types:

Large objects

Simple large objects

BYTE TEXT BLOB CLOB

Smart large objects

Figure 2-4. Large-Object Data Types

2-32 IBM Informix Guide to SQL: Reference

BLOB Stores binary data. For more information about this data type, see

the description on page 2-5.

CLOB Stores text data. For more information about this data type, see 2-8.

 Dynamic Server stores smart large objects in sbspaces. An sbspace is a logical storage

area that contains one or more chunks that store only BLOB and CLOB data. For

information on how to define sbspaces, see your IBM Informix Performance Guide.

When you define a BLOB or CLOB column, you can determine the following

large-object characteristics:

v LOG and NOLOG: whether the database server should log the smart large object

in accordance with the current database log mode

v KEEP ACCESS TIME and NO KEEP ACCESS TIME: whether the database server

should keep track of the last time the smart large object was accessed

v HIGH INTEG and MODERATE INTEG: whether the database server should use

page headers to detect data corruption

Use of these characteristics can affect performance. For information, see your IBM

Informix Performance Guide.

When an SQL statement accesses a smart-large-object, the database server does not

send the actual BLOB or CLOB data. Instead, it establishes a pointer to the data

and returns this pointer. The client application can then use this pointer in open,

read, or write operations on the smart large object.

To access a BLOB or CLOB column from within a client application, use one of the

following application programming interfaces (APIs):

v From within an IBM Informix ESQL/C program, use the smart-large-object API.

(For more information, see the IBM Informix ESQL/C Programmer’s Manual.)

v From within a DataBlade module, use the Client and Server API. (For more

information, see the IBM Informix DataBlade API Programmer’s Guide.)

For information on smart large objects, see the IBM Informix Guide to SQL: Syntax

and IBM Informix Database Design and Implementation Guide.

Time Data Types

DATE and DATETIME data values represent zero-dimensional points in time;

INTERVAL data values represent 1-dimensional spans of time, with positive or

negative values. DATE precision is always an integer count of days, but various

field qualifiers can define the DATETIME and INTERVAL precision. You can use

DATE, DATETIME, and INTERVAL data in arithmetic and relational expressions.

You can manipulate a DATETIME value with another DATETIME value, an

INTERVAL value, the current time (specified by the keyword CURRENT), or some

unit of time (using the keyword UNITS).

You can use a DATE value in most contexts where a DATETIME value is valid,

and vice versa. You also can use an INTERVAL operand in arithmetic operations

where a DATETIME value is valid. In addition, you can add two INTERVAL

values and multiply or divide an INTERVAL value by a number.

An INTERVAL column can hold a value that represents the difference between two

DATETIME values or the difference between (or sum of) two INTERVAL values. In

either case, the result is a span of time, which is an INTERVAL value. Conversely,

Chapter 2. Data Types 2-33

if you add or subtract an INTERVAL from a DATETIME value, another DATETIME

value is produced, because the result is a specific time.

Table 2-7 lists the binary arithmetic operations that you can perform on DATE,

DATETIME, and INTERVAL operands, as well as the data type that is returned by

the arithmetic expression.

 Table 2-7. Arithmetic Operations on DATE, DATETIME, and INTERVAL Values

Operand 1 Operator Operand 2 Result

DATE - DATETIME INTERVAL

DATETIME - DATE INTERVAL

DATE + or - INTERVAL DATETIME

DATETIME - DATETIME INTERVAL

DATETIME + or - INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

INTERVAL + or - INTERVAL INTERVAL

DATETIME - CURRENT INTERVAL

CURRENT - DATETIME INTERVAL

INTERVAL + CURRENT DATETIME

CURRENT + or - INTERVAL DATETIME

DATETIME + or - UNITS DATETIME

INTERVAL + or - UNITS INTERVAL

INTERVAL * or / NUMBER INTERVAL

No other combinations are allowed. You cannot add two DATETIME values

because this operation does not produce either a specific time or a span of time.

For example, you cannot add December 25 and January 1, but you can subtract

one from the other to find the time span between them.

Manipulating DATETIME Values

You can subtract most DATETIME values from each other. Dates can be in any

order and the result is either a positive or a negative INTERVAL value. The first

DATETIME value determines the precision of the result, which includes the same

time units as the first operand.

If the second DATETIME value has fewer fields than the first, the precision of the

second operand is increased automatically to match the first.

In the following example, subtracting the DATETIME YEAR TO HOUR value from

the DATETIME YEAR TO MINUTE value results in a positive interval value of 60

days, 1 hour, and 30 minutes. Because minutes were not included in the second

operand, the database server sets the minutes value for the second operand to 0

before performing the subtraction.

DATETIME (2003-9-30 12:30) YEAR TO MINUTE

 - DATETIME (2003-8-1 11) YEAR TO HOUR

Result: INTERVAL (60 01:30) DAY TO MINUTE

2-34 IBM Informix Guide to SQL: Reference

If the second DATETIME operand has more fields than the first (regardless of

whether the precision of the extra fields is larger or smaller than those in the first

operand), the additional time unit fields in the second value are ignored in the

calculation.

In the next expression (and its result), the year is not included for the second

operand. Therefore, the year is set automatically to the current year (from the

system clock-calendar), in this example 2005, and the resulting INTERVAL is

negative, which indicates that the second date is later than the first.

DATETIME (2005-9-30) YEAR TO DAY

 - DATETIME (10-1) MONTH TO DAY

Result: INTERVAL (-1) DAY TO DAY [assuming that the current

 year is 2005]

Manipulating DATETIME with INTERVAL Values

INTERVAL values can be added to or subtracted from DATETIME values. In either

case, the result is a DATETIME value. If you are adding an INTERVAL value to a

DATETIME value, the order of values is unimportant; however, if you are

subtracting, the DATETIME value must come first. Adding or subtracting a

positive INTERVAL value simply moves the DATETIME result forward or

backward in time. The expression shown in the following example moves the date

ahead by three years and five months:

DATETIME (2000-8-1) YEAR TO DAY

 + INTERVAL (3-5) YEAR TO MONTH

Result: DATETIME (2004-01-01) YEAR TO DAY

Important: Evaluate the logic of your addition or subtraction. Remember that

months can have 28, 29, 30, or 31 days and that years can have 365 or

366 days.

In most situations, the database server automatically adjusts the calculation when

the operands do not have the same precision. In certain contexts, however, you

must explicitly adjust the precision of one value to perform the calculation. If the

INTERVAL value you are adding or subtracting has fields that are not included in

the DATETIME value, you must use the EXTEND function to increase the precision

of the DATETIME value. (For more information on the EXTEND function, see the

Expression segment in the IBM Informix Guide to SQL: Syntax.)

For example, you cannot subtract an INTERVAL MINUTE TO MINUTE value from

the DATETIME value in the previous example that has a YEAR TO DAY field

qualifier. You can, however, use the EXTEND function to perform this calculation,

as the following example shows:

EXTEND (DATETIME (2008-8-1) YEAR TO DAY, YEAR TO MINUTE)

 - INTERVAL (720) MINUTE(3) TO MINUTE

Result: DATETIME (2008-07-31 12:00) YEAR TO MINUTE

The EXTEND function allows you to explicitly increase the DATETIME precision

from YEAR TO DAY to YEAR TO MINUTE. This allows the database server to

perform the calculation, with the resulting extended precision of YEAR TO

MINUTE.

Manipulating DATE with DATETIME and INTERVAL Values

You can use DATE operands in some arithmetic expressions with DATETIME or

INTERVAL operands by writing expressions to do the manipulating, as Table 2-8

on page 2-36

Chapter 2. Data Types 2-35

on page 2-36 shows.

 Table 2-8. Results of Expressions That Manipulate DATE with DATETIME or INTERVAL

Values

Expression Result

DATE – DATETIME INTERVAL

DATETIME – DATE INTERVAL

DATE + or – INTERVAL DATETIME

In the cases that Table 2-8 shows, DATE values are first converted to their

corresponding DATETIME equivalents, and then the expression is evaluated by the

rules of arithmetic.

Although you can interchange DATE and DATETIME values in many situations,

you must indicate whether a value is a DATE or a DATETIME data type. A DATE

value can come from the following sources:

v A column or program variable of type DATE

v The TODAY keyword

v The DATE() function

v The MDY function

v A DATE literal

A DATETIME value can come from the following sources:

v A column or program variable of type DATETIME

v The CURRENT keyword

v The EXTEND function

v A DATETIME literal

The database locale defines the default DATE and DATETIME formats. For the

default locale, U.S. English, these formats are ’mm/dd/yy’ for DATE values and

’yyyy-mm-dd hh:MM:ss’ for DATETIME values.

To represent DATE and DATETIME values as character strings, the fields in the

strings must be in proper order. In other words, when a DATE value is expected,

the string must be in DATE format and when a DATETIME value is expected, the

string must be in DATETIME format. For example, you can use the string

10/30/2008 as a DATE string but not as a DATETIME string. Instead, you must use

2008-10-30 or 08-10-30 as the DATETIME string.

In a nondefault locale, literal DATE and DATETIME strings must match the

formats that the locale defines. For more information, see the IBM Informix GLS

User’s Guide.

You can customize the DATE format that the database server expects with the

DBDATE and GL_DATE environment variables. You can customize the

DATETIME format that the database server expects with the DBTIME and

GL_DATETIME environment variables. For more information, see “DBDATE” on

page 3-20 and “DBTIME” on page 3-31. For more information on all these

environment variables, see the IBM Informix GLS User’s Guide.

You can also subtract one DATE value from another DATE value, but the result is

a positive or negative INTEGER count of days, rather than an INTERVAL value. If

2-36 IBM Informix Guide to SQL: Reference

an INTERVAL value is required, you can either use the UNITS DAY operator to

convert the INTEGER value into an INTERVAL DAY TO DAY value, or else use

EXTEND to convert one of the DATE values into a DATETIME value before

subtracting.

For example, the following expression uses the DATE() function to convert

character string constants to DATE values, calculates their difference, and then uses

the UNITS DAY keywords to convert the INTEGER result into an INTERVAL

value:

(DATE (’5/2/2007’) - DATE (’4/6/1968’)) UNITS DAY

Result: INTERVAL (12810) DAY(5) TO DAY

Important: Because of the high precedence of UNITS relative to other SQL

operators, you should generally enclose any arithmetic expression that

is the operand of UNITS within parentheses, as in the preceding

example.

If you need YEAR TO MONTH precision, you can use the EXTEND function on

the first DATE operand, as the following example shows:

EXTEND (DATE (’5/2/2007’), YEAR TO MONTH) - DATE (’4/6/1969’)

Result: INTERVAL (39-01) YEAR TO MONTH

The resulting INTERVAL precision is YEAR TO MONTH, because the DATETIME

value came first. If the DATE value had come first, the resulting INTERVAL

precision would have been DAY(5) TO DAY.

Manipulating INTERVAL Values

You can add or subtract INTERVAL values only if both values are from the same

class; that is, if both are year-month or both are day-time. In the following

example, a SECOND TO FRACTION value is subtracted from a MINUTE TO

FRACTION value:

INTERVAL (100:30.0005) MINUTE(3) TO FRACTION(4)

 - INTERVAL (120.01) SECOND(3) TO FRACTION

Result: INTERVAL (98:29.9905) MINUTE TO FRACTION(4)

The use of numeric qualifiers alerts the database server that the MINUTE and

FRACTION in the first value and the SECOND in the second value exceed the

default number of digits.

When you add or subtract INTERVAL values, the second value cannot have a field

with greater precision than the first. The second INTERVAL, however, can have a

field of smaller precision than the first. For example, the second INTERVAL can be

HOUR TO SECOND when the first is DAY TO HOUR. The additional fields (in

this case MINUTE and SECOND) in the second INTERVAL value are ignored in

the calculation.

Multiplying or Dividing INTERVAL Values

You can multiply or divide INTERVAL values by numbers. Any remainder from

the calculation is ignored, however, and the result is truncated to the precision of

the INTERVAL. The following expression multiplies an INTERVAL value by a

literal number that has a fractional part:

INTERVAL (15:30.0002) MINUTE TO FRACTION(4) * 2.5

Result: INTERVAL (38:45.0005) MINUTE TO FRACTION(4)

Chapter 2. Data Types 2-37

In this example, 15 * 2.5 = 37.5 minutes, 30 * 2.5 = 75 seconds, and 2 * 2.5 = 5

FRACTION (4). The 0.5 minute is converted into 30 seconds and 60 seconds are

converted into 1 minute, which produces the final result of 38 minutes, 45 seconds,

and 0.0005 of a second. The result of any calculation has the same precision as the

original INTERVAL operand.

Extended Data Types (IDS)

Dynamic Server enables you to create extended data types to characterize data that

cannot easily be represented with the built-in data types. (You cannot, however,

use extended data types in distributed transactions that query external tables.) You

can create these categories of extended data types:

v Complex data types

v Distinct data types

v Opaque data types

Sections that follow provide an overview of each of these data types.

For more information about extended data types, see the IBM Informix Database

Design and Implementation Guide and IBM Informix User-Defined Routines and Data

Types Developer’s Guide.

Complex Data Types

A complex data type can store one or more values of other built-in and extended

data types. Figure 2-5 shows the complex types that Dynamic Server supports.

The following table summarizes the structure of the complex data types.

 Data Type Description

Collection types: Complex data types that are made up of elements, each of

which is of the same data type.

LIST A group of ordered elements, each of which need not be

unique within the group.

MULTISET A group of elements, each of which need not be unique.

The order of the elements is ignored.

SET A group of elements, each of which is unique. The order of

the elements is ignored.

ROW types: Complex data types that are made up of fields.

Named ROW type Row types that are identified by their name.

Unnamed ROW type Row types that are identified by their structure.

Complex data types

Collection data types

LIST SETMULTISET

ROW data types

Named ROW type Unnamed ROW type

Figure 2-5. Complex Data Types of Dynamic Server

2-38 IBM Informix Guide to SQL: Reference

Complex data types can be nested. For example, you can construct a ROW type

whose fields include one or more sets, multisets, ROW types, and lists. Likewise, a

collection type can have elements whose data type is a ROW type or a collection

type.

Complex types that include opaque types inherit the following support functions.

 input export LO_handles

output import_binary hash

send export_binary lessthan

recv assign equal

import destroy lessthan (ROW only)

Sections that follow summarize the complex data types. For more information, see

the IBM Informix Database Design and Implementation Guide.

Collection Data Types

A collection data type is a complex type that is made up of one or more elements,

all of the same data type. A collection element can be of any data type (including

other complex types) except BYTE, TEXT, SERIAL, or SERIAL8.

Important: An element cannot have a NULL value. You must specify the NOT

NULL constraint for collection elements. No other constraints are valid

for collections.

Dynamic Server supports three kinds of built-in collection types: LIST, SET, and

MULTISET. The keywords used to declare these collections are the names of the

type constructors or just constructors. For the syntax of collection types, see the IBM

Informix Guide to SQL: Syntax. No more than 97 columns of the same table can be

declared as collection data types.

When you specify element values for a collection, list the element values after the

constructor and between braces ({ }). For example, suppose you have a collection

column with the following MULTISET data type:

CREATE TABLE table1

(

 mset_col MULTISET(INTEGER NOT NULL)

)

The next INSERT statement adds one group of element values to this column. (The

word MULTISET in these two examples is the MULTISET constructor.)

INSERT INTO table1 VALUES (MULTISET{5, 9, 7, 5})

You can leave the braces empty to indicate an empty set:

INSERT INTO table1 VALUE (MULTISET{})

An empty collection is not equivalent to a NULL value for the column.

Accessing Collection Data: To access the elements of a collection column, you

must fetch the collection into a collection variable and modify the contents of the

collection variable. Collection variables can be either of the following types:

v Variables in an SPL routine

For more information, see the IBM Informix Guide to SQL: Tutorial.

Chapter 2. Data Types 2-39

v Host variables in an IBM Informix ESQL/C program

For more information, see the IBM Informix ESQL/C Programmer’s Manual.

You can also use nested dot notation to access collection data. For more about

accessing elements of a collection, see the IBM Informix Guide to SQL: Tutorial.

Important: Collection data types are not valid as arguments to functions that are

used for functional indexes.

ROW Data Types

A ROW data type is an ordered collection of one or more elements, called fields.

Each field has a name and a data type. The fields of a ROW are comparable to the

columns of a table, but with important differences:

v A field has no default clause.

v You cannot define constraints on a field.

v You can only use fields with row types, not with tables.

Two kinds of ROW data types exist:

v Named ROW data types are identified by their names.

v Unnamed ROW data types are identified by their structure.

The structure of an unnamed ROW data type is the number (and the order of data

types) of its fields.

No more than 195 columns of the same table can be declared as ROW data types.

For more information about ROW data types, see “ROW, Named (IDS)” on page

2-23 and “ROW, Unnamed (IDS)” on page 2-24.

You can cast between named and unnamed ROW data types; this is described in

the IBM Informix Database Design and Implementation Guide.

Distinct Data Types

A distinct data type has the same internal structure as some other source data type

in the database. The source type can be a built-in or extended data type. What

distinguishes a distinct type from its source type are support functions that are

defined on the distinct type.

No more than 195 columns in the same table can be DISTINCT types that are

based on BYTE, TEXT, ROW, LVARCHAR, NVARCHAR, or VARCHAR source

types, and no more than 97 can have collection source types. For more information,

see the section “Distinct (IDS)” on page 2-14. See also IBM Informix User-Defined

Routines and Data Types Developer’s Guide.

Opaque Data Types

An opaque data type is a user-defined data type that is fully encapsulated. That is,

its internal structure is unknown to the database server. User-defined types (UDTs)

that are not DISTINCT types whose source types are built-in types are opaque.

The built-in data types BLOB, BOOLEAN, CLOB, and LVARCHAR are

implemented as opaque data types. You cannot access these built-in opaque data

types in cross-server distributed operations, but you can access them in other

databases of the same Dynamic Server instance.

2-40 IBM Informix Guide to SQL: Reference

For more information, see the section “Opaque (IDS)” on page 2-22. See also IBM

Informix User-Defined Routines and Data Types Developer’s Guide.

Data Type Casting and Conversion

Occasionally, the data type that was assigned to a column with the CREATE

TABLE statement is inappropriate. You might wish to change the data type of a

column when you need to store larger values than the current data type can

accommodate. The database server allows you to change the data type of the

column or to cast its values to a different data type with either of the following

methods:

v Use the ALTER TABLE statement to modify the data type of a column.

For example, if you create a SMALLINT column and later find that you need to

store integers larger than 32,767, you must change the data type of that column

to store the larger value. You can use ALTER TABLE to change the data type to

INTEGER. The conversion changes the data type of all values that currently exist

in the column as well as any new values that might be added.

v Use the CAST AS keywords or the double colon (::) cast operator to cast a value

to a different data type.

Casting does not permanently alter the data type of a value; it expresses the

value in a more convenient form. Casting user-defined data types into built-in

types allows client programs to manipulate data types without knowledge of

their internal structure.

If you change data types, the new data type must be able to store all of the old

value.

Both data-type conversion and casting depend on casts registered in the syscasts

system catalog table. For information about syscasts, see “SYSCASTS (IDS)” on

page 1-14.

A cast is either built-in or user defined. Guidelines exist for casting distinct and

extended data types. For more information about casting opaque data types, see

IBM Informix User-Defined Routines and Data Types Developer’s Guide. For

information about casting other extended data types see, the IBM Informix Database

Design and Implementation Guide.

Using Built-in Casts

User informix owns built-in casts. They govern conversions from one built-in data

type to another. Built-in casts allow the database server to attempt the following

data-type conversions:

v A character type to any other character type

v A character type to or from another built-in type

v A numeric type to any other numeric type

The database server automatically invokes appropriate built-in casts when

required. For time data types, conversion between DATE and DATETIME data

types requires explicit casts with the EXTEND function, and explicit casts with the

UNITS operator are required for number-to-INTERVAL conversion. Built-in casts

are not available for converting large (BYTE, BLOB, CLOB, and TEXT) built-in

types to other built-in data types.

Chapter 2. Data Types 2-41

When you convert a column from one built-in data type to another, the database

server applies the appropriate built-in casts to each value already in the column. If

the new data type cannot store any of the resulting values, the ALTER TABLE

statement fails.

For example, if you try to convert a column from the INTEGER data type to the

SMALLINT data type and the following values exist in the INTEGER column, the

database server does not change the data type, because SMALLINT columns

cannot accommodate numbers greater than 32,767:

100 400 700 50000 700

The same situation might occur if you attempt to transfer data from FLOAT or

SMALLFLOAT columns to INTEGER, SMALLINT, or DECIMAL columns. Errors

of overflow, underflow, or truncation can occur during data type conversion.

Sections that follow describe database server behavior during certain types of casts

and conversions.

Converting from Number to Number

When you convert data from one number data type to another, you occasionally

find rounding errors. The following table indicates which numeric data type

conversions are acceptable and what kinds of errors you can encounter when you

convert between certain numeric data types.

Target Type

SMALL

INT INTEGER INT8

SMALL

FLOAT FLOAT DECIMAL

SMALLINT OK OK OK OK OK OK

INTEGER E OK OK E OK P

INT8 E E OK D E P

SMALLFLOAT E E E OK OK P

FLOAT E E E D OK P

DECIMAL E E E D D P

Legend:

OK No error

P An error can occur, depending on the precision of the decimal

E An error can occur, depending on the data value

D No error, but less significant digits might be lost

For example, if you convert a FLOAT value to DECIMAL(4,2), your database

server rounds off the floating-point number before storing it as DECIMAL.

This conversion can result in an error depending on the precision assigned to the

DECIMAL column.

Converting Between Number and Character

You can convert a character column (of a data type such as CHAR, NCHAR,

NVARCHAR, or VARCHAR) to a numeric column. If a data string, however,

contains any characters that are not valid in a number column (for example, the

letter l instead of the number 1), the database server returns an error.

2-42 IBM Informix Guide to SQL: Reference

You can also convert a numeric column to a character column. If the character

column is not large enough to receive the number, however, the database server

generates an error. If the database server generates an error, it cannot complete the

ALTER TABLE statement or cast, and leaves the column values as characters. You

receive an error message and the statement is rolled back automatically (regardless

of whether you are in a transaction).

Converting Between INTEGER and DATE

You can convert an integer column (SMALLINT, INTEGER, or INT8) to a DATE

value. The database server interprets the integer as a value in the internal format

of the DATE column. You can also convert a DATE column to an integer column.

The database server stores the internal format of the DATE column as an integer

representing a Julian date.

Converting Between DATE and DATETIME

You can convert DATE columns to DATETIME columns. If the DATETIME column

contains more fields than the DATE column, however, the database server either

ignores the fields or fills them with zeros. The illustrations in the following list

show how these two data types are converted (assuming that the default date

format is mm/dd/yyyy):

v If you convert DATE to DATETIME YEAR TO DAY, the database server converts

the existing DATE values to DATETIME values. For example, the value

08/15/2002 becomes 2002-08-15.

v If you convert DATETIME YEAR TO DAY to the DATE format, the value

2002-08-15 becomes 08/15/2002.

v If you convert DATE to DATETIME YEAR TO SECOND, the database server

converts existing DATE values to DATETIME values and fills in the additional

DATETIME fields with zeros. For example, 08/15/2002 becomes 2002-08-15

00:00:00.

v If you convert DATETIME YEAR TO SECOND to DATE, the database server

converts existing DATETIME to DATE values but drops fields for time units

smaller than DAY. For example, 2002-08-15 12:15:37 becomes 08/15/2002.

Using User-Defined Casts

Implicit and explicit casts are owned by the users who create them. They govern

casts and conversions between user-defined data types and other data types.

Developers of user-defined data types must create certain implicit and explicit

casts and the functions that are used to implement them. The casts allow

user-defined types to be expressed in a form that clients can manipulate.

For information on how to register and use implicit and explicit casts, see the

CREATE CAST statement in the IBM Informix Guide to SQL: Syntax and the IBM

Informix Database Design and Implementation Guide.

Implicit Casts

Implicit casts allow you to convert a user-defined data type to a built-in type or

vice versa. The database server automatically invokes a single implicit cast when

needed to evaluate and compare expressions or pass arguments. Operations that

require more than one implicit cast fail.

Users can explicitly invoke an implicit cast using the CAST AS keywords or the

double colon (::) cast operator.

Chapter 2. Data Types 2-43

Explicit Casts

Explicit casts, unlike implicit casts or built-in casts, are never invoked automatically

by the database server. Users must invoke them explicitly with the CAST AS

keywords or with the double colon (::) cast operator.

Determining Which Cast to Apply

The database server uses the following rules to determine which cast to apply in a

particular situation:

v To compare two built-in types, the database server automatically invokes the

appropriate built-in casts.

v The database server applies only one implicit cast per operand. If two or more

casts are needed to convert the operand to the desired type, the user must

explicitly invoke the additional casts.

In the following example, the literal value 5.55 is implicitly cast to DECIMAL,

and is then explicitly cast to MONEY, and finally to yen:

CREATE DISTINCT TYPE yen AS MONEY

. . .

INSERT INTO currency_tab

 VALUES (5.55::MONEY::yen)

v To compare a distinct type to its source type, the user must explicitly cast one

type to the other.

v To compare a distinct type to a type other than its source, the database server

looks for an implicit cast between the source type and the desired type.

If neither cast is registered, the user must invoke an explicit cast between the

distinct type and the desired type. If this cast is not registered, the database

server automatically invokes a cast from the source type to the desired type.

If none of these casts is defined, the comparison fails.

v To compare an opaque type to a built-in type, the user must explicitly cast the

opaque type to a data type that the database server understands (such as

LVARCHAR, SENDRECV, IMPEX, or IMPEXBIN). The database server then

invokes built-in casts to convert the results to the desired built-in type.

v To compare two opaque types, the user must explicitly cast one opaque type to a

form that the database server understands (such as LVARCHAR, SENDRECV,

IMPEX, or IMPEXBIN) and then explicitly cast this type to the second opaque

type.

For information about casting and the IMPEX, IMPEXBIN, LVARCHAR, and

SENDRECV types, see IBM Informix User-Defined Routines and Data Types

Developer’s Guide.

Casts for Distinct Types

You define a distinct type based on a built-in type or an existing opaque type or

ROW type. Although data of the distinct type has the same length and alignment

and is passed in the same way as data of the source type, the two cannot be

compared directly. To compare a distinct type and its source type, you must

explicitly cast one type to the other.

When you create a new distinct type, the database server automatically registers

two explicit casts:

v A cast from the distinct type to its source type

v A cast from the source type to the distinct type

2-44 IBM Informix Guide to SQL: Reference

You can create an implicit cast between a distinct type and its source type. To

create an implicit cast, however, you must first drop the default explicit cast

between the distinct type and its source type.

You also can use all casts that have been registered for the source type without

modification on the distinct type. You can also create and register new casts and

support functions that apply only to the distinct type.

For examples that show how to create a cast function for a distinct type and

register the function as cast, see the IBM Informix Database Design and

Implementation Guide.

Important: For releases of Dynamic Server earlier than Version 9.21, distinct data

types inherited the built-in casts that are provided for the source type.

The built-in casts of the source type are not inherited by distinct data

types in this release.

What Extended Data Types Can Be Cast?

The next table shows the extended data type combinations that you can cast.

Target Type

Opaque

Type

Distinct

Type

Named

ROW Type

Unnamed

ROW Type

Collection

Type

Built-in

Type

Opaque

Type

Explicit or

implicit

Explicit Explicit Not Valid Not Valid Explicit or

implicit3

Distinct

Type

Explicit3 Explicit Explicit Not Valid Not Valid Explicit or

implicit

Named

ROW Type

Explicit3 Explicit Explicit3 Explicit1 Not Valid Not Valid

Unnamed

ROW Type

Not Valid Not Valid Explicit1 Implicit1 Not Valid Not Valid

Collection

Type

Not Valid Not Valid Not Valid Not Valid Explicit2 Not Valid

Built-in

Type

Explicit or

implicit3

Explicit or

implicit

Not Valid Not Valid Not Valid System

defined

(implicit)

1 Applies when two ROW types are structurally equivalent or casts exist to handle data

conversions where corresponding field types are not the same.2 Applies when a cast exists to

convert between the element types of the respective collection types.3 Applies when a

user-defined cast exists to convert between the two data types.

The table shows only whether or not a cast between a source type and a target

type are possible. In some cases, you must first create a user-defined cast before

you can perform a conversion between two data types. In other cases, the database

server provides either an implicit cast or a built-in cast that you must explicitly

invoke.

Operator Precedence

An operator is a symbol or keyword that can appear in an SQL expression. Most

SQL operators are restricted in the data types of their operands and returned

values. Some operators only support operands of built-in data types; others can

support built-in and extended data types as operands.

Chapter 2. Data Types 2-45

The following table shows the precedence of the operators that Informix database

servers support, in descending (highest to lowest) order of precedence. Operators

with the same precedence are listed in the same row.

 Operator Precedence Example in Expression

. (membership)

[] (substring)

customer.phone [1, 3]

UNITS x UNITS DAY

+

- (unary)

- y

:: (cast) NULL::TEXT

*

/

x / y

+

- (binary)

x -y

|| (concatenation) customer.fname || customer.lname

ANY

ALL

SOME

orders.ship_date > SOME

(SELECT paid_date FROM orders)

NOT NOT y

<

<=

=

>

>=

!=

<>

x >= y

IN

BETWEEN ... AND

LIKE

MATCHES

customer.fname MATCHES y

AND x AND y

OR x OR y

See the IBM Informix Guide to SQL: Syntax for the syntax and semantics of these

SQL operators.

2-46 IBM Informix Guide to SQL: Reference

Chapter 3. Environment Variables

In This Chapter . 3-3

Types of Environment Variables . 3-3

Using Environment Variables on UNIX . 3-4

Where to Set Environment Variables on UNIX . 3-4

Setting Environment Variables in a Configuration File . 3-4

Setting Environment Variables at Login Time . 3-5

Syntax for Setting Environment Variables . 3-5

Unsetting Environment Variables . 3-6

Modifying an Environment-Variable Setting . 3-6

Viewing Your Environment-Variable Settings . 3-6

Checking Environment Variables with the chkenv Utility 3-6

Rules of Precedence . 3-7

Using Environment Variables on Windows . 3-8

Where to Set Environment Variables on Windows . 3-8

Environment Settings . 3-8

Using the System Applet to Change Environment Variables 3-8

Using the Command Prompt to Change Environment Variables 3-9

Using dbservername.cmd to Initialize a Command-Prompt Environment 3-9

Rules of Precedence . 3-10

List of Environment Variables . 3-10

Environment Variables . 3-14

AC_CONFIG . 3-14

AFDEBUG . 3-14

ANSIOWNER (IDS) . 3-14

BIG_FET_BUF_SIZE (XPS) . 3-15

CPFIRST . 3-15

DBACCNOIGN . 3-16

DBANSIWARN . 3-17

DBBLOBBUF . 3-17

DBCENTURY . 3-18

DBDATE . 3-20

DBDELIMITER . 3-22

DBEDIT . 3-22

DBFLTMASK . 3-23

DBLANG . 3-23

DBMONEY . 3-24

DBNLS (IDS) . 3-25

DBONPLOAD (IDS) . 3-26

DBPATH . 3-26

DBPRINT . 3-28

DBREMOTECMD (UNIX) . 3-28

DBSPACETEMP . 3-29

DBTEMP (IDS) . 3-30

DBTIME . 3-31

DBUPSPACE . 3-33

DEFAULT_ATTACH . 3-34

DELIMIDENT . 3-34

ENVIGNORE (UNIX) . 3-35

FET_BUF_SIZE . 3-36

GLOBAL_DETACH_INFORM (XPS) . 3-37

IBM_XPS_PARAMS (XPS) . 3-37

IFMX_CART_ALRM (XPS) . 3-38

IFMX_HISTORY_SIZE (XPS) . 3-38

IFMX_OPT_FACT_TABS (XPS) . 3-38

IFMX_OPT_NON_DIM_TABS (XPS) . 3-39

© Copyright IBM Corp. 1996, 2008 3-1

IFX_DEF_TABLE_LOCKMODE (IDS) . 3-40

IFX_DIRECTIVES . 3-40

IFX_EXTDIRECTIVES . 3-41

IFX_LONGID . 3-42

IFX_NETBUF_PVTPOOL_SIZE (UNIX) . 3-42

IFX_NETBUF_SIZE . 3-43

IFX_NO_TIMELIMIT_WARNING . 3-43

IFX_NODBPROC . 3-43

IFX_NOT_STRICT_THOUS_SEP . 3-43

IFX_ONTAPE_FILE_PREFIX . 3-44

IFX_PAD_VARCHAR (IDS) . 3-44

IFX_UPDDESC (IDS) . 3-44

IFX_XASTDCOMPLIANCE_XAEND . 3-45

IFX_XFER_SHMBASE . 3-45

IMCADMIN . 3-46

IMCCONFIG . 3-46

IMCSERVER . 3-46

INFORMIXC (UNIX) . 3-47

INFORMIXCONCSMCFG (IDS) . 3-47

INFORMIXCONRETRY . 3-47

INFORMIXCONTIME . 3-48

INFORMIXCPPMAP (IDS) . 3-49

INFORMIXDIR . 3-49

INFORMIXOPCACHE (IDS) . 3-49

INFORMIXSERVER . 3-50

INFORMIXSHMBASE (UNIX) . 3-51

INFORMIXSQLHOSTS . 3-51

INFORMIXSTACKSIZE . 3-52

INFORMIXTERM (UNIX) . 3-52

INF_ROLE_SEP (IDS) . 3-52

INTERACTIVE_DESKTOP_OFF (Windows) . 3-53

ISM_COMPRESSION . 3-54

ISM_DEBUG_FILE . 3-54

ISM_DEBUG_LEVEL . 3-54

ISM_ENCRYPTION . 3-54

ISM_MAXLOGSIZE . 3-55

ISM_MAXLOGVERS . 3-55

JAR_TEMP_PATH (IDS) . 3-55

JAVA_COMPILER (IDS) . 3-55

JVM_MAX_HEAP_SIZE (IDS) . 3-56

LD_LIBRARY_PATH (UNIX) . 3-56

LIBERAL_MATCH (XPS) . 3-56

LIBPATH (UNIX) . 3-57

NODEFDAC . 3-57

ONCONFIG . 3-57

OPTCOMPIND . 3-58

OPTMSG . 3-59

OPTOFC . 3-59

OPT_GOAL (IDS, UNIX) . 3-59

PATH . 3-60

PDQPRIORITY . 3-60

Using PDQPRIORITY with Dynamic Server . 3-61

Using PDQPRIORITY with Extended Parallel Server 3-61

PLCONFIG (IDS) . 3-62

PLOAD_LO_PATH (IDS) . 3-62

PLOAD_SHMBASE (IDS) . 3-62

PSORT_DBTEMP . 3-63

PSORT_NPROCS . 3-63

RTREE_COST_ADJUST_VALUE (IDS) . 3-64

SHLIB_PATH (UNIX) . 3-65

STMT_CACHE (IDS) . 3-65

3-2 IBM Informix Guide to SQL: Reference

TERM (UNIX) . 3-65

TERMCAP (UNIX) . 3-66

TERMINFO (UNIX) . 3-66

THREADLIB (UNIX) . 3-67

TOBIGINT (XPS) . 3-67

USETABLEAME (IDS) . 3-67

XFER_CONFIG (XPS) . 3-67

Index of Environment Variables . 3-68

In This Chapter

Various environment variables affect the functionality of your IBM Informix

products. You can set environment variables that identify your terminal, specify

the location of your software and define other parameters.

Some environment variables are required; others are optional. You must either set

or accept the default setting for required environment variables.

This chapter describes how to use the environment variables that apply to one or

more IBM Informix products and shows how to set them.

Types of Environment Variables

Two types of environment variables are discussed in this chapter:

v Informix-specific environment variables

Set Informix environment variables when you want to work with IBM Informix

products. Each IBM Informix product publication specifies the environment

variables that you must set to use that product.

v Operating-system-specific environment variables

IBM Informix products rely on the correct setting of certain standard operating

system environment variables. For example, you must always set the PATH

environment variable.

In a UNIX environment, you might also need to set the TERMCAP or TERMINFO

environment variable to use some products effectively.

The GLS environment variables that support nondefault locales are described in

the IBM Informix GLS User’s Guide. The GLS variables are included in the list of

environment variables in Table 3-1 on page 3-10 and in the topic index in Table 3-4

on page 3-68, but are not discussed in this publication.

The database server uses the environment variables that were in effect at the time

when the database server was initialized.

The onstat - g env command lists the active environment settings.

Tip: Additional environment variables that are specific to your client application

or SQL API might be discussed in the publication for that product.

Important: Do not set any environment variable in the home directory of user

informix (nor in the file .informix in that directory) while initializing

the database and creating the sysmaster database.

Chapter 3. Environment Variables 3-3

Using Environment Variables on UNIX

The following sections discuss setting unsetting modifying and viewing

environment variables. If you already use an IBM Informix product some or all of

the appropriate environment variables might be set.

Where to Set Environment Variables on UNIX

You can set environment variables on UNIX in the following places:

v At the system prompt on the command line

When you set an environment variable at the system prompt, you must reassign

it the next time you log into the system. See also “Using Environment Variables

on UNIX” on page 3-4.

v In an environment-configuration file

An environment-configuration file is a common or private file where you can set

all the environment variables that IBM Informix products use. The use of such

files reduces the number of environment variables that you must set at the

command line or in a shell file.

v In a login file

Values of environment variables set in your .login, .cshrc, or .profile file are

assigned automatically every time you log into the system.

v In the SET ENVIRONMENT statement of SQL

Values of some environment variables can reset by the SET ENVIRONMENT

statement. The scope of the new settings is generally the routine that executed

the SET ENVIRONMENT statement, but it is the current session for the

OPTCOMPIND environment variable of Dynamic Server, as described in the

section “OPTCOMPIND” on page 3-58, and for environment variables of

Extended Parallel Server that the sysdbopen() or sysdbclose() SPL routines can

set. For more information on these routines and on the SET ENVIRONMENT

statement, see the IBM Informix Guide to SQL: Syntax.

In IBM Informix ESQL/C, you can set supported environment variables within an

application with the putenv() system call and retrieve values with the getenv()

system call, if your UNIX system supports these functions. For more information

on putenv() and getenv(), see the IBM Informix ESQL/C Programmer’s Manualand

your C documentation.

Setting Environment Variables in a Configuration File

The common (shared) environment-configuration file that is provided with IBM

Informix products resides in $INFORMIXDIR/etc/informix.rc. Permissions for this

shared file must be set to 644.

A user can override the system or shared environment variables by setting

variables in a private environment-configuration file. This file must have all of the

following characteristics:

v Stored in the user’s home directory

v Named .informix

v Permissions set to readable by the user

An environment-configuration file can contain comment lines (preceded by the #

comment indicator) and variable definition lines that set values (separated by

blank spaces or tabs), as the following example shows:

3-4 IBM Informix Guide to SQL: Reference

This is an example of an environment-configuration file

DBDATE DMY4-

These are ESQL/C environment variable settings

INFORMIXC gcc

CPFIRST TRUE

You can use the ENVIGNORE environment variable, described in “ENVIGNORE

(UNIX)” on page 3-35, to override one or more entries in an environment-
configuration file. Use the Informix chkenv utility, described in “Checking

Environment Variables with the chkenv Utility” on page 3-6, to perform a sanity

check on the contents of an environment-configuration file. The chkenv utility

returns an error message if the file contains a bad environment variable or if the

file is too large.

The first time you set an environment variable in a shell file or

environment-configuration file, you must tell the shell process to read your entry

before you work with your IBM Informix product. If you use a C shell, source the

file; if you use a Bourne or Korn shell, use a period (.) to execute the file.

Setting Environment Variables at Login Time

Add commands that set your environment variables to the appropriate login file:

For C shell .login or .cshrc

For Bourne shell or Korn shell

.profile

Syntax for Setting Environment Variables

Use standard UNIX commands to set environment variables. The examples in the

following table show how to set the ABCD environment variable to value for the C

shell, Bourne shell, and Korn shell. The Korn shell also supports a shortcut, as the

last row indicates. Environment variables are case sensitive.

 Shell Command

C setenv ABCD value

Bourne ABCD=value

export ABCD

Korn ABCD=value

export ABCD

Korn export ABCD=value

The following diagram shows how the syntax for setting an environment variable

is represented throughout this chapter. These diagrams indicate the setting for the

C shell; for the Bourne or Korn shells, use the syntax illustrated in the preceding

table.

�� setenv ABCD value ��

For more information on how to read syntax diagrams, see “Syntax Diagrams” on

page xiii of the Introduction.

Chapter 3. Environment Variables 3-5

Unsetting Environment Variables

To unset an environment variable, enter the following command.

 Shell Command

C unsetenv ABCD

Bourne or Korn unset ABCD

Modifying an Environment-Variable Setting

Sometimes you must add information to an environment variable that is already

set. For example, the PATH environment variable is always set on UNIX. When

you use an IBM Informix product, you must add to the PATH setting the name of

the directory where the executable files for the IBM Informix products are stored.

In the following example, the INFORMIXDIR is /usr/informix. (That is, during

installation, the IBM Informix products were installed in the /usr /informix

directory.) The executable files are in the bin subdirectory, /usr/informix/bin. To

add this directory to the front of the C shell PATH environment variable, use the

following command:

setenv PATH /usr/informix/bin:$PATH

Rather than entering an explicit pathname, you can use the value of the

INFORMIXDIR environment variable (represented as $INFORMIXDIR), as the

following example shows:

setenv INFORMIXDIR /usr/informix

setenv PATH $INFORMIXDIR/bin:$PATH

You might prefer to use this version to ensure that your PATH entry does not

conflict with the search path that was set in INFORMIXDIR, and so that you do

not have to reset PATH whenever you change INFORMIXDIR. If you set the

PATH environment variable on the C shell command line, you might need to

include braces ({ }) with the existing INFORMIXDIR and PATH, as the following

command shows:

setenv PATH ${INFORMIXDIR}/bin:${PATH}

For more information about how to set and modify environment variables, refer to

the publications for your operating system.

Viewing Your Environment-Variable Settings

After you install one or more IBM Informix products, enter the following

command at the system prompt to view your current environment settings.

 UNIX Version Command

BSD UNIX env

UNIX System V printenv

Checking Environment Variables with the chkenv Utility

The chkenv utility checks the validity of shared or private environment-
configuration files. It validates the names of the environment variables in the file,

but not their values. Use chkenv to provide debugging information when you

define, in an environment-configuration file, all the environment variables that

your IBM Informix products use.

3-6 IBM Informix Guide to SQL: Reference

�� chkenv filename

pathname
 ��

filename is the name of the environment-configuration file to be debugged.

pathname is the full directory path in which the environment variable file is

located.

 File $INFORMIXDIR/etc/informix.rc is the shared environment-configuration file.

A private environment-configuration file is stored as .informix in the home

directory of the user. If you specify no pathname for chkenv, the utility checks both

the shared and private environment configuration files. If you provide a pathname,

chkenv checks only the specified file.

Issue the following command to check the contents of the shared

environment-configuration file:

chkenv informix.rc

The chkenv utility returns an error message if it finds a bad environment-variable

name in the file or if the file is too large. You can modify the file and rerun the

utility to check the modified environment-variable names.

IBM Informix products ignore all lines in the environment-configuration file,

starting at the point of the error, if the chkenv utility returns the following

message:

-33523 filename: Bad environment variable on line number.

If you want the product to ignore specified environment-variables in the file, you

can also set the ENVIGNORE environment variable. For a discussion of the use

and format of environment-configuration files and the ENVIGNORE environment

variable, see page 3-35.

Rules of Precedence

When an IBM Informix product accesses an environment variable, normally the

following rules of precedence apply:

1. Of highest precedence is the value that is defined in the environment (shell) by

explicitly setting the value at the shell prompt.

2. The second highest precedence goes to the value that is defined in the private

environment-configuration file in the home directory of the user (~/.informix).

3. The next highest precedence goes to the value that is defined in the common

environment-configuration file ($INFORMIXDIR/etc/informix.rc).

4. The lowest precedence goes to the default value, if one exists.

For precedence information about GLS environment variables, see the IBM Informix

GLS User’s Guide.

Important: If you set one or more environment variables before you start the

database server, and you do not explicitly set the same environment

variables for your client products, the clients will adopt the original

settings.

Chapter 3. Environment Variables 3-7

Using Environment Variables on Windows

The following sections discuss setting, viewing, unsetting, and modifying

environment variables for Windows® applications.

Where to Set Environment Variables on Windows

You can set environment variables in several places on Windows, depending on

which IBM Informix application you use.

Environment variables can be set in several ways, as described in “Environment

Settings” on page 3-8.

The SET ENVIRONMENT statement of SQL can set certain routine-specific

environment options. For more information, refer to the description of SET

ENVIRONMENT in the IBM Informix Guide to SQL: Syntax.

To use client applications such as Informix ESQL/C or the Schema Tools on

Windows environment, use the Setnet32 utility to set environment variables. For

information about the Setnet32 utility, see the IBM Informix Client Products

Installation Guide for your operating system.

In IBM Informix ESQL/C, you can set supported environment variables within an

application with the ifx_putenv() function and retrieve values with the

ifx_getenv() function, if your Windows system supports them. For more

information on ifx_putenv() and ifx_getenv(), see the IBM Informix ESQL/C

Programmer’s Manual.

Environment Settings

You can set environment variables for command-prompt utilities in the following

ways:

v With the System applet in the Control Panel

v In a command-line session

Using the System Applet to Change Environment Variables

The System applet provides a graphical interface to create, modify, and delete

system-wide and user-specific variables. Environment variables that are set with

the System applet are visible to all command-prompt sessions.

 To change environment variables with the System applet in the control panel:

1. Double-click the System applet icon from the Control Panel window.

Click the Environment tab near the top of the window. Two list boxes display

System Environment Variables and User Environment Variables. System

Environment Variables apply to an entire system, and User Environment

Variables apply only to the sessions of the individual user.

2. To change the value of an existing variable, select that variable.

The name of the variable and its current value appear in the boxes at the

bottom of the window.

3. Highlight the existing value and type the new value.

4. To add a new variable, highlight an existing variable and type the new variable

name in the box at the bottom of the window.

5. Next, enter the value for the new variable at the bottom of the window and

click the Set button.

3-8 IBM Informix Guide to SQL: Reference

6. To delete a variable, select the variable and click the Delete button.

Important: In order to use the System applet to change System environment

variables, you must belong to the Administrators group. For

information on assigning users to groups, see your operating-system

documentation.

Using the Command Prompt to Change Environment Variables

The following diagram shows the syntax for setting an environment variable at a

command prompt in Windows.

�� set ABCD = value ��

If no value is specified, the environment variable is unset, as if it did not exist.

For more information on how to read syntax diagrams, see “Syntax Diagrams” on

page xiii of the introduction.

To view your current settings after one or more IBM Informix products are

installed, enter the following command at the command prompt.

�� set ��

Sometimes you must add information to an environment variable that is already

set. For example, the PATH environment variable is always set in Windows

environments. When you use an IBM Informix product, you must add the name of

the directory where the executable files for the IBM Informix products are stored to

the PATH.

In the following example, INFORMIXDIR is d:\informix (that is, during

installation, IBM Informix products were installed in the d: \informix directory).

The executable files are in the bin subdirectory, d:\informix\bin. To add this

directory at the beginning of the PATH environment-variable value, use the

following command:

set PATH=d:\informix\bin;%PATH%

Rather than entering an explicit pathname, you can use the value of the

INFORMIXDIR environment variable (represented as %INFORMIXDIR%), as the

following example shows:

set INFORMIXDIR=d:\informix

set PATH=%INFORMIXDIR%\bin;%PATH%

You might prefer to use this version to ensure that your PATH entry does not

contradict the search path that was set in INFORMIXDIR and to avoid the need to

reset PATH whenever you change INFORMIXDIR.

For more information about setting and modifying environment variables, refer to

your operating-system publications.

Using dbservername.cmd to Initialize a Command-Prompt

Environment

Each time that you open a Windows command prompt, it acts as an independent

environment. Therefore, environment variables that you set within it are valid only

for that particular command-prompt instance.

Chapter 3. Environment Variables 3-9

For example, if you open one command window and set the variable,

INFORMIXDIR, and then open another command window and type set to check

your environment, you will find that INFORMIXDIR is not set in the new

command-prompt session.

The database server installation program creates a batch file that you can use to

configure command-prompt utilities, ensuring that your command-prompt

environment is initialized correctly each time that you run a command-prompt

session. The batch file, dbservername.cmd, is located in %INFORMIXDIR%, and

is a plain text file that you can modify with any text editor. If you have more than

one database server installed in %INFORMIXDIR%, there will be more than one

batch file with the .cmd extension, each bearing the name of the database server

with which it is associated.

To run dbservername.cmd from a command prompt, type dbservername or

configure a command prompt so that it runs dbservername.cmd automatically at

start up.

Rules of Precedence

When an IBM Informix product accesses an environment variable, normally the

following rules of precedence apply:

1. The setting in Setnet32 with the Use my settings box selected.

2. The setting in Setnet32 with the Use my settings box cleared.

3. The setting on the command line before running the application.

4. The setting in Windows as a user variable.

5. The setting in Windows as a system variable.

6. The lowest precedence goes to the default value.

An application examines the first five values as it starts. Unless otherwise stated,

changing an environment variable after the application is running does not have

any effect.

List of Environment Variables

Table 3-1 contains an alphabetical list of the environment variables that you can set

for an Informix database server and SQL API products. Most of these environment

variables are described in this chapter on the pages listed in the “Page” column.

The notation ERG in the Page column indicates an environment variable that must

be set with the CDR_ENV configuration parameter and that is described in the

appendix on configuration parameters and environment variables of the IBM

Informix Dynamic Server Enterprise Replication Guide.

The notation GLS in the Page column indicates a GLS environment variable that is

valid in nondefault locales and that is described in the GLS environment variables

chapter of IBM Informix GLS User’s Guide.

 Table 3-1. Alphabetical List of Environment Variables

Environment Variable XPS IDS Restrictions Page

AC_CONFIG X X ON-Bar 3-14

AFDEBUG JVM 3-14

ANSIOWNER X None 3-14

3-10 IBM Informix Guide to SQL: Reference

Table 3-1. Alphabetical List of Environment Variables (continued)

Environment Variable XPS IDS Restrictions Page

BIG_FET_BUF_SIZE X SQL APIs and

DB-Access only

3-15

CC8BITLEVEL ESQL/C only GLS

CDRSITES_731 X ER only ERG

CDRSITES_92X X ER only ERG

CDR_ATSRISNAME_DELIM X ER only ERG

CDR_DISABLE_SPOOL X ER only ERG

CDR_LOGDELTA X ER only ERG

CDR_PERFLOG X ER only ERG

CDR_ROUTER X ER only ERG

CDR_RMSCALEFACT X ER only ERG

CLIENT_LOCALE X X None GLS

CPFIRST X X ESQL/C only 3-15

DBACCNOIGN X X DB-Access only 3-16

DBANSIWARN X X None 3-17

DBBLOBBUF X X UNLOAD only 3-17

DBCENTURY SQL APIs only 3-18

DBDATE X X None 3-20; GLS

DBDELIMITER X X None 3-22

DBEDIT X X None 3-22

DBFLTMASK X X DB-Access only 3-23

DBLANG X X None 3-23; GLS

DBMONEY X X None 3-24; GLS

DBNLS X 3-25

DBONPLOAD X HPL only 3-26

DBPATH X X None 3-26

DBPRINT X X UNIX only 3-28

DBREMOTECMD X X UNIX only 3-28

DBSPACETEMP X X None 3-29

DBTEMP X DB-Access, Gateways 3-30

DBTIME SQL APIs only 3-31; GLS

DBUPSPACE X X None 3-33

DB_LOCALE X X None GLS

DEFAULT_ATTACH X Deprecated 3-34

DELIMIDENT X X None 3-34

ENVIGNORE X X UNIX only 3-35

ESQLMF X X ESQL/C only GLS

FET_BUF_SIZE X X SQL APIs, DB-Access only 3-36

GLOBAL_DETACH_INFORM X None 3-37

GLS8BITFSYS X X None GLS

Chapter 3. Environment Variables 3-11

Table 3-1. Alphabetical List of Environment Variables (continued)

Environment Variable XPS IDS Restrictions Page

GL_DATE X X None GLS

GL_DATETIME X X None GLS

IBM_XPS_PARAMS X None 3-37

IFMX_CART_ALRM X None 3-38

IFMX_HISTORY_SIZE X DB-Access 3-38

IFMX_OPT_FACT_TABS X None 3-38

IFMX_OPT_NON_DIM_TABS X None 3-39

IFX_DEF_TABLE_LOCKMODE X None 3-40

IFX_DIRECTIVES X X None 3-40

IFX_EXTDIRECTIVES X X Set on the client only 3-41

IFX_LONGID X X None 3-42

IFX_NETBUF_PVTPOOL_SIZE X X UNIX only 3-42

IFX_NETBUF_SIZE X X None 3-43

IFX_NO_TIMELIMIT_WARNING X X None 3-43

IFX_NODBPROC X X None 3-43

IFX_NOT_STRICT_THOUS_SEP X None 3-43

IFX_ONTAPE_FILE_PREFIX X None 3-44

IFX_PAD_VARCHAR X None 3-44

IFX_UPDDESC X None 3-44

IFX_XASTDCOMPLIANCE_XAEND X None 3-45

IFX_XFER_SHMBASE X None 3-45

IMCADMIN X 3-46

IMCCONFIG X 3-46

IMCSERVER X 3-46

INFORMIXC ESQL/C, UNIX only 3-47

INFORMIXCONCSMCFG X None 3-47

INFORMIXCONRETRY X X None 3-47

INFORMIXCONTIME X X None 3-48

INFORMIXCPPMAP X None 3-49

INFORMIXDIR X X None 3-49

INFORMIXOPCACHE X Optical Subsystem only 3-49

INFORMIXSERVER X X None 3-50

INFORMIXSHMBASE X X UNIX only 3-51

INFORMIXSQLHOSTS X X None 3-51

INFORMIXSTACKSIZE X X None 3-52

INFORMIXTERM X X DB-Access, UNIX only 3-52

INF_ROLE_SEP X None 3-52

INTERACTIVE_DESKTOP_OFF X Windows only 3-53

ISM_COMPRESSION X X ISM, ON–Bar only 3-54

ISM_DEBUG_FILE X X ISM only 3-54

3-12 IBM Informix Guide to SQL: Reference

Table 3-1. Alphabetical List of Environment Variables (continued)

Environment Variable XPS IDS Restrictions Page

ISM_DEBUG_LEVEL X X ISM, ON–Bar only 3-54

ISM_ENCRYPTION X X ISM, ON–Bar only 3-54

ISM_MAXLOGSIZE X X ISM only 3-55

ISM_MAXLOGVERS X X ISM only 3-55

JAR_TEMP_PATH X JVM 3-55

JAVA_COMPILER X JVM 3-55

JVM_MAX_HEAP_SIZE X JVM 3-56

LD_LIBRARY_PATH SQL APIs, UNIX only 3-56

LIBERAL_MATCH X None 3-56

LIBPATH SQL APIs, UNIX only 3-57

NODEFDAC X X None 3-57

ONCONFIG X X None 3-57

OPTCOMPIND X X None 3-58

OPTMSG ESQL/C only 3-59

OPTOFC ESQL/C only 3-59

OPT_GOAL X UNIX only 3-59

PATH X X None 3-60

PDQPRIORITY X X None 3-60

PLCONFIG X HPL only 3-62

PLOAD_LO_PATH X HPL only 3-62

PLOAD_SHMBASE X HPL only 3-62

PSORT_DBTEMP X X None 3-63

PSORT_NPROCS X X None 3-63

RTREE_COST_ADJUST_VALUE X None 3-64

SERVER_LOCALE X X None GLS

SHLIB_PATH X X UNIX only 3-65

STMT_CACHE X None 3-65

TERM X X UNIX only 3-65

TERMCAP X X UNIX only 3-66

TERMINFO X X UNIX only 3-66

THREADLIB Informix ESQL/C, UNIX only 3-67

TOBIGINT X dbschema only 3-67

USE_DTENV X None IBM Informix

ESQL/C

Programmer’s

Manual

USETABLENAME X None 3-67

XFER_CONFIG X None 3-67

Tip: You might encounter references to environment variables that are not listed in

Table 3-1 on page 3-10. Most likely, these environment variables are not

Chapter 3. Environment Variables 3-13

supported in this release or are used to maintain backward compatibility with

certain earlier product versions. For information, refer to an earlier version of

your IBM Informix documentation.

Environment Variables

Sections that follow discuss (in alphabetical order) environment variables that IBM

Informix database server products and their utilities use.

Important: The descriptions of the following environment variables include the

syntax for setting the environment variable on UNIX. For a general

description of how to set these environment variables on Windows, see

“Environment Settings” on page 3-8.

AC_CONFIG

You can set the AC_CONFIG environment variable to specify the path for the

ac_config.std configuration file for the archecker utility, which checks the validity

and completeness of an ON–Bar storage-space backup. The ac_config.std file

contains default archecker configuration parameters.

�� setenv AC_CONFIG pathname ��

pathname is the location of the ac_config.std configuration file in

$INFORMIXDIR/etc or %INFORMIXDIR%\etc.

 For information on archecker, see your IBM Informix Backup and Restore Guide.

AFDEBUG

You can create files to hold verbose messages from the Java virtual machine (JVM)

about releasing memory that had been allocated to objects by setting the

AFDEBUG environment variable.

�� setenv AFDEBUG ��

No value is required. You can also set the configuration parameter AFCRASH to

0x00000010 to achieve the same result.

ANSIOWNER (IDS)

In an ANSI-compliant database, you can prevent the default behavior of upshifting

lowercase letters in owner names that are not delimited by quotation marks by

setting the ANSIOWNER environment variable to 1.

�� setenv ANSIOWNER 1 ��

To prevent upshifting of lowercase letters in owner names in an ANSI-compliant

database, you must set ANSIOWNER before you initialize Dynamic Server.

The following table shows how an ANSI-compliant database of Dynamic Server

stores or reads the specified name of a database object called oblong if you were

the owner of oblong and your userid (in all lowercase letters) were owen:

3-14 IBM Informix Guide to SQL: Reference

Table 3-2. Lettercase of implicit, unquoted, and quoted owner names, with and without

ANSIOWNER

Owner Format Specification ANSIOWNER = 1 ANSIOWNER Not Set

Implicit: oblong owen.oblong OWEN.oblong

Unquoted: owen.oblong owen.oblong OWEN.oblong

Quoted: ’owen’.oblong owen.oblong owen.oblong

Because they do not match the lettercase of your userid, any SQL statements that

specified the formats that are stored as OWEN.oblong would fail with errors.

BIG_FET_BUF_SIZE (XPS)

The BIG_FET_BUF_SIZE environment variable functions the same as the

FET_BUF_SIZE environment variable, but supports a larger cursor buffer.

�� setenv BIG_FET_BUF_SIZE size ��

size is a positive integer that is larger than the default buffer size.

 The size can be no greater than 4 gigabytes and specifies the size (in bytes) of the

fetch buffer that holds data retrieved by a query. For example, to set a buffer size

to 5,000 bytes on a UNIX system that uses the C shell, set the

BIG_FET_BUF_SIZE environment variable with the following command:

setenv BIG_FET_BUF_SIZE 5000

When BIG_FET_BUF_SIZE is set to a valid value, the new value overrides the

default value (or any previously set value of BIG_FET_BUF_SIZE). The default

setting for the fetch buffer is dependent on row size. The processing of BYTE and

TEXT values is not affected by BIG_FET_BUF_SIZE.

No error is raised if BIG_FET_BUF_SIZE is set to a value less than the default size

or out of the range of SMALLINT values. In these cases, however, the invalid fetch

buffer size is ignored and the default size is in effect.

If you set BIG_FET_BUF_SIZE to a valid value, that value is in effect for the local

database server as well as for any remote database server from which you retrieve

rows through a distributed query in which the local server is the coordinator and

the remote server is subordinate. The greater the size of the buffer, the more rows

can be returned and the less frequently the client application must wait for

returned rows. A large buffer can improve performance by reducing the overhead

of filling the client-side buffer.

CPFIRST

Set the CPFIRST environment variable to specify the default compilation order for

all Informix ESQL/C source files in your programming environment.

�� setenv CPFIRST TRUE

FALSE
 ��

When you compile an Informix ESQL/C program with CPFIRST not, set the

Informix ESQL/C preprocessor runs first, by default, on the program source file

Chapter 3. Environment Variables 3-15

and then passes the resulting file to the C language preprocessor and compiler. You

can, however, compile an Informix ESQL/C program source file in the following

order:

1. Run the C preprocessor

2. Run the Informix ESQL/C preprocessor

3. Run the C compiler and linker

To use a nondefault compilation order for a specific program, you can either give

the program source file a .ecp extension, run the -cp option with the esql

command on a program source file with a .ec extension, or set CPFIRST.

Set CPFIRST to TRUE (uppercase only) to run the C preprocessor before the

Informix ESQL/C preprocessor on all Informix ESQL/C source files in your

environment, irrespective of whether the -cp option is passed to the esql command

or the source files have the .ec or the .ecp extension.

To restore the default order on a system where the CPFIRST environment variable

has been set to TRUE, you can set CPFIRST to FALSE. On UNIX systems that

support the C shell, the following command has the same effect:

unsetenv CPFIRST

DBACCNOIGN

The DBACCNOIGN environment variable affects the behavior of the DB–Access

utility if an error occurs under one of the following circumstances:

v You run DB–Access in nonmenu mode.

v In Dynamic Server only, you execute the LOAD command with DB–Access in

menu mode.

Set the DBACCNOIGN environment variable to 1 to roll back an incomplete

transaction if an error occurs while you run the DB–Access utility under either of

the preceding conditions.

�� setenv DBACCNOIGN 1 ��

For example, assume DB–Access runs the following SQL commands:

DATABASE mystore

BEGIN WORK

INSERT INTO receipts VALUES (cust1, 10)

INSERT INTO receipt VALUES (cust1, 20)

INSERT INTO receipts VALUES (cust1, 30)

UPDATE customer

 SET balance =

 (SELECT (balance-60)

 FROM customer WHERE custid = ’cust1’)

 WHERE custid = ’cust1

COMMIT WORK

Here, one statement has a misspelled table name: the receipt table does not exist. If

DBACCNOIGN is not set in your environment, DB–Access inserts two records

into the receipts table and updates the customer table. Now, the decrease in the

customer balance exceeds the sum of the inserted receipts.

3-16 IBM Informix Guide to SQL: Reference

But if DBACCNOIGN is set to 1, messages appear that indicate that DB–Access

rolled back all the INSERT and UPDATE statements. The messages also identify

the cause of the error so that you can resolve the problem.

LOAD Statement Example

You can set DBACCNOIGN to protect data integrity during a LOAD statement,

even if DB–Access runs the LOAD statement in menu mode.

Assume you execute the LOAD statement from the DB–Access SQL menu.

Forty-nine rows of data load correctly, but the 50th row contains an invalid value

that causes an error. If you set DBACCNOIGN to 1, the database server does not

insert the forty-nine previous rows into the database. If DBACCNOIGN is not set,

the database server inserts the first forty-nine rows.

DBANSIWARN

Setting the DBANSIWARN environment variable indicates that you want to check

for Informix extensions to ANSI-standard SQL syntax. Unlike most environment

variables, you do not need to set DBANSIWARN to a value. You can set it to any

value or to no value.

�� setenv DBANSIWARN ��

Running DB–Access with DBANSIWARN set is functionally equivalent to

including the -ansi flag when you invoke DB–Access (or any IBM Informix

product that recognizes the -ansi flag) from the command line. If you set

DBANSIWARN before you run DB–Access, any syntax-extension warnings are

displayed on the screen within the SQL menu.

At runtime, the DBANSIWARN environment variable causes the sixth character of

the sqlwarn array in the SQL Communication Area (SQLCA) to be set to W when a

statement is executed that is recognized as including any Informix extension to the

ANSI/ISO standard for SQL syntax.

For details on SQLCA, see the IBM Informix ESQL/C Programmer’s Manual.

After you set DBANSIWARN, Informix extension checking is automatic until you

log out or unset DBANSIWARN. To turn off Informix extension checking, you can

disable DBANSIWARN with this command:

unsetenv DBANSIWARN

DBBLOBBUF

The DBBLOBBUF environment variable controls whether TEXT or BYTE values

are stored temporarily in memory or in a file while being processed by the

UNLOAD statement. DBBLOBBUF affects only the UNLOAD statement.

�� setenv DBBLOBBUF size ��

size represents the maximum size of TEXT or BYTE data in kilobytes.

 If the TEXT or BYTE data size is smaller than the default of 10 kilobytes (or the

setting of DBBLOBBUF), the TEXT or BYTE value is temporarily stored in

memory. If the data size is larger than the default or the DBBLOBBUF setting, the

Chapter 3. Environment Variables 3-17

data value is written to a temporary file. For instance, to set a buffer size of 15

kilobytes, set DBBLOBBUF as in the following example:

setenv DBBLOBBUF 15

Here any TEXT or BYTE value smaller than 15 kilobytes is stored temporarily in

memory. Values larger than 15 kilobytes are stored temporarily in a file.

DBCENTURY

To avoid problems in expanding abbreviated years, applications should require

entry of 4-digit years, and should always display years as four digits. The

DBCENTURY environment variable specifies how to expand literal DATE and

DATETIME values that are entered with abbreviated year values.

��
 R

setenv

DBCENTURY

F

C

P

��

When DBCENTURY is not set (or is set to R), the first two digits of the current

year are used to expand 2-digit year values. For example, if today’s date is

09/30/2003, then the abbreviated date 12/31/99 expands to 12/31/2099, and the

abbreviated date 12/31/00 expands to 12/31/2000.

The R, P, F, and C settings choose algorithms for expanding two-digit years.

 Setting Algorithm

R = Current Use the first two digits of the current year to expand the year value.

P = Past Expanded dates are created by prefixing the abbreviated year value with 19

and 20. Both dates are compared to the current date, and the most recent

date that is earlier than the current date is used.

F = Future Expanded dates are created by prefixing the abbreviated year value with 20

and 21. Both dates are compared to the current date, and the earliest date

that is later than the current date is used.

C = Closest Expanded dates are created by prefixing the abbreviated year value with

19, 20, and 21. These three dates are compared to the current date, and the

date that is closest to the current date is used.

Settings are case sensitive, and no error is issued for invalid settings. If you enter f

(for example), then the default (R) setting takes effect. The P and F settings cannot

return the current date, which is not in the past or future.

Years entered as a single digit are prefixed with 0 and then expanded. Three-digit

years are not expanded. Pad years earlier than 100 with leading zeros.

Examples of Expanding Year Values

The following examples illustrate how various settings of DBCENTURY cause

abbreviated years to be expanded in DATE and DATETIME values.

 DBCENTURY = P:

Example data type: DATE

Current date: 4/6/2003

User enters: 1/1/1

3-18 IBM Informix Guide to SQL: Reference

Prefix with "19" expansion : 1/1/1901

Prefix with "20" expansion: 1/1/2001

Analysis: Both are prior to current date, but 1/1/2001 is closer to

 current date.

Important: The effect of DBCENTURY depends on the current date from the

system clock-calendar. Thus, 1/1/1, the abbreviated date in this

example, would instead be expanded to 1/1/1901 if the current date

were 1/1/2001 and DBCENTURY = P.

 DBCENTURY = F:

Example data type: DATETIME year to month

Current date: 5/7/2005

User enters: 1-1

Prefix with "20" expansion: 2001-1

Prefix with "21" expansion: 2101-1

Analysis: Only date 2101-1 is after the current date, so it is chosen.

 DBCENTURY = C:

Example data type: DATE

Current date: 4/6/2000

User enters: 1/1/1

Prefix with "19" expansion : 1/1/1901

Prefix with "20" expansion: 1/1/2001

Prefix with "21" expansion: 1/1/2101

Analysis: Here 1/1/2001 is closest to the current date, so it is chosen.

 DBCENTURY = R or DBCENTURY Not Set:

Example data type: DATETIME year to month

Current date: 4/6/2000

User enters: 1-1

Prefix with "20" expansion: 2001-1

Example data type: DATE

Current date: 4/6/2003

User enters: 0/1/1

Prefix with "20" expansion: 2000/1

Analysis: In both examples, the Prefix with "20" algorithm is used.

Setting DBCENTURY does not affect IBM Informix products when the locale

specifies a non-Gregorian, calendar such as Hebrew or Islamic calendars. The

leading digits of the current year are used for alternate calendar systems when the

year is abbreviated.

Abbreviated Years and Expressions in Database Objects

When an expression in a database object (including a check constraint,

fragmentation expression, SPL routine, trigger, or UDR) contains a literal date or

DATETIME value in which the year has one or two digits, the database server

evaluates the expression using the setting that DBCENTURY (and other relevant

environment variables) had when the database object was created (or was last

modified). If DBCENTURY has been reset to a new value, the new value is

ignored when the abbreviated year is expanded.

For example, suppose a user creates a table and defines the following check

constraint on a column named birthdate:

birthdate < ’09/25/50’

The expression is interpreted according to the value of DBCENTURY when the

constraint was defined. If the table that contains the birthdate column is created on

Chapter 3. Environment Variables 3-19

09/23/2000 and DBCENTURY =C, the check constraint expression is consistently

interpreted as birthdate < ’09/25/1950’ when inserts or updates are performed

on the birthdate column. Even if different values of DBCENTURY are set when

users perform inserts or updates on the birthdate column, the constraint

expression is interpreted according to the setting at the time when the check

constraint was defined (or was last modified).

Database objects created on some earlier versions of Dynamic Server do not

support the priority of creation-time settings.

 For legacy objects to acquire this feature:

1. Drop the objects.

2. Re-create them (or for fragmentation expressions, detach them and then

reattach them).

After the objects are redefined, date literals within expressions of the objects will

be interpreted according to the environment at the time when the object was

created or was last modified. Otherwise, their behavior will depend on the runtime

environment and might become inconsistent if this changes.

Administration of a database that includes a mix of legacy objects and new objects

might become difficult because of differences between the new and the old

behavior for evaluating date expressions. To avoid this, it is recommended that you

redefine any legacy objects.

The value of DBCENTURY and the current date are not the only factors that

determine how the database server interprets date and DATETIME values. The

DBDATE, DBTIME, GL_DATE, and GL_DATETIME environment variables can

also influence how dates are interpreted. For information about GL_DATE and

GL_DATETIME, see the IBM Informix GLS User’s Guide.

Important: The behavior of DBCENTURY for Dynamic Server and Extended

Parallel Server is not backwards compatible.

DBDATE

The DBDATE environment variable specifies the end-user formats of DATE values.

On UNIX systems that use the C shell, set DBDATE with this syntax.

��
 MD Y4 /

setenv

DBDATE

DM

Y2

-

Y4

MD

.

Y2

DM

.

0

��

The following formatting symbols are valid in the DBDATE setting:

- . / are characters that can appear as separators in a date format.

0 indicates that no separator is displayed between time units.

D, M are characters that represent the day and the month.

Y2, Y4 are characters that represent the year and the precision of the year.

 Some East Asian locales support additional syntax for era-based dates. For details

of era-based formats, see IBM Informix GLS User’s Guide.

3-20 IBM Informix Guide to SQL: Reference

DBDATE can specify the following attributes of the display format:

v The order of time units (the month, day, and year) in a date

v Whether the year appears with two digits (Y2) or four digits (Y4)

v The separator between the month, day, and year time units

For the U.S. English locale, the default for DBDATE is MDY4/, where M represents

the month, D represents the day, Y4 represents a four-digit year, and slash (/) is

the time-units separator (for example, 01/08/2002). Other valid characters for the

separator are a hyphen (-), a period (.), or a zero (0). To indicate no separator,

use the zero. The slash (/) is used by default if you attempt to specify a character

other than a hyphen, period, or zero as a separator, or if you do not include any

separator in the DBDATE specification.

If DBDATE is not set on the client, any DBDATE setting on the database server

overrides the MDY4/ default on the client. If DBDATE is set on the client, that

value (rather than the setting on the database server) is used by the client.

The following table shows some examples of valid DBDATE settings and their

corresponding displays for the date 8 January, 2005:

 DBDATE

Setting

Representation of

January 8, 2005:

DBDATE

Setting

Representation of

January 8, 2005:

MDY4/ 01/08/2005 Y2DM. 05.08.01

DMY2- 08-01-05 MDY20 010805

MDY4 01/08/2005 Y4MD* 2005/01/08

Formats Y4MD* (because asterisk is not a valid separator) and MDY4 (with no

separator defined) both display the default symbol (slash) as the separator.

Important: If you use the Y2 format, the setting of the DBCENTURY environment

variable can also affect how literal DATE values are evaluated in data

entry.

Also, certain routines that IBM Informix ESQL/C calls can use the DBTIME

variable, rather than DBDATE, to set DATETIME formats to international

specifications. For more information, see the discussion of the DBTIME

environment variable in “DBTIME” on page 3-31 and in the IBM Informix ESQL/C

Programmer’s Manual.

The setting of the DBDATE variable takes precedence over that of the GL_DATE

environment variable, as well as over any default DATE format that

CLIENT_LOCALE specifies. For information about GL_DATE and

CLIENT_LOCALE, see the IBM Informix GLS User’s Guide.

End-user formats affect the following contexts:

v When you display DATE values, IBM Informix products use the DBDATE

environment variable to format the output.

v During data entry of DATE values, IBM Informix products use the DBDATE

environment variable to interpret the input.

For example, if you specify a literal DATE value in an INSERT statement, the

database server expects this literal value to be compatible with the format that

Chapter 3. Environment Variables 3-21

DBDATE specifies. Similarly, the database server interprets the date that you

specify as the argument to the DATE() function to be in DBDATE format.

DATE Expressions in Database Objects

When an expression in a database object (including a check constraint,

fragmentation expression, SPL routine, trigger, or UDR) contains a literal date

value, the database server evaluates the expression using the setting that DBDATE

(or other relevant environment variables) had when the database object was

created (or was last modified). If DBDATE has been reset to a new value, the new

value is ignored when the literal DATE is evaluated.

For example, suppose DBDATE is set to MDY2/ and a user creates a table with the

following check constraint on the column orderdate:

orderdate < ’06/25/98’

The date of the preceding expression is formatted according to the value of

DBDATE when the constraint is defined. The check constraint expression is

interpreted as orderdate < ’06/25/98’ regardless of the value of DBDATE during

inserts or updates on the orderdate column. Suppose DBDATE is reset to DMY2/

when a user inserts the value ’30/01/98’ into the orderdate column. The date

value inserted uses the date format DMY2/, whereas the check constraint expression

uses the date format MDY2/.

See “Abbreviated Years and Expressions in Database Objects” on page 3-19 for a

discussion of legacy objects from earlier versions of Informix database servers that

are always evaluated according to the runtime environment. That section describes

how to redefine objects so that dates are interpreted according to environment

variable settings that were in effect when the object was defined (or when the

object was last modified).

Important: The behavior of DBDATE for Dynamic Server and Extended Parallel

Server is not backwards compatible.

DBDELIMITER

The DBDELIMITER environment variable specifies the field delimiter used with

the dbexport utility and with the LOAD and UNLOAD statements.

�� setenv DBDELIMITER ’delimiter’ ��

delimiter is the field delimiter for unloaded data files.

 The delimiter can be any single character, except those in the following list:

v Hexadecimal digits (0 through 9,a through f, A through F)

v Newline or CTRL-J

v The backslash (\) symbol

The vertical bar (| = ASCII 124) is the default. To change the field delimiter to a

plus (+) symbol, for example, you can set DBDELIMITER as follows:

setenv DBDELIMITER ’+’

DBEDIT

The DBEDIT environment variable specifies the text editor to use with SQL

statements and command files in DB–Access. If DBEDIT is set, the specified text

3-22 IBM Informix Guide to SQL: Reference

editor is invoked automatically. If DBEDIT is not, set you are prompted to specify

a text editor as the default for the rest of the session.

�� setenv DBEDIT editor ��

editor is the name of the text editor you want to use.

 For most UNIX systems, the default text editor is vi. If you use another text editor,

be sure that it creates flat ASCII files. Some word processors in document mode

introduce printer control characters that can interfere with the operation of your

IBM Informix product.

To specify the EMACS text editor, set DBEDIT with the following command:

setenv DBEDIT emacs

DBFLTMASK

The DB–Access utility displays the floating-point values of data types FLOAT,

SMALLFLOAT, and DECIMAL(p) within a 14-character buffer. By default,

DB–Access displays as many digits to the right of the decimal point as will fit into

this character buffer. Therefore, the actual number of decimal digits that DB–Access

displays depends on the size of the floating-point value.

To reduce the number of digits displayed to the right of the decimal point in

floating-point values, set DBFLTMASK to the desired number of digits.

�� setenv DBFLTMASK scale ��

scale is the number of decimal digits that you want the IBM Informix

client application to display in the floating-point values. Here scale

must be smaller than 16, the default number of digits displayed.

 If the floating-point value contains more digits to the right of the decimal than

DBFLTMASK specifies, DB–Access rounds the value to the specified number of

digits. If the floating-point value contains fewer digits to the right of the decimal,

DB–Access pads the value with zeros. If you set DBFLTMASK to a value greater

than can fit into the 14-character buffer, however, DB–Access rounds the value to

the number of digits that can fit.

DBLANG

The DBLANG environment variable specifies the subdirectory of $INFORMIXDIR

or the full pathname of the directory that contains the compiled message files that

an IBM Informix product uses.

�� setenv DBLANG relative_path

full_path
 ��

relative_path is a subdirectory of $INFORMIXDIR.

full_path is the pathname to the compiled message files.

 By default, IBM Informix products put compiled messages in a locale-specific

subdirectory of the $INFORMIXDIR/msg directory. These compiled message files

have the file extension .iem. If you want to use a message directory other than

Chapter 3. Environment Variables 3-23

$INFORMIXDIR/msg, where, for example, you can store message files that you

create, you must perform the following steps:

 To use a message directory other than $INFORMIXDIR/msg:

1. Use the mkdir command to create the appropriate directory for the message

files.

You can make this directory under the directory $INFORMIXDIR or

$INFORMIXDIR/msg, or you can make it under any other directory.

2. Set the owner and group of the new directory to informix and the access

permission for this directory to 755.

3. Set the DBLANG environment variable to the new directory. If this is a

subdirectory of $INFORMIXDIR or $INFORMIXDIR/msg, then you need only

list the relative path to the new directory. Otherwise, you must specify the full

pathname of the directory.

4. Copy the .iem files or the message files that you created to the new message

directory that $DBLANG specifies.

All the files in the message directory should have the owner and group

informix and access permission 644.

IBM Informix products that use the default U.S. English locale search for message

files in the following order:

1. In $DBLANG, if DBLANG is set to a full pathname

2. In $INFORMIXDIR/msg/$DBLANG, if DBLANG is set to a relative pathname

3. In $INFORMIXDIR/$DBLANG, if DBLANG is set to a relative pathname

4. In $INFORMIXDIR/msg/en_us/0333

5. In $INFORMIXDIR/msg/en_us.8859-1

6. In $INFORMIXDIR/msg

7. In $INFORMIXDIR/msg/english

For more information on search paths for messages, see the description of

DBLANG in the IBM Informix GLS User’s Guide.

DBMONEY

The DBMONEY environment variable specifies the display format of values in

columns of smallfloat, FLOAT, DECIMAL, or MONEY data types, and of complex

data types derived from any of these data types.

��
 ’$’ .

setenv

DBMONEY

front

,

’front ’

back

‘back’

��

$ is a currency symbol that precedes MONEY values in the default

locale if no other front symbol is specified, or if DBMONEY is not

set.

, or . is a comma or period (the default) that separates the integral part

from the fractional part of the FLOAT, DECIMAL, or MONEY

value. Whichever symbol you do not specify becomes the

thousands separator.

back is a currency symbol that follows the MONEY value.

3-24 IBM Informix Guide to SQL: Reference

front is a currency symbol that precedes the MONEY value.

 The back symbol can be up to seven characters and can contain any character that

the locale supports, except a digit, a comma (,), or a period (.) symbol. The front

symbol can be up to seven characters and can contain any character that the locale

supports except a digit, a comma (,), or a period (.) symbol. If you specify any

character that is not a letter of the alphabet for front or back, you must enclose the

front or back setting between single quotation (’) marks.

When you display MONEY values, IBM Informix products use the DBMONEY

setting to format the output. DBMONEY has no effect, however, on the internal

format of data values that are stored in columns of the database.

If you do not set DBMONEY, then MONEY values for the default locale, U.S.

English, are formatted with a dollar sign ($) that precedes the MONEY value, a

period (.) that separates the integral from the fractional part of the MONEY

value, and no back symbol. For example, 100.50 is formatted as $100.50.

Suppose you want to represent MONEY values as DM (deutsche mark) units,

using the currency symbol DM and comma (,) as the decimal separator. Enter the

following command to set the DBMONEY environment variable:

setenv DBMONEY DM,

Here DM is the front currency symbol that precedes the MONEY value, and a

comma separates the integral from the fractional part of the MONEY value. As a

result, the value 100.50 is displayed as DM100,50.

For more information about how DBMONEY formats MONEY values in

nondefault locales, see the IBM Informix GLS User’s Guide.

DBNLS (IDS)

The DBNLS environment variable specifies whether automatic data type

conversion is supported between NCHAR and NVARCHAR database columns and

CHAR and VARCHAR variables (respectively) of client systems.

Global Language Support (GLS) does not require the DBNLS environment

variable. But Dynamic Server databases continue to support the legacy behavior of

DBNLS, which supports applications that manipulate tables with NCHAR or

NVARCHAR columns.

�� setenv DBNLS

‘1’

‘2’

 ��

For UNIX systems that use the C shell, the following command line enables client

applications such as DB-Access, IBM Informix SQL, IBM Informix 4GL, IBM

Informix Dynamic 4GL, and embedded-SQL applications such as Informix ESQL/C

or Informix ESQL/COBOL to convert automatically between CHAR and

VARCHAR variables of the client application and NCHAR and NVARCHAR

columns of the database:

setenv DBNLS 1

Chapter 3. Environment Variables 3-25

This setting also supports the automatic conversion of values retrieved from

NCHAR columns into CHAR variables, and the conversion of NVARCHAR

column values into VARCHAR variables.

Similarly, when DBNLS = 1, character strings stored as CHAR variables can be

inserted into NCHAR columns, and character strings stored as VARCHAR

variables can be inserted into NVARCHAR database columns.

To support these features, DBNLS must also be set to 1 on the client system. This

setting also enables the client system to display dates, numbers, and currency

values in formats specified on the client locale.

Conversely, each of the following command lines disables automatic conversion

between CHAR and VARCHAR variables of the client application and NCHAR

and NVARCHAR columns of the database and also prevents Dynamic Server from

using the locale files of the client system:

setenv DBNLS

unsetenv DBNLS

On UNIX systems that use the C shell, either of these commands disables

automatic conversion to and from NCHAR and NVARCHAR data values (by

setting no value for DBNLS).

Another possible setting for DBNLS is 2. If you enter at the command line

setenv DBNLS 2

then automatic data type conversion between NCHAR and CHAR and between

NVARCHAR and VARCHAR is supported (if the client system has DBNLS set to 1

or 2), but the database server can have a different locale from the client system.

DBONPLOAD (IDS)

The DBONPLOAD environment variable specifies the name of the database that

the onpload utility of the High-Performance Loader (HPL) uses. If DBONPLOAD

is set, onpload uses the specified name as the name of the database; otherwise, the

default name of the database is onpload.

�� setenv DBONPLOAD dbname ��

dbname specifies the name of the database that the onpload utility uses.

 For example, to specify the name load_db as the name of the database, enter the

following command:

setenv DBONPLOAD load_db

For more information, see the IBM Informix High-Performance Loader User’s Guide.

DBPATH

The DBPATH environment variable identifies database servers that contain

databases. DBPATH can also specify a list of directories (in addition to the current

directory) in which DB–Access looks for command scripts (.sql files).

The CONNECT DATABASE, START DATABASE, and DROP DATABASE

statements use DBPATH to locate the database under two conditions:

3-26 IBM Informix Guide to SQL: Reference

v If the location of a database is not explicitly stated

v If the database cannot be located in the default server

The CREATE DATABASE statement does not use DBPATH.

To add a new DBPATH entry to existing entries, see “Modifying an

Environment-Variable Setting” on page 3-6.

��

�

 : [16]

setenv

DBPATH

pathname

/ /

servername

/

full_pathname

/ /

servername

��

full_pathname is the full path, from root, of a directory where .sql files are stored.

pathname is the valid relative path of a directory where .sql files are stored.

servername is the name of an Informix database server where databases are

stored. You cannot reference database files with a servername.

 DBPATH can contain up to 16 entries. Each entry must be less than 128 characters.

In addition, the maximum length of DBPATH depends on the hardware platform

on which you set DBPATH.

When you access a database with the CONNECT, DATABASE, START DATABASE,

or DROP DATABASE statement, the search for the database is done first in the

directory or database server specified in the statement. If no database server is

specified, the default database server that was specified by the

INFORMIXSERVER environment variable is used.

If the database is not located during the initial search, and if DBPATH is set, the

database servers and directories in DBPATH are searched for in the specified

database. These entries are searched in the same order in which they are listed in

the DBPATH setting.

Using DBPATH with DB-Access

If you use DB–Access and select the Choose option from the SQL menu without

having already selected a database, you see a list of all the .sql files in the

directories listed in your DBPATH. After you select a database, the DBPATH is not

used to find the .sql files. Only the .sql files in the current working directory are

displayed.

Searching Local Directories

Use a pathname without a database server name to search for .sql scripts on your

local computer. In the following example, the DBPATH setting causes DB–Access

to search for the database files in your current directory and then in the Joachim

and Sonja directories on the local computer:

setenv DBPATH /usr/joachim:/usr/sonja

As the previous example shows, if the pathname specifies a directory name but not

a database server name, the directory is sought on the computer that runs the

default database server that the INFORMIXSERVER specifies; see

“INFORMIXSERVER” on page 3-50. For instance, with the previous example, if

Chapter 3. Environment Variables 3-27

INFORMIXSERVER is set to quality, the DBPATH value is interpreted, as the

following example shows, where the double slash precedes the database server

name:

setenv DBPATH //quality/usr/joachim://quality/usr/sonja

Searching Networked Computers for Databases

If you use more than one database server, you can set DBPATH explicitly to

contain the database server and directory names that you want to search for

databases. For example, if INFORMIXSERVER is set to quality, but you also want

to search the marketing database server for /usr/joachim, set DBPATH as the

following example shows:

setenv DBPATH //marketing/usr/joachim:/usr/sonja

Specifying a Servername

You can set DBPATH to contain only database server names. This feature allows

you to locate only databases; you cannot use it to locate command files.

The database administrator must include each database server mentioned by

DBPATH in the $INFORMIXDIR/etc/sqlhosts file. For information on

communication-configuration files and dbservernames, see your IBM Informix

Administrator’s Guide and the IBM Informix Administrator’s Reference.

For example, if INFORMIXSERVER is set to quality, you can search for a

database first on the quality database server and then on the marketing database

server by setting DBPATH, as the following example shows:

setenv DBPATH //marketing

If you use DB–Access in this example, the names of all the databases on the

quality and marketing database servers are displayed with the Select option of the

DATABASE menu.

DBPRINT

The DBPRINT environment variable specifies the default printing program.

�� setenv DBPRINT program ��

program is any command, shell script, or UNIX utility that produces

standard ASCII output.

 If you do not set DBPRINT, the default program is found in one of two places:

v For most BSD UNIX systems, the default program is lpr.

v For UNIX System V, the default program is usually lp.

Enter the following command to set the DBPRINT environment variable to specify

myprint as the print program:

setenv DBPRINT myprint

DBREMOTECMD (UNIX)

Set the DBREMOTECMD environment variable to override the default remote

shell to perform remote tape operations with the database server. You can set

dbremotecmd to a simple command or to a full pathname.

3-28 IBM Informix Guide to SQL: Reference

�� setenv DBREMOTECMD command

pathname
 ��

command is a command to override the default remote shell.

pathname is a pathname to override the default remote shell.

 If you do not specify the full pathname, the database server searches your PATH

for the specified command. It is highly recommended that you use the full

pathname syntax on interactive UNIX platforms to avoid problems with similarly

named programs in other directories and possible confusion with the restricted shell

(/usr/bin/rsh).

The following command sets DBREMOTECMD for a simple command name:

setenv DBREMOTECMD rcmd

The next command to set DBREMOTECMD specifies a full pathname:

setenv DBREMOTECMD /usr/bin/remsh

For more information on DBREMOTECMD, see the discussion in your IBM

Informix Backup and Restore Guide about how to use remote tape devices with your

database server for archives, restores, and logical-log backups.

DBSPACETEMP

The DBSPACETEMP environment variable specifies the dbspaces in which

temporary tables are built.

You can list dbspaces, separated by colon (:) or comma (,) symbols to spread

temporary space across any number of disks.

��

�

 ,

setenv

DBSPACETEMP

temp_dbspace

��

temp_dbspace is the name of a valid existing temporary dbspace.

 DBSPACETEMP overrides any default dbspaces that the DBSPACETEMP

parameter specifies in the configuration file of the database server. For UPDATE

STATISTICS, DBSPACETEMP is used only when you specify the option HIGH. You

might have better performance if the list of dbspaces in DBSPACETEMP is

composed of chunks that are allocated as raw UNIX devices.

For example, the following command to set the DBSPACETEMP environment

variable specifies three dbspaces for temporary tables:

setenv DBSPACETEMP sorttmp1:sorttmp2:sorttmp3

Separate the dbspace entries with either colons or commas. The number of

dbspaces is limited by the maximum size of the environment variable, as defined

by your operating system. Your database server does not create a dbspace specified

by the environment variable if the dbspace does not exist.

The two classes of temporary tables are explicit temporary tables that the user

creates and implicit temporary tables that the database server creates. Use

DBSPACETEMP to specify the dbspaces for both types of temporary tables.

Chapter 3. Environment Variables 3-29

If you create an explicit temporary table with the CREATE TEMP TABLE statement

and do not specify a dbspace for the table either in the IN dbspace clause or in the

FRAGMENT BY clause, the database server uses the settings in DBSPACETEMP

to determine where to create the table.

If you create an explicit temporary table with the SELECT INTO TEMP statement,

the database server uses the settings in DBSPACETEMP to determine where to

create the table.

If DBSPACETEMP is set, and the dbspaces that it lists include both logging and

non-logging dbspaces, the database server stores temporary tables that implicitly

or explicitly support transaction logging in a logged dbspace, and non-logging

temporary tables in a non-logging dbspace.

The database server creates implicit temporary tables for its own use while

executing join operations, SELECT statements with the GROUP BY clause, SELECT

statements with the ORDER BY clause, and index builds.

When it creates explicit or implicit temporary tables, the database server uses disk

space for writing the temporary data. If there are conflicts among settings or

statement specifications for the location of a temporary table, these conflicts are

resolved in this descending (highest to lowest) order of precedence:

1. What the IN or FRAGMENT BY clause of a DDL or DML statement specifies

2. For Extended Parallel Server, what a SET TEMP TABLE_SPACE statement

specifies

3. On UNIX platforms, the operating-system directory or directories that the

environment variable PSORT_DBTEMP specifies, if this is set

4. The dbspace or dbspaces that the environment variable DBSPACETEMP

specifies, if this is set

5. The dbspace or dbspaces that the ONCONFIG parameter DBSPACETEMP

specifies.

6. The operating-system file space in /tmp (UNIX) or %temp% (Windows)

7. For Extended Parallel Server, in a non-critical space, if none of the above are

specified

8. For Dynamic Server, in the space where the database was created, if none of

the above are specified

Important: If the DBSPACETEMP environment variable is set to an invalid value,

the database server defaults to the root dbspace for explicit temporary

tables and to /tmp for implicit temporary tables, not to the

DBSPACETEMP configuration parameter. In this situation, the database

server might fill /tmp to the limit and eventually bring down the

database server or kill the file system.

DBTEMP (IDS)

The DBTEMP environment variable is used by DB-Access and IBM Informix

Enterprise Gateway products as well as by Dynamic Server and by earlier database

servers. DBTEMP resembles DBSPACETEMP, specifying the directory in which to

place temporary files and temporary tables.

�� setenv DBTEMP pathname ��

pathname is the full pathname of the directory for temporary files and tables.

3-30 IBM Informix Guide to SQL: Reference

For DB-Access to work correctly on Windows platforms, DBTEMP should be set to

$INFORMIXDIR/infxtmp.

The following example sets DBTEMP to the pathname usr/magda/mytemp for

UNIX systems that use the C shell:

setenv DBTEMP usr/magda/mytemp

Important: DBTEMP can point to an NFS-mounted directory only if the vendor of

that NFS device is certified by IBM.

If DBTEMP is not set, the database server creates temporary files in the /tmp

directory and temporary tables in the DBSPACETEMP directory. See

“DBSPACETEMP” on page 3-29 for the default if DBSPACETEMP is not set.

Similarly, if you do not set DBTEMP on the client system, temporary files (such as

those created for scroll cursors) are created in the /tmp directory.

You might experience unexpected behavior or failure in operations on values of

large or complex data types, such as BYTE or ROW, if DBTEMP is not set.

DBTIME

The DBTIME environment variable specifies a formatting mask for the display and

data-entry format of DATETIME values. The DBTIME environment variable is

useful in contexts where the DATETIME data values to be formatted by DBTIME

have the same precision as the specified DBTIME setting. You might encounter

unexpected or invalid display formats for DATETIME values that are declared with

a different DATETIME qualifier.

��

�

setenv

DBTIME

’

literal

’

%

special

-

min

.

precision

0

��

literal is a literal white space or any printable character.

min is a literal integer, setting the minimum number of characters in

the substring for the value that special specifies.

precision is the number of digits for the value of any time unit, or the

maximum number of characters in the name of a month.

special is one of the placeholder characters that are listed following.

 These terms and symbols are described in the pages that follow.

This quoted string can include literal characters as well as placeholders for the

values of individual time units and other elements of a DATETIME value.

DBTIME takes effect only when you call certain IBM Informix ESQL/C

DATETIME routines. (For details, see the IBM Informix ESQL/C Programmer’s

Manual.) If DBTIME is not set, the behavior of these routines is undefined, and

″YYYY-MM-DD hh:mm:ss.fffff″ is the default display and input format for

DATETIME YEAR TO FRACTION(5) literal values in the default locale.

The percentage (%) symbol gives special significance to the special placeholder

symbol that follows. Without a preceding % symbol, any character within the

Chapter 3. Environment Variables 3-31

formatting mask is interpreted as a literal character, even if it is the same character

as one of the placeholder characters in the following list. Note also that the special

placeholder symbols are case sensitive.

The following characters within a DBTIME format string are placeholders for time

units (or for other features) within a DATETIME value.

%b is replaced by the abbreviated month name.

%B is replaced by the full month name.

%d is replaced by the day of the month as a decimal number [01,31].

%Fn is replaced by a fraction of a second with a scale that the integer n

specifies. The default value of n is 2; the range of n is 0 ≤ n ≤ 5.

%H is replaced by the hour (24-hour clock).

%I is replaced by the hour (12-hour clock).

%M is replaced by the minute as a decimal number [00,59].

%m is replaced by the month as a decimal number [01,12].

%p is replaced by A.M. or P.M. (or the equivalent in the locale file).

%S is replaced by the second as a decimal number [00,59].

%y is replaced by the year as a four-digit decimal number.

%Y is replaced by the year as a four-digit decimal number. User must

enter a four-digit value.

%% is replaced by % (to allow % in the format string).

 For example, consider this display format for DATETIME YEAR TO SECOND:

Mar 21, 2001 at 16 h 30 m 28 s

If the user enters a two-digit year value, this value is expanded to 4 digits

according to the DBCENTURY environment variable setting. If DBCENTURY is

not set, then the string 19 is used by default for the first two digits.

Set DBTIME as the following command line (for the C shell) shows:

setenv DBTIME ’%b %d, %Y at %H h %M m %S s’

The default DBTIME produces the following ANSI SQL string format:

2001-03-21 16:30:28

You can set the default DBTIME as the following example shows:

setenv DBTIME ’%Y-%m-%d %H:%M:%S’

An optional field width and precision specification (w.p) can immediately follow

the percent (%) character. It is interpreted as follows:

w Specifies the minimum field width. The value is right-justified with

blank spaces on the left.

-w Specifies the minimum field width. The value is left-justified with

blank spaces on the right.

0w Specifies the minimum field width. The value is right-justified and

padded with zeros on the left.

3-32 IBM Informix Guide to SQL: Reference

p Specifies the precision of d, H, I, m, M, S, y, and Y time unit values,

or the maximum number of characters in b and B month names.

 The following limitations apply to field-width and precision specifications:

v If the data value supplies fewer digits than precision specifies, the value is

padded with leading zeros.

v If a data value supplies more characters than precision specifies, excess characters

are truncated from the right.

v If no field width or precision is specified for d, H, I, m, M, S, or y placeholders,

0.2 is the default, or 0.4 for the Y placeholder.

v A precision specification is significant only when converting a DATETIME value

to an ASCII string, but not vice versa.

The F placeholder does not support this field-width and precision syntax.

Like DBDATE, GL_DATE, or GL_DATETIME, the DBTIME setting controls only

the character-string representation of data values; it cannot change the internal

storage format of the DATETIME column. (For information about formatting DATE

values, see the discussion of DBDATE on page 3-20.)

In East Asian locales that support era-based dates, DBTIME can also specify

Japanese or Taiwanese eras. See IBM Informix GLS User’s Guide for details of

additional placeholder symbols for setting DBTIME to display era-based

DATETIME values, and for descriptions of the GL_DATETIME and GL_DATE

environment variables.

DBUPSPACE

The DBUPSPACE environment variable lets you specify and constrain the amount

of system disk space that the UPDATE STATISTICS statement can use when trying

to simultaneously construct multiple column distributions.

�� setenv DBUPSPACE max : default : option ��

max is a positive integer, specifying the maximum disk space (in

kilobytes) to allocate for sorting in UPDATE STATISTICS

operations.

default is a positive integer, specifying the maximum amount of memory

(from 4 to 50 megabytes) to allocate without using PDQ.

option An unsigned integer:

v 1: Do not use any indexes for sorting. Print the entire plan for

update statistics in sqexplain.out.

v 2: Do not use any indexes for sorting. Do not print the plan for

update statistics.

v 3 or greater: Use available indexes for sorting. Print the entire

plan for update statistics in sqexplain.out.

 For example, to set DBUPSPACE to 2,500 kilobytes of disk space and 1 megabyte

of memory, enter this command:

setenv DBUPSPACE 2500:1

After you set this value, the database server can use no more than 2,500 kilobytes

of disk space during the execution of an UPDATE STATISTICS statement. If a table

Chapter 3. Environment Variables 3-33

requires 5 megabytes of disk space for sorting, then UPDATE STATISTICS

accomplishes the task in two passes; the distributions for one half of the columns

are constructed with each pass.

If you do not set DBUPSPACE, the default is one megabyte (1,024 kilobytes) for

max, and 15 megabytes for default. If you attempt to set DBUPSPACE to any value

less than 1,024 kilobytes, it is automatically set to 1,024 kilobytes, but no error

message is returned. If this value is not large enough to allow more than one

distribution to be constructed at a time, at least one distribution is done, even if

the amount of disk space required to do this is more than what DBUPSPACE

specifies.

DEFAULT_ATTACH

The DEFAULT_ATTACH environment variable supports the legacy behavior of

Version 7.x of Dynamic Server, which required that only nonfragmented B-tree

indexes on nonfragmented tables can be attached.

�� setenv DEFAULT_ATTACH 1 ��

If DEFAULT_ATTACH is set to 1, then all other indexes that you create, including

R-trees and UDR functional indexes, must be detached, unless you specify the IN

TABLE keywords as the Storage clause of the CREATE INDEX statement. (An

attached index is one that has the same distribution scheme as the table on which it

is built. Any index that does not is a detached index.)

If DEFAULT_ATTACH is not set, then any CREATE INDEX statement that does

not specify IN TABLE as its Storage clause creates detached indexes by default.

This release of Dynamic Server can support attached indexes that were created by

Version 7.x of Dynamic Server.

Important: Future releases of Informix database servers might not continue to

support DEFAULT_ATTACH. Developing new applications that

depend on this deprecated feature is not recommended.

DELIMIDENT

The DELIMIDENT environment variable specifies that strings enclosed between

double quotation (″) marks are delimited database identifiers. DELIMIDENT is

also supported on client systems, where it can be set to y, to n, or to no setting.

v y specifies that client applications must use single quote (’) symbols to delimit

character strings, and must use double quote (") symbols only around

delimited SQL identifiers, which can support a larger character set than is valid

in undelimited identifiers. Letters within delimited strings or delimited

identifiers are case-sensitive. This is the default value for OLE DB and .NET.

v n specifies that client applications can use double quote (") or single quote (’)

symbols to delimit character strings, but not to delimit SQL identifiers. If the

database server encounters a string delimited by double or single quote symbols

in a context where an SQL identifier is required, it issues an error. An owner

name that qualifies an SQL identifier can be delimited by single quote (’)

symbols. You must use a pair of the same quote symbols to delimit a character

string.

This is the default value for ESQL/C, JDBC, and ODBC. APIs that have ESQL/C

as an underlying layer, such as Informix 4GL, the DataBlade API (LIBDMI), and

3-34 IBM Informix Guide to SQL: Reference

the C++ API, behave as ESQL/C, and use ’n’ as the default if no value for

DELIMIDENT is specified on the client system.

v Specifying DELIMIDENT with no value on the client system requires client

applications to use the DELIMIDENT setting that is the default for their

application programming interface (API).

�� setenv DELIMIDENT ��

No value is required; DELIMIDENT takes effect if it exists, and it remains in effect

while it is on the list of environment variables. Removing DELIMIDENT when it is

set at the server level requires restarting the server.

Delimited identifiers can include white space (such as the phrase ″Vitamin E″) or

can be identical to SQL keywords, (such as ″TABLE″ or ″USAGE″). You can also

use them to declare database identifiers that contain characters outside the default

character set for SQL identifiers (such as ″Column #6″). In the default locale, this

set consists of letters, digits, and the underscore (_) symbol.

Even if DELIMIDENT is set, you can use single quote (’) symbols to delimit

authorization identifiers as the owner name component of a database object name,

as in the following example:

RENAME COLUMN ’Owner’.table2.collum3 TO column3

This example is an exception to the general rule that when DELIMIDENT is set,

the SQL parser interprets character strings delimited by single quotes as string

literals, and interprets character strings delimited by double quotes (") as SQL

identifiers.

Database identifiers (also called SQL identifiers) are names for database objects, such

as tables and columns. Storage identifiers are names for storage objects, such as

dbspaces, blobspaces, and sbspaces (smart blob spaces). You cannot use

DELIMIDENT to declare storage identifiers that contain characters outside the

default SQL character set.

Delimited identifiers are case sensitive. To use delimited identifiers, applications in

Informix ESQL/C must set DELIMIDENT at compile time and at runtime.

Warning: If DELIMIDENT is not already set, you should be aware that setting it

can cause the failure of existing .sql scripts or client applications that use

double (″) quotation marks in contexts other than delimiting SQL

identifiers, such as delimiters of string literals. You must use single (’)

rather than double quotation marks for delimited constructs that are not

SQL identifiers if DELIMIDENT is set.

On UNIX systems that use the C shell and on which DELIMIDENT has been set,

you can disable this feature (which causes anything between double quotes to be

interpreted as an SQL identifier) by the command:

unsetenv DELIMIDENT

ENVIGNORE (UNIX)

The ENVIGNORE environment variable can deactivate specified environment

variable settings in the common (shared) and private environment-configuration

files, informix.rc and .informix respectively.

Chapter 3. Environment Variables 3-35

��

�

 :

setenv

ENVIGNORE

variable

��

variable is the name of an environment variable to be deactivated.

 Use colon (:) symbols between consecutive variable names. For example, to ignore

the DBPATH and DBMONEY entries in the environment-configuration files, enter

the following command:

setenv ENVIGNORE DBPATH:DBMONEY

The common environment-configuration file is stored in $INFORMIXDIR/etc/
informix.rc.

The private environment-configuration file is stored in the user’s home directory as

.informix.

For information on creating or modifying an environment-configuration file, see

“Setting Environment Variables in a Configuration File” on page 3-4.

ENVIGNORE itself cannot be set in an environment-configuration file.

FET_BUF_SIZE

The FET_BUF_SIZE environment variable can override the default setting for the

size of the fetch buffer for all data types except BYTE and TEXT values.

�� setenv FET_BUF_SIZE size ��

size is a positive integer that is larger than the default buffer size, but

no greater than 32,767, specifying the size (in bytes) of the fetch

buffer that holds data retrieved by a query.

 For example, to set a buffer size to 5,000 bytes on a UNIX system that uses the C

shell, set FET_BUF_SIZE by entering the following command:

setenv FET_BUF_SIZE 5000

When FET_BUF_SIZE is set to a valid value, the new value overrides the default

value (or any previously set value of FET_BUF_SIZE). The default setting for the

fetch buffer is dependent on row size.

The processing of BYTE and TEXT values is not affected by FET_BUF_SIZE.

No error is raised if FET_BUF_SIZE is set to a value that is less than the default

size or that is out of the range of SMALLINT values. In these cases, however, the

invalid fetch buffer size is ignored, and the default size is in effect.

A valid FET_BUF_SIZE setting is in effect for the local database server as well as

for any remote database server from which you retrieve rows through a distributed

query in which the local server is the coordinator and the remote database is

subordinate. The greater the size of the buffer, the more rows can be returned, and

the less frequently the client application must wait while the database server

returns rows. A large buffer can improve performance by reducing the overhead of

filling the client-side buffer.

3-36 IBM Informix Guide to SQL: Reference

GLOBAL_DETACH_INFORM (XPS)

All indexes in IBM Informix Extended Parallel Server are detached. An XPS index

is locally detached when every index fragment resides on the same coserver as its

associated data fragment and XPS index is globally detached if it is fragmented, with

index items and their associated data rows residing on different coservers.

You should avoid using globally detached indexes because they are inherently less

efficient than locally detached indexes.

The GLOBAL_DETACH_INFORM environment variable triggers an alarm if a

globally detached index is created. The alarm has a severity of 3 (Attention), a

Class ID of 10 (Performance Improvement Possible) and a Tag ID of 1 (Globally

Detached Index Built).

To enable this alarm, set GLOBAL_DETACH_INFORM to any value before

starting the server.

�� setenv GLOBAL_DETACH_INFORM n ��

Alternatively, you can turn this variable on or off with the onutil SET command, as

in the following example:

% onutil

1> SET GLOBAL_DETACH_INFORM 1;

Dynamic Configuration completed successfully

Because GLOBAL_DETACH_INFORM is an environment variable and not a

configuration parameter, however, it cannot be made persistent with the onutil

command. Add the variable to an environment-configuration file to avoid setting it

each time the server is restarted.

IBM_XPS_PARAMS (XPS)

By default, the CURRENT and TODAY functions return values from the system

clock-calendar, based on the location of the server. Use the IBM_XPS_PARAMS

environment variable to specify a non-default time zone, as an offset from

Greenwich Mean Time (GMT), for values returned by CURRENT and TODAY.

To specify an offset from GMT for the built-in CURRENT and TODAY functions,

set IBM_XPS_PARAMS on the client system to the desired value before you start

the client application, using the following syntax.

��
 +

setenv

IBM_XPS_PARAMS

’CLIENT_TZ

=

hours

:

minutes

’

-

��

hours is an integer in the range from 0 to 13 inclusive, specifying the

absolute number of hours in the offset from GMT.

minutes is a 2-digit integer in the range from 00 to 59 inclusive, specifying

any additional minutes in the offset from GMT.

 A minus (-) sign before the hours specifies a time zone east of GMT, and a

positive (*) sign, which is the default, specifies a time zone west of GMT.

This example specifies that CURRENT and TODAY return GMT values:

Chapter 3. Environment Variables 3-37

% setenv IBM_XPS_PARAMS ’CLIENT_TZ = 00:00’

The next example specifies the Atlantic time zone of eastern Canada:

% setenv IBM_XPS_PARAMS ’CLIENT_TZ = +4:00’

The onstat -g ses command can display the current offset from GMT.

The SET ENVIRONMENT CLIENT_TZ statement of SQL can override the

IBM_XPS_PARAMS setting, but the default scope of this environment variable is

all sessions, rather than only the session in which the SET ENVIRONMENT

CLIENT_TZ statement is issued. Reset the GMT offset with the SQL statement for

the current session if your application requires a different time zone.

IFMX_CART_ALRM (XPS)

The IFMX_CART_ALRM environment variable triggers an alarm if a query

executes a Cartesian join. The alarm has a severity of 3 (Attention), a Class ID of

10 (Performance Improvement Possible) and a Tag ID of 2 (Cartesian Join

Processing). The alarm message indicates the ID of the session executing the

Cartesian join.

To enable this alarm, set IFMX_CART_ALRM to any value before starting the

database server.

�� setenv IFMX_CART_ALRM n ��

Alternatively, you can turn this variable on or off with the onutil SET command:

% onutil

1> SET IFMX_CART_ALRM 1;

Dynamic Configuration completed successfully

Because IFMX_CART_ALRM is an environment variable and not a configuration

parameter, it cannot be made persistent by the onutil command. Add the variable

to an environment-configuration file to avoid setting it each time the server is

restarted.

IFMX_HISTORY_SIZE (XPS)

The IFMX_HISTORY_SIZE environment variable determines the number of SQL

commands that are logged in the DB-Access command history.

�� setenv IFMX_HISTORY_SIZE value ��

value the number of commands stored in the DB-Access history

The default value is 10. The maximum is 100. If a value greater or lower is

specified, the default value is used. For more information on using the DB-Access

history command, see the IBM Informix DB–Access User’s Guide.

IFMX_OPT_FACT_TABS (XPS)

The IFMX_OPT_FACT_TABS environment variable specifies a list of fact tables

that should be used in push-down hash joins whenever possible.

3-38 IBM Informix Guide to SQL: Reference

��

�

 ,

setenv

IFMX_OPT_FACT_TABS

fact_table

owner.

database:

��

database is name of the database.

fact_table is name of the fact table.

owner is name of the table owner.

 If you do not specify a database name or owner, the fact table can be in any

database or belong to any owner.

The environment variable lists fact tables for which you want to encourage the

optimizer to choose push-down hash-join plans. If you do not specify the database

name or owner, the table can be in any database or belong to any owner.

When this environment variable is set, push-down hash-join restrictions for the

specified fact tables are relaxed to allow the optimizer to choose a push-down plan

even when the fact table is not larger than the dimension table or when the

dimension-table join columns are not unique.

You can use IFMX_OPT_FACT_TABS alone to increase the possibility of

push-down hash joins. You can also use it in conjunction with the

IFMX_OPT_NON_DIM_TABS environment variable to fine tune the use of

push-down hash joins.

IFMX_OPT_NON_DIM_TABS (XPS)

The IFMX_OPT_NON_DIM_TABS environment variable specifies a list of

dimension tables that cannot be used in push-down hash-join query plans. If the

optimizer detects a fact-dimension table query that joins one of these dimension

tables, it does not choose a push-down hash-join plan.

��

�

 ,

setenv

IFMX_OPT_NON_DIM_TABS

dim_table

owner.

database:

��

database is name of a database.

dim_table is name of a dimension table.

owner is name of table owner.

 If the database name or owner is not specified, the table can be in any database or

can belong to any owner.

When this environment variable is set, if a query joins one of the dimension tables

in this list with any fact table, the optimizer never selects a push-down hash join

for the query, even if the fact table is included in the IFMX_OPT_FACT_TABS list.

You can use the IFMX_OPT_NON_DIM_TABS environment variable alone to

decrease the possibility of push-down hash joins. You can also use it in conjunction

with the IFMX_OPT_FACT_TABS environment variable to fine tune the use of

push-down hash joins.

Chapter 3. Environment Variables 3-39

IFX_DEF_TABLE_LOCKMODE (IDS)

The IFX_DEF_TABLE_LOCKMODE environment variable can specify the default

lock mode for database tables that are subsequently created without explicitly

specifying the LOCKMODE PAGE or LOCKMODE ROW keywords. This feature is

convenient if you need to create several tables of the same lock mode. UNIX

systems that use the C shell support the following syntax:

�� setenv IFX_DEF_TABLE_LOCKMODE PAGE

ROW
 ��

PAGE The default lock mode is page-level granularity. This value disables

the LAST COMMITTED feature of COMMITTED READ.

ROW The default lock mode is row-level granularity.

 Similar functionality is available by setting the DEF_TABLE_LOCKMODE

parameter of the ONCONFIG file to PAGE or ROW. When a table is created or

modified, any conflicting lock mode specifications are resolved according to the

following descending (highest to lowest) order of precedence:

1. Explicit LOCKMODE specification of CREATE TABLE or ALTER TABLE

2. IFX_DEF_TABLE_LOCKMODE environment variable setting

3. DEF_TABLE_LOCKMODE parameter setting in the ONCONFIG file

4. The system default lock mode (= page mode)

To make the DEF_TABLE_LOCKMODE setting the default mode (or to restore the

system default if DEF_TABLE_LOCKMODE is not set) use the command:

unsetenv IFX_DEF_TABLE_LOCKMODE

If IFX_DEF_TABLE_LOCKMODE is set in the environment of the database server

before running oninit, then its scope is all sessions of the database server (just as if

DEF_TABLE_LOCKMODE were set in the ONCONFIG file). If

IFX_DEF_TABLE_LOCKMODE is set in the shell, or in the $HOME/.informix or

$INFORMIXDIR/etc/informix.rc files, then the scope is restricted to the current

session (if you set it in the shell) or to the individual user.

Important: This has no effect on existing tables. If you specify ROW as the lock

mode, the database will use this to restore, recover, or copy data. For

tables that were created in PAGE mode, this might cause lock-table

overflow or performance degradation.

IFX_DIRECTIVES

The IFX_DIRECTIVES environment variable setting determines whether the

optimizer allows query optimization directives from within a query. The

IFX_DIRECTIVES environment variable is set on the client.

You can specify either ON and OFF or 1 and 0 to set the environment variable.

�� setenv IFX_DIRECTIVES 1

0
 ��

1 Optimizer directives accepted

0 Optimizer directives not accepted

3-40 IBM Informix Guide to SQL: Reference

The setting of the IFX_DIRECTIVES environment variable overrides the value of

the DIRECTIVES configuration parameter that is set for the database server. If the

IFX_DIRECTIVES environment variable is not set, however, then all client sessions

will inherit the database server configuration for directives that the ONCONFIG

parameter DIRECTIVES determines. The default setting for the IFX_DIRECTIVES

environment variable is ON.

For more information about the DIRECTIVES parameter, see the IBM Informix

Administrator’s Reference. For more information on the performance impact of

directives, see your IBM Informix Performance Guide.

IFX_EXTDIRECTIVES

The IFX_EXTDIRECTIVES environment variable specifies whether the query

optimizer allows external query optimization directives from the sysdirectives

system catalog table to be applied to queries in existing applications. The

IFX_EXTDIRECTIVES environment variable is set on the client.

You can specify either ON and OFF or 1 and 0 to set the environment variable.

�� setenv IFX_DIRECTIVES 1

0
 ��

1 External optimizer directives accepted

0 External optimizer directives not accepted

 Queries within a given client application can use external directives if both the

EXT_DIRECTIVES parameter in the configuration file of the database server and

the IFX_EXTDIRECTIVES environment variable setting on the client system are

both set to 1 or ON. If IFX_EXTDIRECTIVES is not set, external directives are

supported only if the ONCONFIG parameter EXT_DIRECTIVES is set to 2. The

following table summarizes the effect of valid IFX_EXTDIRECTIVES and

EXT_DIRECTIVES settings on support for external optimizer directives.

 Table 3-3. Effect of IFX_EXTDIRECTIVES and EXT_DIRECTIVES settings on external

directives

EXT_DIRECTIVES

= 0

EXT_DIRECTIVES

= 1

EXT_DIRECTIVES

= 2

IFX_EXTDIRECTIVES

No setting

OFF OFF ON

IFX_EXTDIRECTIVES
0 = OFF

OFF OFF OFF

IFX_EXTDIRECTIVES
1 = ON

OFF ON ON

The database server interprets any EXT_DIRECTIVES setting besides 1 or 2 (or no

setting) as equivalent to OFF, disabling support for external directives. Any value

of IFX_EXTDIRECTIVES other than 1 has the same effect for the client.

For information on how to define external optimizer directives, see the description

of the SAVE EXTERNAL DIRECTIVES statement of SQL in the IBM Informix Guide

to SQL: Syntax. For more information about the EXT_DIRECTIVES configuration

parameter, see the IBM Informix Administrator’s Reference. For more information on

the performance impact of directives, see your IBM Informix Performance Guide.

Chapter 3. Environment Variables 3-41

IFX_LONGID

The IFX_LONGID environment variable setting and the version number of the

client application determine whether a given client application is capable of

handling long identifiers. (Older versions of Informix databases restricted SQL

identifiers to 18 or fewer bytes; long identifiers can have up to 128 bytes when

IFX_LONGID is set.) Valid IFX_LONGID values are 1 and 0.

�� setenv IFX_LONGID 1

0
 ��

1 Client supports long identifiers.

0 Client cannot support long identifiers.

 When IFX_LONGID is set to zero, applications display only the first 18 bytes of

long identifiers, without indicating (by +) that truncation has occurred.

If IFX_LONGID is unset or is set to a value other than 1 or 0, the determination is

based on the internal version of the client application. If the (server-based) version

is not less than 9.0304, or is in the (CSDK-based) range 2.90 ≤ version < 4.0, the

client is considered capable of handling long identifiers. Otherwise, the client

application is considered incapable.

The IFX_LONGID setting overrides the internal version of the client application. If

the client cannot handle long identifiers despite a newer version number, set

IFX_LONGID to 0. If the client version can handle long identifiers despite an

older version number, set IFX_LONGID to 1.

If you set IFX_LONGID on the client, the setting affects only that client. If you

bring up the database server with IFX_LONGID set, all client applications use that

setting by default. If IFX_LONGID is set to different values on the client and on

the database server, however, the client setting takes precedence.

Important: ESQL executables that have been built with the -static option using the

libos.a library version that does not support long identifiers cannot use

the IFX_LONGID environment variable. You must recompile such

applications with the new libos.a library that includes support for long

identifiers. Executables that use shared libraries (no -static option) can

use IFX_LONGID without recompilation provided that they use the

new libifos.so that provides support for long identifiers. For details,

see your ESQL product publication.

IFX_NETBUF_PVTPOOL_SIZE (UNIX)

The IFX_NETBUF_PVTPOOL_SIZE environment variable specifies the maximum

size of the free (unused) private network buffer pool for each database server

session.

�� setenv IFX_NETBUF_PVTPOOL_SIZE count ��

count is an integer specifying the number of units (buffers) in the pool.

 The default size is 1 buffer. If IFX_NETBUF_PVTPOOL_SIZE is set to 0, then each

session obtains buffers from the free global network buffer pool. You must specify

the value in decimal form.

3-42 IBM Informix Guide to SQL: Reference

IFX_NETBUF_SIZE

The IFX_NETBUF_SIZE environment variable lets you configure the network

buffers to the optimum size. It specifies the size of all network buffers in the free

(unused) global pool and the private network buffer pool for each database server

session.

�� setenv IFX_NETBUF_SIZE size ��

size is the integer size (in bytes) for one network buffer.

 The default size is 4 kilobytes (4,096 bytes). The maximum size is 64 kilobytes

(65,536 bytes) and the minimum size is 512 bytes. You can specify the value in

hexadecimal or decimal form.

Tip: You cannot set a different size for each session.

IFX_NO_TIMELIMIT_WARNING

Trial or evaluation versions of IBM Informix software products, which cease to

function when some time limit has elapsed since the software was installed, by

default issue warning messages that tell users when the license will expire. If you

set the IFX_NO_TIMELIMIT_WARNING environment variable, however, the

time-limited software does not issue these warning messages.

�� setenv IFX_NO_TIMELIMIT_WARNING ��

For users who dislike viewing warning messages, this feature is an alternative to

redirecting the error output. Setting IFX_NO_TIMELIMIT_WARNING has no

effect, however, on when a time-limited license expires; the software ceases to

function at the same point in time when it would if this environment variable had

not been set. If you do set IFX_NO_TIMELIMIT_WARNING, users will not see

potentially annoying warnings about the impending license expiration, but some

users might be annoyed at you when the database server (or whatever software

has a time-limited license) ceases to function without any warning.

IFX_NODBPROC

The IFX_NODBPROC environment variable lets you prevent the database server

from running the sysdbopen() or sysdbclose() procedure. These procedures

cannot be run if this environment variable is set to any value.

�� setenv IFX_NODBPROC string ��

string Any value prevents the database server from running sysdbopen()

or sysdblcose().

IFX_NOT_STRICT_THOUS_SEP

IDS requires the thousands separator to have 3 digits following it. For example,

1,000 is considered correct, and 1,00 is considered wrong. In previous releases, both

formats were considered correct.

�� setenv IFX_NOT_STRICT_THOUS_SEP n ��

Chapter 3. Environment Variables 3-43

n Set n to 1 for the behavior in previous releases, which is that the

thousands separator can have fewer than three digits following it.

IFX_ONTAPE_FILE_PREFIX

When TAPEDEV and LTAPEDEV specify directories, use the

IFX_ONTAPE_FILE_PREFIX environment variable to specify a prefix for backup

file names that replaces the hostname_servernum format. If no value is set, file

names are hostname_servernum_Ln for levels and

hostname_servernum_Lognnnnnnnnnn for log files.

If you set the value of IFX_ONTAPE_FILE_PREFIX to My_Backup, the backup file

names have the following names:

v My_Backup_L0

v My_Backup_L1

v My_Backup_L2

v My_Backup_Log0000000001

v My_Backup_Log0000000002

�� setenv IFX_ONTAPE_FILE_PREFIX string ��

string The prefix to use for the names of backup files.

IFX_PAD_VARCHAR (IDS)

The IFX_PAD_VARCHAR environment variable setting controls how the database

server sends and receives VARCHAR and NVARCHAR data values. Valid

IFX_PAD_VARCHAR values are 1 and 0.

�� setenv IFX_PAD_VARCHAR 1

0
 ��

1 Transmit the entire structure, up to the declared max size.

0 Transmit only the portion of the structure containing data.

 For example, to send the string ″ABC″ from a column declared as

NVARCHAR(255) when IFX_PAD_VARCHAR is set to 0 would send 3 bytes.

If the setting were 1 in the previous example, however, the number of bytes sent

would be 255 bytes.

The effect IFX_PAD_VARCHAR is context-sensitive. In a low-bandwidth network,

a setting of 0 might improve performance by reducing the total volume of

transmitted data. But in a high-bandwidth network, a setting of 1 might improve

performance, if the CPU time required to process variable-length packets were

greater than the time required to send the entire character stream. In cross-server

distributed operations, this setting has no effect, and padding characters are

dropped from VARCHAR or NVARCHAR values that are passed between database

servers.

IFX_UPDDESC (IDS)

You must set the IFX_UPDDESC environment variable at execution time before

you can do a DESCRIBE of an UPDATE statement.

3-44 IBM Informix Guide to SQL: Reference

�� setenv IFX_UPDDESC value ��

value is any non-NULL value.

 A NULL value (here meaning that IFX_UPDDESC is not set) disables the

describe-for-update feature. Any non-NULL value enables the feature.

IFX_XASTDCOMPLIANCE_XAEND

In earlier releases of IBM Informix database servers, an internal rollback of a global

transaction freed the transaction. In releases later than XPS 8.40 and IDS 9.40,

however, the default behavior after an internal rollback is not to free the global

transaction until an explicit rollback, as required by the X/Open XA standard. By

setting the DISABLE_B162428_XA_FIX configuration parameter to 1, you can

restore the legacy behavior as the default for all sessions.

The IFX_XASTDCOMPLIANCE_XAEND environment variable can override the

configuration parameter for the current session, using the following syntax. Valid

IFX_XASTDCOMPLIANCE_XAEND values are 1 and 0.

�� setenv IFX_XASTDCOMPLIANCE_XAEND 1

0
 ��

0 Frees global transactions only after an explicit rollback

1 Frees global transactions after any rollback

 This environment variable can be particularly useful when the server instance is

disabled for new behaviour by the DISABLE_B162428_XA_FIX configuration

parameter, but one client requires the new behaviour. Setting this environment

varable to zero supports the new behaviour in the current session.

IFX_XFER_SHMBASE

An alternate base address for a utility to attach the server shared memory

segments.

�� setenv IFX_XFER_SHMBASE address ��

address Valid address in hexadecimal

 After the database server allocates shared memory, the database server might

allocate multiple contiguous OS shared memory segments. The client utility that

connects to shared memory must attach all those OS segments contiguously also.

The utility might have some other shared objects (for example, the xbsa library in

onbar) loaded at the address where the server has shared memory segment

attached. To workaround this situation, you can specify a different base address in

the environment variable IFX_XFER_SHMBASE for the utility to attach the shared

memory segments. The onstat, onmode, and oncheck utilities must attach to exact

same shared memory base as oninit. Setting IFX_XFER_SHMBASE is not an option

for these utilities.

Chapter 3. Environment Variables 3-45

IMCADMIN

The IMCADMIN environment variable supports the imcadmin administrative tool

by specifying the name of a database server through which imcadmin can connect

to MaxConnect. For imcadmin to operate correctly, you must set IMCADMIN

before you use an IBM Informix product.

�� setenv IMCADMIN dbservername ��

dbservername is the name of a database server.

 Here dbservername must be listed in the sqlhosts file on the computer where the

MaxConnect runs. MaxConnect uses this setting to obtain the following

connectivity information from the sqlhosts file:

v Where the administrative listener port must be established

v The network protocol that the specified database server uses

v The host name of the system where the specified database server resides

You cannot use the imcadmin tool unless IMCADMIN is set to a valid database

server name.

For more information about using IMCADMIN, refer to IBM Informix MaxConnect

User’s Guide.

IMCCONFIG

The IMCCONFIG environment variable specifies a nondefault filename, and

optionally a pathname, for the MaxConnect configuration file. On UNIX systems

that support the C shell, this variable can be set by the following command.

�� setenv IMCCONFIG pathname ��

pathname is a full pathname or a simple filename.

 When the setting is a filename that is not qualified by a full pathname,

MaxConnect searches for the specified file in the $INFORMIXDIR/etc/ directory.

Thus, if you set IMCCONFIG to IMCconfig.imc2, MaxConnect searches for

$INFORMIXDIR/etc/IMCconfig.imc2 as its configuration file.

If the IMCCONFIG environment variable is not set, MaxConnect searches by

default for $INFORMIXDIR/etc/IMCconfig as its configuration file.

IMCSERVER

The IMCSERVER environment variable specifies the name of a database server

entry in the sqlhosts file that contains information on connectivity.

The database server can be either local or remote. On UNIX systems that support

the C shell, the IMCSERVER environment variable can be set by the command.

�� setenv IMCSERVER dbservername ��

dbservername is the valid name of a database server.

3-46 IBM Informix Guide to SQL: Reference

Here dbservername must be the name of a database server in the sqlhosts file. For

more information about sqlhosts settings with MaxConnect, see your IBM Informix

Administrator’s Guide. You cannot use MaxConnect unless IMCSERVER is set to a

valid database server name.

INFORMIXC (UNIX)

The INFORMIXC environment variable specifies the filename or pathname of the

C compiler to be used to compile files that IBM Informix ESQL/C generates. The

setting takes effect only during the C compilation stage.

If INFORMIXC is not set, the default compiler on most systems is cc.

Tip: On Windows, you pass either -mcc or -bcc options to the esql preprocessor to

use either the Microsoft or Borland C compilers.

�� setenv INFORMIXC compiler

pathname
 ��

compiler is the filename of the C compiler.

pathname is the full pathname of the C compiler.

 For example, to specify the GNU C compiler, enter the following command:

setenv INFORMIXC gcc

Important: If you use gcc, be aware that the database server assumes that strings

are writable, so you need to compile using the -fwritable-strings

option. Failure to do so can produce unpredictable results, possibly

including core dumps.

INFORMIXCONCSMCFG (IDS)

The INFORMIXCONCSMCFG environment variable specifies the location of the

concsm.cfg file that describes communications support modules.

�� setenv INFORMIXCONCSMCFG pathname ��

pathname specifies the full pathname of the concsm.cfg file.

 The following command specifies that the concsm.cfg file is in /usr/myfiles:

setenv INFORMIXCONCSMCFG /usr/myfiles

You can also specify a different name for the file. The following example specifies a

filename of csmconfig in the same directory:

setenv INFORMIXCONCSMCFG /usr/myfiles/csmconfig

The default location of the concsm.cfg file is in $INFORMIXDIR/etc. For more

information about communications support modules and the contents of the

concsm.cfg file, refer to the IBM Informix Administrator’s Reference.

INFORMIXCONRETRY

The INFORMIXCONRETRY environment variable sets the maximum number of

additional connection attempts that should be made to each database server by the

client during the time limit that INFORMIXCONTIME specifies.

Chapter 3. Environment Variables 3-47

�� setenv INFORMIXCONRETRY count ��

count is the number of additional attempts to connect to each database

server.

 For example, the following command sets INFORMIXCONRETRY to specify three

additional connection attempts (after the initial attempt):

setenv INFORMIXCONRETRY 3

The default value for INFORMIXCONRETRY is one retry after the initial

connection attempt. The INFORMIXCONTIME setting, described in the following

section, takes precedence over the INFORMIXCONRETRY setting.

INFORMIXCONTIME

The INFORMIXCONTIME environment variable specifies for how many seconds

the CONNECT statement continues each attempt to establish a connection to a

database server before returning an error. If you set no value, the default of 60

seconds can typically support a few hundred concurrent client connections, but

some systems might encounter very few connection errors with a value as low as

15. The total distance between nodes, hardware speed, the volume of traffic, and

the concurrency level of the network can all affect what value you should set to

optimize INFORMIXCONTIME.

The INFORMIXCONTIME and INFORMIXCONRETRY environment variables let

you configure your client-side connection capability to retry the connection instead

of returning a -908 error.

�� setenv INFORMIXCONTIME seconds ��

seconds represents the minimum number of seconds spent in attempts to

establish a connection to a database server.

 For example, enter this command to set INFORMIXCONTIME to 60 seconds:

setenv INFORMIXCONTIME 60

If INFORMIXCONTIME is set to 60 and INFORMIXCONRETRY is set to 3,

attempts to connect to the database server (after the initial attempt at 0 seconds)

are made at 20, 40, and 60 seconds, if necessary, before aborting. This 20-second

interval is the result of INFORMIXCONTIME divided by

INFORMIXCONRETRY. If you attempt to set INFORMIXCONTIME to zero, the

database server automatically resets it to the default value of 60 seconds.

If execution of the CONNECT statement involves searching DBPATH, the

following rules apply:

v All appropriate servers in the DBPATH setting are accessed at least once, even

though the INFORMIXCONTIME value might be exceeded. Thus, the

CONNECT statement might take longer than the INFORMIXCONTIME time

limit to return an error that indicates connection failure or that the database was

not found.

v INFORMIXCONRETRY specifies how many additional connection attempts

should be made for each database server entry in DBPATH.

v The INFORMIXCONTIME value is divided among the number of database

server entries specified in DBPATH. Thus, if DBPATH contains numerous

3-48 IBM Informix Guide to SQL: Reference

servers, you should increase the INFORMIXCONTIME value accordingly. For

example, if DBPATH contains three entries, to spend at least 30 seconds

attempting each connection, set INFORMIXCONTIME to 90.

INFORMIXCONTIME takes precedence over the INFORMIXCONRETRY setting.

Retry efforts could end after the INFORMIXCONTIME value is exceeded, but

before the INFORMIXCONRETRY value is reached.

The INFORMIXCONTIME and INFORMIXCONRETRY environment variables can

be modified with the onutil SET command, as in the following example:

% onutil

1> SET INFORMIXCONTIME 120;

Dynamic Configuration completed successfully

2> SET INFORMIXCONRETRY 10;

Dynamic Configuration completed successfully

INFORMIXCPPMAP (IDS)

Set the INFORMIXCPPMAP environment variable to specify the fully qualified

pathname of the map file for C++ programs. Information in the map file includes

the database server type, the name of the shared library that supports the database

object or value object type, the library entry point for the object, and the C++

library for which an object was built.

�� setenv INFORMIXCPPMAP pathname ��

pathname is the directory path where the C++ map file is stored.

 The map file is a text file that can have any filename. You can specify several map

files, separated by colons (:) on UNIX or semicolons (;) on Windows.

On UNIX, the default map file is $INFORMIXDIR/etc/c++map. On Windows, the

default map file is %INFORMIXDIR%\etc\c++map.

INFORMIXDIR

The INFORMIXDIR environment variable specifies the directory that contains the

subdirectories in which your product files are installed. You must always set

INFORMIXDIR. Verify that INFORMIXDIR is set to the full pathname of the

directory in which you installed your database server. If you have multiple

versions of a database server, set INFORMIXDIR to the appropriate directory

name for the version that you want to access. For information about when to set

INFORMIXDIR, see your IBM Informix Installation Guide.

�� setenv INFORMIXDIR\ pathname ��

pathname is the directory path where the product files are installed.

 To set INFORMIXDIR to usr/informix/, for example, as the installation directory,

enter the following command:

setenv INFORMIXDIR /usr/informix

INFORMIXOPCACHE (IDS)

The INFORMIXOPCACHE environment variable can specify the size of the

memory cache for the staging-area blobspace of the client application.

Chapter 3. Environment Variables 3-49

�� setenv INFORMIXOPCACHE kilobytes ��

kilobytes specifies the value you set for the optical memory cache.

 Set the INFORMIXOPCACHE environment variable by specifying the size of the

memory cache in kilobytes. The specified size must be equal to or smaller than the

size of the system-wide configuration parameter, OPCACHEMAX.

If you do not set INFORMIXOPCACHE, the default cache size is 128 kilobytes or

the size specified in the configuration parameter OPCACHEMAX. The default for

OPCACHEMAX is 0. If you set INFORMIXOPCACHE to a value of 0, Optical

Subsystem does not use the cache.

INFORMIXSERVER

The INFORMIXSERVER environment variable specifies the default database

server to which an explicit or implicit connection is made by an SQL API client,

the DB–Access utility, or other IBM Informix products. This must be set before you

can use IBM Informix client products. It has the following syntax.

�� setenv INFORMIXSERVER dbservername ��

dbservername is the name of the default database server.

 The value of INFORMIXSERVER can be a local or remote server, but must

correspond to a valid dbservername entry in the $INFORMIXDIR/etc/sqlhosts file

on the computer running the application. The dbservername must begin with a

lower-case letter and cannot exceed 128 bytes. It can include any printable

characters except uppercase characters, field delimiters (blank space or tab), the

newline character, and the hyphen (or minus) symbol.

For example, this command specifies the coral database server as the default:

setenv INFORMIXSERVER coral

INFORMIXSERVER specifies the database server to which an application connects

if the CONNECT DEFAULT statement is executed. It also defines the database

server to which an initial implicit connection is established if the first statement in

an application is not a CONNECT statement.

Important: You must set INFORMIXSERVER even if the application or

DB–Access does not use implicit or explicit default connections.

For Extended Parallel Server, the INFORMIXSERVER environment variable

specifies the name of a dbserver group. To specify a coserver name, use the

following format:

dbservername.coserver_number

Here dbservername is the value that you assigned to the DBSERVERNAME

configuration parameter in the ONCONFIG configuration file and coserver_number

is the value that you assigned to the COSERVER configuration parameter for the

connection coserver.

Strictly speaking, INFORMIXSERVER is not required for initialization. If

INFORMIXSERVER is not set, however, Extended Parallel Server does not build

the sysmaster tables.

3-50 IBM Informix Guide to SQL: Reference

INFORMIXSHMBASE (UNIX)

The INFORMIXSHMBASE environment variable affects only client applications

connected to Informix databases that use the interprocess communications (IPC)

shared-memory (ipcshm) protocol.

Important: Resetting INFORMIXSHMBASE requires a thorough understanding of

how the application uses memory. Normally you do not reset

INFORMIXSHMBASE.

INFORMIXSHMBASE specifies where shared-memory communication segments

are attached to the client process so that client applications can avoid collisions

with other memory segments that it uses. If you do not set INFORMIXSHMBASE,

the memory address of the communication segments defaults to an

implementation-specific value such as 0x800000.

�� setenv INFORMIXSHMBASE value ��

value is an integer (in kilobytes) used to calculate the memory address.

 The database server calculates the memory address where segments are attached

by multiplying the value of INFORMIXSHMBASE by 1,024. For example, on a

system that uses the C shell, you can set the memory address to the value

0x800000 by entering the following command:

setenv INFORMIXSHMBASE 8192

For more information, see your IBM Informix Administrator’s Guide and the IBM

Informix Administrator’s Reference.

INFORMIXSQLHOSTS

The INFORMIXSQLHOSTS environment variable specifies where the SQL client

or the database server can find connectivity information.

�� setenv INFORMIXSQLHOSTS pathname ��

pathname is the full pathname of the connectivity information file.

 On UNIX systems, the default search path for the connectivity information file is

$INFORMIXDIR/etc/sqlhosts.

The following command overrides this default to specify the mysqlhosts file in the

/work/envt directory:

setenv INFORMIXSQLHOSTS /work/envt/mysqlhosts

On Windows, INFORMIXSQLHOSTS points to the computer whose registry

contains the SQLHOSTS subkey.

The next example specifies that the client or database server look for connectivity

information on a computer named arizona:

set INFORMIXSQLHOSTS = \\arizona

For details of the information that sqlhosts (or a file with a non-default filename)

can provide about connectivity, see your IBM Informix Administrator’s Guide.

Chapter 3. Environment Variables 3-51

INFORMIXSTACKSIZE

The INFORMIXSTACKSIZE environment variable specifies the stack size (in

kilobytes) that is applied to all client processes. Any value that you set for

INFORMIXSTACKSIZE in the client environment is ignored by the database server.

�� setenv INFORMIXSTACKSIZE size ��

size is an integer, setting the stack size (in kilobytes) for SQL client

threads.

 For example, to decrease the INFORMIXSTACKSIZE to 20 kilobytes, enter the

following command:

setenv -STACKSIZE 20

If INFORMIXSTACKSIZE is not set, the stack size is taken from the database

server configuration parameter STACKSIZE or else defaults to a platform-specific

value. The default stack size value for the primary thread of an SQL client is 32

kilobytes for nonrecursive database activity.

Warning: For instructions on setting this value, see the IBM Informix

Administrator’s Reference. If you incorrectly set the value of

INFORMIXSTACKSIZE, it can cause the database server to fail.

INFORMIXTERM (UNIX)

The INFORMIXTERM environment variable specifies whether DB–Access should

use the information in the termcap file or the terminfo directory.

On character-based systems, the termcap file and terminfo directory determine

terminal-dependent keyboard and screen capabilities, such as the operation of

function keys, color and intensity attributes in screen displays, and the definition

of window borders and graphic characters.

�� setenv INFORMIXTERM termcap

terminfo
 ��

If INFORMIXTERM is not set, the default setting is termcap. When DB–Access is

installed on your system, a termcap file is placed in the etc subdirectory of

$INFORMIXDIR. This file is a superset of an operating-system termcap file.

You can use the termcap file that the database server supplies, the system termcap

file, or a termcap file that you create. You must set the TERMCAP environment

variable if you do not use the default termcap file. For information on setting the

TERMCAP environment variable, see page 3-66.

The terminfo directory contains a file for each terminal name that has been

defined. The terminfo setting for INFORMIXTERM is supported only on

computers that provide full support for the UNIX System V terminfo library. For

details, see the machine notes file for your product.

INF_ROLE_SEP (IDS)

The INF_ROLE_SEP environment variable configures the security feature of role

separation when the database server is installed or reinstalled on UNIX systems.

Role separation enforces separating administrative tasks by people who run and

3-52 IBM Informix Guide to SQL: Reference

audit the database server. After the installation is complete, INF_ROLE_SEP has

no effect. If INF_ROLE_SEP is not set, then user informix (the default) can

perform all administrative tasks.

�� setenv INF_ROLE_SEP n ��

n is any positive integer.

 On Windows, the install process asks whether you want to enable role separation

regardless of the setting of INF_ROLE_SEP. To enable role separation for database

servers on Windows, choose the role-separation option during installation.

If INF_ROLE_SEP is set when Dynamic Server is installed on a UNIX platform,

role separation is implemented and a separate group is specified to serve each of

the following responsibilities:

v The Database Server Administrator (DBSA)

v The Audit Analysis Officer (AAO)

v The standard user

On UNIX, you can establish role separation by changing the group that owns the

aaodir, dbsadir, or etc directories at any time after the installation is complete. You

can disable role separation by resetting the group that owns these directories to

informix. You can have role separation enabled, for example, for the Audit

Analysis Officer (AAO) without having role separation enabled for the Database

Server Administrator (DBSA).

For more information about the security feature of role separation, see the IBM

Informix Security Guide. To learn how to configure role separation when you install

your database server, see your IBM Informix Installation Guide.

INTERACTIVE_DESKTOP_OFF (Windows)

This environment variable lets you prevent interaction with the Windows desktop

when an SPL routine executes a SYSTEM command.

�� setenv INTERACTIVE_DESKTOP_OFF 1

0
 ��

If INTERACTIVE_DESKTOP_OFF is 1 and an SPL routine attempts to interact

with the desktop (for example, with the notepad.exe or cmd.exe program), the

routine fails unless the user is a member of the Administrators group.

The valid settings (1 or 0) have the following effects:

1 Prevents the database server from acquiring desktop resources for

the user executing the stored procedure

0 SYSTEM commands in a stored procedure can interact with the

desktop. This is the default value.

 Setting INTERACTIVE_DESKTOP_OFF to 1 allows an SPL routine that does not

interact with the desktop to execute more quickly. This setting also allows the

database server to simultaneously call a greater number of SYSTEM commands

because the command no longer depends on a limited operating- system resource

(Desktop and WindowStation handles).

Chapter 3. Environment Variables 3-53

ISM_COMPRESSION

Set this environment variable in the ON–Bar environment to specify whether the

IBM Informix Storage Manager (ISM) should use data compression.

�� setenv ISM_COMPRESSION TRUE

FALSE
 ��

If ISM_COMPRESSION is set to TRUE in the environment of the ON–Bar process

that makes a request, the ISM server uses a data-compression algorithm to store or

retrieve the requested data. If ISM_COMPRESSION is set to FALSE or is not set,

the ISM server does not use compression.

ISM_DEBUG_FILE

Set the ISM_DEBUG_FILE environment variable in the IBM Informix Storage

Manager server environment to specify where to write XBSA messages.

�� setenv ISM_DEBUG_FILE pathname ��

pathname specifies the location of the XBSA message log file.

 If you do not set ISM_DEBUG_FILE, the XBSA message log is located in the

$INFORMIXDIR/ism/applogs/xbsa.messages directory on UNIX, or in the

c:\nsr\applogs\xbsa.messages directory on Windows systems.

ISM_DEBUG_LEVEL

Set the ISM_DEBUG_LEVEL environment variable in the ON–Bar environment to

control the level of reporting detail recorded in the XBSA messages log. The XBSA

shared library writes to this log.

�� setenv ISM_DEBUG_LEVEL value ��

value specifies the level of reporting detail, where 1 ≤ value ≤ 9.

 If ISM_DEBUG_LEVEL is not set, has a null value, or has a value outside this

range, the default detail level is 1. A detail level of 0 suppresses all XBSA

debugging records. A detail level of 1 reports only XBSA failures.

ISM_ENCRYPTION

Set the ISM_ENCRYPTION environment variable in the ON–Bar environment to

specify whether IBM Informix Storage Manager (ISM) uses data encryption.

�� setenv ISM_ENCRYPTION XOR

NONE

TRUE

 ��

Three settings of ISM_ENCRYPTION are supported:

XOR uses encryption.

NONE does not use encryption.

TRUE uses encryption.

3-54 IBM Informix Guide to SQL: Reference

If ISM_ENCRYPTION is set to NONE or is not set, the ISM server does not use

encryption.

If the ISM_ENCRYPTION is set to TRUE or XOR in the environment of the

ON–Bar process that makes a request, the ISM server uses encryption to store or

retrieve the data specified in that request.

ISM_MAXLOGSIZE

Set the ISM_MAXLOGSIZE environment variable in the IBM Informix Storage

Manager (ISM) server environment to specify the size threshold of the ISM activity

log.

�� setenv ISM_MAXLOGSIZE size ��

size specifies the size threshold (in megabytes) of the activity log.

 If ISM_MAXLOGSIZE is not set, then the default size limit is 1 megabyte. If

ISM_MAXLOGSIZE is set to a null value, then the threshold is 0 bytes.

ISM_MAXLOGVERS

Set the ISM_MAXLOGVERS environment variable in the IBM Informix Storage

Manager (ISM) server environment to specify the maximum number of activity-log

files to be preserved by the ISM server.

�� setenv ISM_MAXLOGVERS value ��

value specifies the number of files to be preserved.

 If ISM_MAXLOGVERS is not set, then the default number of files is four. If the

setting is a null value, then the ISM server preserves no activity log files.

JAR_TEMP_PATH (IDS)

Set the JAR_TEMP_PATH variable to specify a non-default local file system

location where jar management procedures such as install_jar() and replace_jar()

can store temporary .jar files of the Java virtual machine.

�� setenv JAR_TEMP_PATH pathname ��

pathname specifies a local directory for temporary .jar files.

 This directory must have read and write permissions for the user who brings up

the database server. If the JAR_TEMP_PATH environment variable is not set,

temporary copies of .jar files are stored in the /tmp directory of the local file

system for the database server.

JAVA_COMPILER (IDS)

You can set the JAVA_COMPILER environment variable in the Java virtual

machine environment to disable JIT compilation.

�� setenv JAVA_COMPILER none

NONE
 ��

Chapter 3. Environment Variables 3-55

The NONE and none settings are equivalent. On UNIX systems that support the C

shell and on which JAVA_COMPILER has been set to NONE or none, you can enable

the JIT compiler for the JVM environment by the following command:

unset JAVA_COMPILER

JVM_MAX_HEAP_SIZE (IDS)

The JVM_MAX_HEAP_SIZE environment variable can set a non-default upper

limit on the size of the heap for the Java virtual machine.

�� setenv JVM_MAX_HEAP_SIZE size ��

size is a positive integer that specifies the maximum size (in

megabytes).

 For example, the following command sets the maximum heap size at 12 MB:

set JVM_MAX_HEAP_SIZE 12

If you do not set JVM_MAX_HEAP_SIZE, 16 MB is the default maximum size.

LD_LIBRARY_PATH (UNIX)

The LD_LIBRARY_PATH environment variable tells the shell on Solaris systems

which directories to search for client or shared Informix general libraries. You must

specify the directory that contains your client libraries before you can use the

product.

��

�

 :

setenv

LD_LIBRARY_PATH

$PATH:

pathname

��

pathname specifies the search path for the library.

 For INTERSOLV DataDirect ODBC Driver on AIX®, set LIBPATH. For INTERSOLV

DataDirect ODBC Driver on HP-UX, set SHLIB_PATH.

The following example sets the LD_LIBRARY_PATH environment variable to the

desired directory:

setenv LD_LIBRARY_PATH

${INFORMIXDIR}/lib:${INFORMIXDIR}/lib/esql:$LD_LIBRARY_PATH

LIBERAL_MATCH (XPS)

The LIBERAL_MATCH environment variable allows the database server to ignore

trailing blanks when the LIKE and MATCHES operators occur in SQL statements

that compare two column values.

�� setenv LIBERAL_MATCH ��

When this environment variable is set, the database server ignores trailing blanks

in a LIKE or MATCHES condition. For example, if LIBERAL_MATCH is set, and

you specify “M LIKE P” when P contains trailing blank spaces that do not occur in

M, the result is TRUE. When this environment variable is not set, the database

server returns FALSE for string comparisons like this that differ only in trailing

blank characters.

3-56 IBM Informix Guide to SQL: Reference

This environment variable supports behavior consistent with that of the LIKE and

MATCHES operators in Dynamic Server, Versions 7.x, 9.x, and 10.x. This behavior

(like the MATCHES operator) is an extension to the ANSI/ISO standard for SQL.

For more information about the LIKE and MATCHES operators, refer to the IBM

Informix Guide to SQL: Syntax.

LIBPATH (UNIX)

The LIBPATH environment variable tells the shell on AIX systems which

directories to search for dynamic-link libraries for the INTERSOLV DataDirect

ODBC Driver. You must specify the full pathname for the directory where you

installed the product.

��

�

 :

setenv

LIBPATH

pathname

��

pathname specifies the search path for the libraries.

 On Solaris, set LD_LIBRARY_PATH. On HP-UX, set SHLIB_PATH.

NODEFDAC

When the NODEFDAC environment variable is set to yes, it prevents default table

privileges (Select, Insert, Update, and Delete) from being granted to PUBLIC when

a new table is created during the current session in a database that is not ANSI

compliant.

�� setenv NODEFDAC yes ��

yes prevents default table privileges from being granted to PUBLIC on

new tables in a database that is not ANSI compliant. This setting

also prevents the Execute privilege for a new user-defined routine

from being granted to PUBLIC by default when the routine is

created in Owner mode.

 The yes setting is case sensitive, and is also sensitive to leading and trailing blank

spaces. Including uppercase letters or blank spaces in the setting is equivalent to

leaving NODEFDAC unset. When NODEFDAC is not set, or if it is set to any

value besides yes, default privileges on tables and Owner-mode UDRs are granted

to PUBLIC by default when the table or UDR is created in a database that is not

ANSI-compliant.

ONCONFIG

The ONCONFIG environment variable specifies the name of the active file that

holds configuration parameters for the database server. This file is read as input

during the initialization procedure. After you prepare the ONCONFIG

configuration file, set ONCONFIG to the name of this file.

�� setenv ONCONFIG filename ��

filename is the name of a file in $INFORMIXDIR/etc that contains the

configuration parameters for your database.

Chapter 3. Environment Variables 3-57

To prepare the ONCONFIG file, make a copy of the onconfig.std file and modify

the copy. It is recommended that you name the ONCONFIG file so that it can

easily be related to a specific database server. If you have multiple instances of a

database server, each instance must have its own uniquely named ONCONFIG file.

To prepare the ONCONFIG file for Extended Parallel Server, make a copy of the

onconfig.std file if you are using a single coserver configuration or make a copy of

the onconfig.xps file if you are using a multiple coserver configuration. You can

use the onconfig.std file for a multiple coserver configuration, but you would have

to add additional keywords and configuration parameters such as END, NODE,

and COSERVER, which are already provided for you in the onconfig.xps file.

If the ONCONFIG environment variable is not set, the database server uses

configuration values from either the $ONCONFIG file or the $INFORMIXDIR/etc/
onconfig file.

For more information on configuration parameters and the ONCONFIG file, see

the IBM Informix Administrator’s Reference.

OPTCOMPIND

You can set the OPTCOMPIND environment variable so that the optimizer can

select the appropriate join method.

��
 2

setenv

OPTCOMPIND

1

0

��

0 A nested-loop join is preferred, where possible, over a sort-merge

join or a hash join.

1 When the isolation level is not Repeatable Read, the optimizer

behaves as in setting 2; otherwise, the optimizer behaves as in

setting 0.

2 Nested-loop joins are not necessarily preferred. The optimizer

bases its decision purely on costs, regardless of transaction

isolation mode.

 When OPTCOMPIND is not set, the database server uses the OPTCOMPIND

value from the ONCONFIG configuration file. When neither the environment

variable nor the configuration parameter is set, the default value is 2.

On Dynamic Server, the SET ENVIRONMENT OPTCOMPIND statement can set or

reset OPTCOMPIND dynamically at runtime. This overrides the current

OPTCOMPIND value (or the ONCONFIG configuration parameter

OPTCOMPIND) for the current user session only. For more information on the SET

ENVIRONMENT OPCOMPIND statement of SQL see the IBM Informix Guide to

SQL: Syntax.

For more information on the ONCONFIG configuration parameter OPTCOMPIND,

see the IBM Informix Administrator’s Reference. For more information on the

different join methods that the optimizer uses, see your IBM Informix Performance

Guide.

3-58 IBM Informix Guide to SQL: Reference

OPTMSG

Set the OPTMSG environment variable at runtime before you start an IBM

Informix ESQL/C application to enable (or disable) optimized message transfers

(message chaining) for all SQL statements in an application.

��
 0

setenv

OPTMSG

1

��

0 disables optimized message transfers.

1 enables optimized message transfers and implements the feature

for any subsequent connection.

 The default value is 0 (zero), which explicitly disables message chaining. You

might want, for example, to disable optimized message transfers for statements

that require immediate replies, for debugging, or to ensure that the database server

processes all messages before the application terminates.

When you set OPTMSG within an application, you can activate or deactivate

optimized message transfers for each connection or within each thread. To enable

optimized message transfers, you must set OPTMSG before you establish a

connection.

For more information about setting OPTMSG and defining related global

variables, see the IBM Informix ESQL/C Programmer’s Manual.

OPTOFC

Set the OPTOFC environment variable to enable optimize-OPEN-FETCH-CLOSE

functionality in an IBM Informix ESQL/C application or other APIs (such as JDBC,

ODBC, OLE DB, LIBDMI, and Lib C++) that use DECLARE and OPEN statements

to execute a cursor.

��
 0

setenv

OPTOFC

1

��

0 disables OPTOFC for all threads of the application.

1 enables OPTOFC for every cursor in every thread of the

application.

 The default value is 0 (zero).

The OPTOFC environment variable reduces the number of message requests

between the application and the database server.

If you set OPTOFC from the shell, you must set it before you start the Informix

ESQL/C application. For more information about enabling OPTOFC and related

features, see the IBM Informix ESQL/C Programmer’s Manual.

OPT_GOAL (IDS, UNIX)

Set the OPT_GOAL environment variable in the user environment, before you

start an application, to specify the query performance goal for the optimizer.

Chapter 3. Environment Variables 3-59

��
 -1

setenv

OPT_GOAL

0

��

0 specifies user-response-time optimization.

-1 specifies total-query-time optimization.

 The default behavior is for the optimizer to choose query plans that optimize the

total query time.

You can also specify the optimization goal for individual queries with optimizer

directives or for a session with the SET OPTIMIZATION statement.

Both methods take precedence over the OPT_GOAL environment variable setting.

You can also set the OPT_GOAL configuration parameter for the Dynamic Server

system; this method has the lowest level of precedence.

For more information about optimizing queries for your database server, see your

IBM Informix Performance Guide. For information on the SET OPTIMIZATION

statement, see the IBM Informix Guide to SQL: Syntax.

PATH

The UNIX PATH environment variable tells the shell which directories to search

for executable programs. You must add the directory containing your IBM Informix

product to your PATH setting before you can use the product.

��

�

 :

setenv

PATH

$PATH:

pathname

��

pathname specifies the search path for the executables.

 Include a colon (:) separator between the pathnames on UNIX systems. (Use the

semicolon (;) separator between pathnames on Windows systems.)

You can specify the search path in various ways. The PATH environment variable

tells the operating system where to search for executable programs. You must

include the directory that contains your IBM Informix product in your path setting

before you can use the product. This directory should appear before

$INFORMIXDIR/bin, which you must also include.

For additional information about how to modify your path, see “Modifying an

Environment-Variable Setting” on page 3-6.

PDQPRIORITY

For Dynamic Server, the PDQPRIORITY environment variable determines the

degree of parallelism that the database server uses and affects how the database

server allocates resources, including memory, processors, and disk reads.

For Extended Parallel Server, the PDQPRIORITY environment variable determines

only the allocation of memory resources.

3-60 IBM Informix Guide to SQL: Reference

�� setenv PDQPRIORITY HIGH

LOW

OFF

resources

(1)

,

high_value

 ��

Notes:

1 Extended Parallel Server only

resources Is an integer in the range 0 to 100. The value 1 is the same as

LOW, and 100 is the same as HIGH. Values lower than 0 are set to

0 (OFF), and values greater than 100 are set to 100 (HIGH).

 Value 0 is the same as OFF (for Dynamic Server only).

high_value Optional integer value that requests the maximum percentage of

memory (for Extended Parallel Server only). When you specify this

value after the resources value, you request a range of memory,

expressed as a percentage.

 Here the HIGH, LOW, and OFF keywords have the following effects:

HIGH When the database server allocates resources among all users, it

gives as many resources as possible to the query.

LOW Data values are fetched from fragmented tables in parallel.

OFF PDQ processing is turned off (for Dynamic Server only).

 Usually, the more resources a database server uses, the better its performance for a

given query. If the server uses too many resources, however, contention for the

resources can take resources away from other queries, resulting in degraded

performance. For more information on performance considerations for

PDQPRIORITY, refer to your IBM Informix Performance Guide.

An application can override the setting of this environment variable when it issues

the SQL statement SET PDQPRIORITY, as the IBM Informix Guide to SQL: Syntax

describes.

Using PDQPRIORITY with Dynamic Server

The resources value specifies the query priority level and the amount of resources

that the database server uses to process the query.

When PDQPRIORITY is not set, the default value is OFF.

When PDQPRIORITY is set to HIGH, Dynamic Server determines an appropriate

value to use for PDQPRIORITY based on several criteria. These include the

number of available processors, the fragmentation of tables queried, the complexity

of the query, and additional factors.

Using PDQPRIORITY with Extended Parallel Server

The resources value establishes the minimum percentage of memory when you also

specify high_value to request a range of memory allocation. Other parallel

operations can occur when the PDQPRIORITY setting is LOW.

When the PDQPRIORITY environment variable is not set, the default value is the

value of the PDQPRIORITY configuration parameter.

Chapter 3. Environment Variables 3-61

When PDQPRIORITY is set to 0, Extended Parallel Server can execute a query in

parallel, depending on the number of available processors, the fragmentation of

tables queried, the complexity of the query, and other factors. PDQPRIORITY does

not affect the degree of parallelism in Extended Parallel Server.

An application can prevent changes to the PDQPRIORITY setting with the SET

PDQPRIORITY IMMUTABLE or SET ALL_MUTABLES statements of SQL. You can

also override the setting of this environment variable by issuing the SQL statement

SET ENVIRONMENT to change the IMPLICIT_PDQ or BOUNT_IMPL_PDQ

options, as the IBM Informix Guide to SQL: Syntax describes.

PLCONFIG (IDS)

The PLCONFIG environment variable specifies the name of the configuration file

that the High-Performance Loader (HPL) uses. This file must reside in the

$INFORMIXDIR/etc directory. If the PLCONFIG environment variable is not set,

then $INFORMIXDIR/etc/plconfig is the default configuration file.

�� setenv PLCONFIG filename ��

filename specifies the simple filename of the configuration file that the

High-Performance Loader uses.

 For example, to specify the $INFORMIXDIR/etc/custom.cfg file as the

configuration file for the High-Performance Loader, enter the following command:

setenv PLCONFIG custom.cfg

For more information, see the IBM Informix High-Performance Loader User’s Guide.

PLOAD_LO_PATH (IDS)

The PLOAD_LO_PATH environment variable lets you specify the pathname for

smart-large-object handles (which identify the location of smart large objects such

as BLOB and CLOB data types).

�� setenv PLOAD_LO_PATH pathname ��

pathname specifies the directory for the smart-large-object handles.

 If PLOAD_LO_PATH is not set, the default directory is /tmp.

For more information, see the IBM Informix High-Performance Loader User’s Guide.

PLOAD_SHMBASE (IDS)

The PLOAD_SHMBASE environment variable lets you specify the shared-memory

address at which the High-Performance Loader (HPL) onpload processes will

attach. If PLOAD_SHMBASE is not set, the HPL determines which

shared-memory address to use.

�� setenv PLOAD_SHMBASE value ��

value is used to calculate the shared-memory address.

 If the onpload utility cannot attach, an error is issued, and you must specify a new

value.

3-62 IBM Informix Guide to SQL: Reference

The onpload utility tries to determine at which address to attach, as follows in the

following (descending) order:

1. Attach at the same address (SHMBASE) as the database server.

2. Attach beyond the database server segments.

3. Attach at the address specified in PLOAD_SHMBASE.

Tip: It is recommended that you let the HPL decide where to attach and that you

set PLOAD_SHMBASE only if necessary to avoid shared-memory collisions

between onpload and the database server.

For more information, see the IBM Informix High-Performance Loader User’s Guide.

PSORT_DBTEMP

The PSORT_DBTEMP environment variable specifies where the database server

writes the temporary files it uses when it performs a sort.

��

�

 :

setenv

PSORT_DBTEMP

pathname

��

pathname is the name of the UNIX directory used for intermediate writes

during a sort.

 To set the PSORT_DBTEMP environment variable to specify the directory (for

example, /usr/leif/tempsort), enter the following command:

setenv PSORT_DBTEMP /usr/leif/tempsort

For maximum performance, specify directories that reside in file systems on

different disks.

You might also want to consider setting the environment variable DBSPACETEMP

to place temporary files used in sorting in dbspaces rather than operating-system

files. See the discussion of the DBSPACETEMP environment variable in

“DBSPACETEMP” on page 3-29.

The database server uses the directory that PSORT_DBTEMP specifies, even if the

environment variable PSORT_NPROCS is not set. For additional information

about the PSORT_DBTEMP environment variable, see your IBM Informix

Administrator’s Guide and your IBM Informix Performance Guide.

PSORT_NPROCS

The PSORT_NPROCS environment variable enables the database server to

improve the performance of the parallel-process sorting package by allocating

more threads for sorting.

PSORT_NPROCS does not necessarily improve sorting speed for Extended

Parallel Server, because the database server sorts in parallel whether this

environment variable is set or not.

Before the sorting package performs a parallel sort, make sure that the database

server has enough memory for the sort.

Chapter 3. Environment Variables 3-63

�� setenv PSORT_NPROCS threads ��

threads is an integer, specifying the maximum number of threads to be

used to sort a query. This value cannot be greater than 10.

 The following command sets PSORT_NPROCS to 4:

setenv PSORT_NPROCS 4

To disable parallel sorting, enter the following command:

unsetenv PSORT_NPROCS

It is recommended that you initially set PSORT_NPROCS to 2 when your

computer has multiple CPUs. If subsequent CPU activity is lower than I/O

activity, you can increase the value of PSORT_NPROCS.

Tip: If the PDQPRIORITY environment variable is not set, the database server

allocates the minimum amount of memory to sorting. This minimum memory

is insufficient to start even two sort threads. If you have not set

PDQPRIORITY, check the available memory before you perform a large-scale

sort (such as an index build) to make sure that you have enough memory.

Default Values for Detached Indexes

If the PSORT_NPROCS environment variable is set, the database server uses the

specified number of sort threads as an upper limit for ordinary sorts. If

PSORT_NPROCS is not set, parallel sorting does not take place. The database

server uses one thread for the sort. If PSORT_NPROCS is set to 0, the database

server uses three threads for the sort.

Default Values for Attached Indexes

The default number of threads is different for attached indexes.

If the PSORT_NPROCS environment variable is set, you get the specified number

of sort threads for each fragment of the index that is being built.

If PSORT_NPROCS is not set, or if it is set to 0, you get two sort threads for each

fragment of the index unless you have a single-CPU virtual processor. If you have

a single-CPU virtual processor, you get one sort thread for each fragment of the

index.

For additional information about the PSORT_NPROCS environment variable, see

your IBM Informix Administrator’s Guide and your IBM Informix Performance Guide.

RTREE_COST_ADJUST_VALUE (IDS)

The RTREE_COST_ADJUST_VALUE environment variable specifies a coefficient

that support functions of user-defined data types can use to estimate the cost of an

R-tree index for queries on UDT columns.

�� setenv RTREE_COST_ADJUST_VALUE value ��

value is a floating-point number, where 1 ≤ value ≤ 1000, specifying a

multiplier for estimating the cost of using an index on a UDT

column.

3-64 IBM Informix Guide to SQL: Reference

For spatial queries, the I/O overhead tends to exceed by far the CPU cost, so by

multiplying the uncorrected estimated cost by an appropriate value from this

setting, the database server can make better cost-based decisions on how to

implement queries on UDT columns for which an R-tree index exists.

SHLIB_PATH (UNIX)

The SHLIB_PATH environment variable tells the shell on HP-UX systems which

directories to search for dynamic-link libraries. This is used, for example, with the

INTERSOLV DataDirect ODBC Driver. You must specify the full pathname for the

directory where you installed the product.

��

�

 :

setenv

SHLIB_PATH

$PATH:

pathname

��

pathname specifies the search path for the libraries.

 On Solaris systems, set LD_LIBRARY_PATH. On AIX systems, set LIBPATH.

STMT_CACHE (IDS)

Use the STMT_CACHE environment variable to control the use of the

shared-statement cache on a session. This feature can reduce memory consumption

and can speed query processing among different user sessions. Valid

STMT_CACHE values are 1 and 0.

�� setenv STMT_CACHE 1

0
 ��

1 enables the SQL statement cache.

0 disables the SQL statement cache.

 Set the STMT_CACHE environment variable for applications that do not use the

SET STMT_CACHE statement to control the use of the SQL statement cache. By

default, a statement cache is disabled, but can be enabled through the

STMT_CACHE parameter of the onconfig.std file or by the SET STMT_CACHE

statement.

This environment variable has no effect if the SQL statement cache is disabled

through the configuration file setting. Values set by the SET STMT_CACHE

statement in the application override the STMT_CACHE setting.

TERM (UNIX)

The TERM environment variable is used for terminal handling. It lets DB–Access

(and other character-based applications) recognize and communicate with the

terminal that you are using.

�� setenv TERM type ��

type specifies the terminal type.

 The terminal type specified in the TERM setting must correspond to an entry in

the termcap file or terminfo directory.

Chapter 3. Environment Variables 3-65

Before you can set the TERM environment variable, you must obtain the code for

your terminal from the database administrator.

For example, to specify the vt100 terminal, set the TERM environment variable by

entering the following command:

setenv TERM vt100

TERMCAP (UNIX)

The TERMCAP environment variable is used for terminal handling. It tells

DB–Access (and other character-based applications) to communicate with the

termcap file instead of the terminfo directory.

�� setenv TERMCAP pathname ��

pathname specifies the location of the termcap file.

 The termcap file contains a list of various types of terminals and their

characteristics. For example, to provide DB–Access terminal-handling information,

which is specified in the /usr/informix/etc/termcap file, enter the following

command:

setenv TERMCAP /usr/informix/etc/termcap

You can use set TERMCAP in any of the following ways. If several termcap files

exist, they have the following (descending) order of precedence:

1. The termcap file that you create

2. The termcap file that the database server supplies (that is, $INFORMIXDIR/
etc/termcap)

3. The operating-system termcap file (that is, /etc/termcap)

If you set the TERMCAP environment variable, be sure that the INFORMIXTERM

environment variable is set to the default, termcap.

If you do not set the TERMCAP environment variable, the system file (that is,

/etc/termcap) is used by default.

TERMINFO (UNIX)

The TERMINFO environment variable is used for terminal handling.

The environment variable is supported only on platforms that provide full support

for the terminfo libraries that System V and Solaris UNIX systems provide.

�� setenv TERMINFO /usr/lib/terminfo ��

TERMINFO tells DB–Access to communicate with the terminfo directory instead

of the termcap file. The terminfo directory has subdirectories that contain files that

pertain to terminals and their characteristics.

To set TERMINFO, enter the following command:

setenv TERMINFO /usr/lib/terminfo

If you set the TERMINFO environment variable, you must also set the

INFORMIXTERM environment variable to terminfo.

3-66 IBM Informix Guide to SQL: Reference

THREADLIB (UNIX)

Use the THREADLIB environment variable to compile multithreaded Informix

ESQL/C applications. A multithreaded Informix ESQL/C application lets you

establish as many connections to one or more databases as there are threads. These

connections can remain active while the application program executes.

The THREADLIB environment variable indicates which thread package to use

when you compile an application. Currently only the Distributed Computing

Environment (DCE) is supported.

�� setenv THREADLIB DCE ��

The THREADLIB environment variable is checked when the -thread option is

passed to the Informix ESQL/C script when you compile a multithreaded Informix

ESQL/C application. When you use the -thread option while compiling, the

Informix ESQL/C script generates an error if THREADLIB is not set, or if

THREADLIB is set to an unsupported thread package.

TOBIGINT (XPS)

You can use the TOBIGINT environment variable to change the default INT8 label

that the dbschema utility displays in its output for columns of the INT8 data type

to the string BIGINT.

�� setenv TOBIGINT 1 ��

Set TOBIGINT to 1 to enable, and unset TOBIGINT to disable this dbschema

functionality. The name BIGINT is the identifier of a built-in 8-byte integer data

type of DB2® database servers of IBM. See the Migration Guide for additional

information about the TOBIGINT environment variable.

USETABLEAME (IDS)

The USETABLENAME environment variable can prevent users from using a

synonym to specify the table in ALTER TABLE or DROP TABLE statements. Unlike

most environment variables, USETABLENAME does not need to be set to a value.

It takes effect if you set it to any value, or to no value.

�� setenv USETABLENAME ��

By default, ALTER TABLE or DROP TABLE statements accept a valid synonym for

the name of the table to be altered or dropped. (In contrast, RENAME TABLE

issues an error if you specify a synonym, as do the ALTER SEQUENCE, DROP

SEQUENCE, and RENAME SEQUENCE statements, if you attempt to substitute a

synonym for the sequence name in those statements.)

If you set USETABLENAME, an error results if a synonym appears in ALTER

TABLE or DROP TABLE statements. Setting USETABLENAME has no effect on the

DROP VIEW statement, which accepts a valid synonym for the view.

XFER_CONFIG (XPS)

The XFER_CONFIG environment variable specifies the location of the xfer_config

configuration file.

Chapter 3. Environment Variables 3-67

�� setenv XFER_CONFIG pathname ��

pathname specifies the location of the xfer_config file.

 The xfer_config file works with the onxfer utility to help users migrate from

Version 7.x to Version 8.x. It contains various configuration parameter settings that

users can modify and a list of tables that users can select to be transferred.

The default xfer_config file is located in the $INFORMIXDIR/etc directory on

UNIX systems or in the %INFORMIXDIR%\etc directory in Windows.

Index of Environment Variables

Table 3-4 on page 3-68 provides an overview of the uses for the various Informix

and UNIX environment variables. This serves as an index to general topics and

lists the related environment variables and the pages where the environment

variables are introduced. Where the Topic column is empty, the entry refers to the

previously listed topic.

The term GLS Guide in the Page column in Table 3-4 indicates environment

variables that are described in the IBM Informix GLS User’s Guide.

The term ER Guide in the Page column in Table 3-4 indicates environment variables

that are described in the IBM Informix Dynamic Server Enterprise Replication Guide.

 Table 3-4. Uses for Environment Variables

Topic Environment Variable Page

Abbreviated year values DBCENTURY 3-18

Alarms for SQL operations

Globally detached indexes GLOBAL_DETACH_INFRM 3-37

Cartesian joins IFMX_CART_ALARM 3-38

ANSI/ISO SQL compliance

Lettercase of owner names ANSIOWNER 3-14

Informix syntax extensions DBANSIWARN 3-17

default table privileges NODEFDAC 3-57

archecker utility AC_CONFIG 3-14

Buffer: fetch size FET_BUF_SIZE 3-36

network size IFX_NETBUF_SIZE 3-44

network pool size IFX_NETBUF_PVTPOOL_SIZE 3-42

BYTE or TEXT data buffer DBBLOBBUF 3-17

Cache: enabling STMT_CACHE 3-65

size for Optical Subsystem INFORMIXOPCACHE 3-49

Client/server:

default server INFORMIXSERVER 3-50

shared memory segments INFORMIXSHMBASE 3-51

stacksize for client session INFORMIXSTACKSIZE 3-52

locale of client, server CLIENT_LOCALE, DBLOCALE GLS Guide

locale for file I/O SERVER_LOCALE GLS Guide

3-68 IBM Informix Guide to SQL: Reference

Table 3-4. Uses for Environment Variables (continued)

Topic Environment Variable Page

Code-set conversion

code set of client, server CLIENT_LOCALE, DB_LOCALE GLS Guide

character-string conversion DBNLS 3-25

concsm.cfg file INFORMIXCONCSMCFG 3-47

Compiler: INFORMIXC 3-47

multibyte characters CC8BITLEVEL GLS Guide

C++ INFORMIXCPPMAP 3-49

ESQL/C THREADLIB 3-67

Configuration file:

database server ONCONFIG 3-57

ignore environment variables ENVIGNORE 3-35

Configuration parameter:

COSERVER

INFORMIXSERVER 3-50

DBSERVERNAME INFORMIXSERVER 3-50

DBSPACETEMP DBSPACETEMP 3-29

DIRECTIVES IFX_DIRECTIVES

IFX_EXTDIRECTIVES

3-40

3-41

OPCACHEMAX INFORMIXOPCACHE 3-49

OPTCOMPIND OPTCOMPIND 3-58

OPT_GOAL OPT_GOAL 3-59

PDQPRIORITY PDQPRIORITY 3-60

STACKSIZE INFORMIXSTACKSIZE 3-52

Connecting INFORMIXCONRETRY

INFORMIXCONTIME

INFORMIXSERVER

INFORMIXSQLHOSTS

3-47

3-47

3-50

3-51

Data distributions DBUPSPACE 3-33

Database locale DB_LOCALE GLS Guide

Database server INFORMIXSERVER 3-50

locale for file I/O SERVER_LOCALE GLS Guide

configuration file ONCONFIG 3-57

parallel sorting PSORT_DBTEMP

PSORT_NPROCS

3-63

3-63

parallelism PDQPRIORITY 3-60

role separation INF_ROLE_SEP 3-52

shared memory INFORMIXSHMBASE 3-51

stacksize INFORMIXSTACKSIZE 3-52

temporary tables DBSPACETEMP

DBTEMP

PSORT_DBTEMP

3-29

3-30

3-63

variable-length packets IFX_PAD_VARCHAR 3-44

Chapter 3. Environment Variables 3-69

Table 3-4. Uses for Environment Variables (continued)

Topic Environment Variable Page

Date and time values, formats DBCENTURY

DBDATE

GL_DATE

DBTIME

GL_DATETIME
IBM_XPS_PARAMS
USE_DTENV

3-18

3-20:

GLS Guide

3-31:

GLS Guide

3-37

IBM Informix ESQL/C

Programmer’s Manual

DB-Access utility DBANSIWARN

DBDELIMITER

DBEDIT

DBFLTMASK

DBNLS

DBPATH

FET_BUF_SIZE

INFORMIXSERVER

INFORMIXTERM

TERM

TERMCAP

TERMINFO

3-17

3-22

3-22

3-23

3-25

3-26

3-36

3-50

3-52

3-65

3-66

3-66

dbexport utility DBDELIMITER 3-22

dbschema utility TOBIGINT 3-67

Delimited identifiers DELIMIDENT 3-34

Disk space DBUPSPACE 3-33

Editor DBEDIT 3-22

Enterprise Replication CDR_LOGDELTA

CDR_PERFLOG

CDR_ROUTER

CDR_RMSCALEFACT

CDRSITES_731

CDRSITES_92X

ER Guide

ESQL/C: ANSI compliance DBANSIWARN 3-17

C compiler INFORMIXC 3-47

DATETIME formatting DBTIME 3-31;

GLS Guide

delimited identifiers DELIMIDENT 3-34

multibyte characters CLIENT_LOCALE, ESQLMF GLS Guide

multithreaded applications THREADLIB 3-67

C preprocessor CPFIRST 3-15

Executable programs PATH 3-60

Fetch buffer size FET_BUF_SIZE 3-36

Filenames: multibyte GLS8BITFSYS GLS Guide

Files: field delimiter DBDELIMITER 3-22

Files: installation INFORMIXDIR 3-49

Files: locale CLIENT_LOCALE

DB_LOCALE

SERVER_LOCALE

GLS Guide

Files: map for C++ INFORMIXCPPMAP 3-49

3-70 IBM Informix Guide to SQL: Reference

Table 3-4. Uses for Environment Variables (continued)

Topic Environment Variable Page

Files: message DBLANG 3-23

Files: temporary DBSPACETEMP 3-29

Files: temporary, for Gateways DBTEMP 3-30

Files: temporary sorting PSORT_DBTEMP 3-63

Files: termcap, terminfo INFORMIXTERM

TERM

TERMCAP

TERMINFO

3-52

3-65

3-66

3-66

Formats: date and time DBDATE

GL_DATE

DBTIME

GL_DATETIME

3-20;

GLS Guide

3-31;

GLS Guide

Format: money DBMONEY 3-24,

GLS Guide

Gateways DBTEMP 3-30

High-Performance Loader DBONPLOAD

PLCONFIG

PLOAD_LO_PATH

PLOAD_SHMBASE

3-26

3-62

3-62

3-62

Identifiers: delimited DELIMIDENT 3-34

Identifiers: longer than 18 bytes IFX_LONGID 3-42

Identifiers: multibyte characters CLIENT_LOCALE,ESQLMF GLS Guide

IBM Informix Storage Manager ISM_COMPRESSION

ISM_DEBUG_FILE

ISM_DEBUG_LEVEL

ISM_ENCRYPTION

3-54

3-54

3-54

3-54

IBM Informix Storage Manager ISM_MAXLOGSIZE

ISM_MAXLOGVERS

3-55

3-55

Installation INFORMIXDIR

PATH

3-49

3-60

Language environment DBLANG
See also “Nondefault Locale”

3-23,

GLS Guide

Libraries LD_LIBRARY_PATH

LIBPATH

SHLIB_PATH

3-56

3-57

3-65

Locale CLIENT_LOCALE

DB_LOCALE

SERVER_LOCALE

GLS Guide

Lock Mode IFX_DEF_TABLE_LOCKMODE 3-40

Long Identifiers IFX_LONGID 3-42

Map file for C++ INFORMIXCPPMAP 3-49

Message chaining OPTMSG 3-59

Message files DBLANG 3-23,

GLS Guide

Money format DBMONEY 3-24,

GLS Guide

Chapter 3. Environment Variables 3-71

Table 3-4. Uses for Environment Variables (continued)

Topic Environment Variable Page

Multibyte characters CLIENT_LOCALE

DB_LOCALE

SERVER_LOCALE

GLS Guide

Multibyte filter ESQLMF GLS Guide

Multithreaded applications THREADLIB 3-67

Network DBPATH 3-26

Nondefault locale DBNLS

CLIENT_LOCALE

DB_LOCALE

SERVER_LOCALE

3-25,

GLS Guide

ON–Bar utility ISM_COMPRESSION

ISM_DEBUG_LEVEL

ISM_ENCRYPTION

3-54

3-54

3-54

ONCONFIG parameters See “Configuration parameter”

Optical Subsystem INFORMIXOPCACHE 3-49

Optimization: directives IFX_DIRECTIVES
IFX_EXTDIRECTIVES

3-40

3-41

Optimization: message transfers OPTMSG 3-59

Optimization: join method OPTCOMPIND 3-58

Optimization: performance goal OPT_GOAL 3-59

OPTOFC feature OPTOFC 3-59

Parameters See “Configuration parameter”

Pathname: archecker config file AC_CONFIG 3-14

Pathname: C compiler INFORMIXC 3-47

Pathname: database files DBPATH 3-26

Pathname: executable programs PATH 3-60

Pathname: HPL sblob handles PLOAD_LO_PATH 3-62

Pathname: installation INFORMIXDIR 3-49

Pathname: libraries LD_LIBRARY_PATH

LIBPATH

SHLIB_PATH

3-56

3-57

3-65

Pathname: message files DBLANG 3-23,

GLS Guide

Pathname: parallel sorting PSORT_DBTEMP 3-63

Pathname: remote shell DBREMOTECMD 3-28

Pathname: xfer_config file XFER_CONFIG 3-67

Preserve owner name lettercase ANSIOWNER 3-14

Printing DBPRINT 3-28

Privileges NODEFDAC 3-52

3-72 IBM Informix Guide to SQL: Reference

Table 3-4. Uses for Environment Variables (continued)

Topic Environment Variable Page

Query: optimization IFX_DIRECTIVES

IFX_EXTDIRECTIVES

IFMX_OPT_FACT_TABS

IFMX_OPT_NON_DIM_TABS

OPTCOMPIND

OPT_GOAL
RTREE_COST_ADJUST_VALUE

3-40

3-41

3-38

3-39

3-58

3-59

3-64

Query: prioritization PDQPRIORITY 3-60

Remote shell DBREMOTECMD 3-28

Role separation INF_ROLE_SEP 3-52

Rolled-back transactions DBACCNOIGN, IFX_

XASTDCOMPLIANCE_XAEND

3-16

3-45

Routine: DATETIME formatting DBTIME 3-31,

GLS Guide

Server See ″Database Server” 3-69

Server locale SERVER_LOCALE GLS Guide

Shared memory INFORMIXSHMBASE

PLOAD_SHMBASE

3-51

3-62

Shell: remote DBREMOTECMD 3-28

Shell: search path PATH 3-60

Sorting PSORT_DBTEMP

PSORT_NPROCS

3-63

3-63

SQL statements:caching STMT_CACHE 3-65

CONNECT INFORMIXCONTIME

INFORMIXSERVER

3-47

3-50

CREATE TEMP TABLE DBSPACETEMP 3-29

DESCRIBE FOR UPDATE IFX_UPDDESC 3-44

LOAD, UNLOAD DBDELIMITER 3-22

LOAD, UNLOAD DBBLOBBUF 3-17

SELECT INTO TEMP DBSPACETEMP 3-29

SET PDQPRIORITY PDQPRIORITY 3-60

SET STMT_CACHE STMT_CACHE 3-65

UPDATE STATISTICS DBUPSPACE 3-33

Stacksize INFORMIXSTACKSIZE 3-52

String search: trailing blanks LIBERAL_MATCH 3-56

Temporary tables DBSPACETEMP

DBTEMP

PSORT_DBTEMP

3-29

3-30

3-63

Terminal handling INFORMIXTERM

TERM

TERMCAP

TERMINFO

3-52

3-65

3-66

3-66

Time-limited software license IFX_NO_TIMELIMIT_WARNING 3-43

Time zone, specifying IBM_XPS_PARAMS 3-37

Chapter 3. Environment Variables 3-73

Table 3-4. Uses for Environment Variables (continued)

Topic Environment Variable Page

Utilities: DB-Access DBANSIWARN

DBDELIMITER

DBEDIT

DBFLTMASK

DBNLS

DBPATH

FET_BUF_SIZE

IFMX_HISTORY_SIZER

INFORMIXSERVER

INFORMIXTERM

TERM

TERMCAP

TERMINFO

3-17

3-22

3-22

3-23

3-25

3-26

3-36

3-38

3-50

3-52

3-65

3-66

3-66

Utilities: dbexport DBDELIMITER 3-22

Utilities: ON–Bar ISM_COMPRESSION

ISM_DEBUG_LEVEL

ISM_ENCRYPTION

3-54

3-54

3-54

Variables: overriding ENVIGNORE 3-35

Year values (abbreviated) DBCENTURY 3-18

3-74 IBM Informix Guide to SQL: Reference

Appendix A. The stores_demo Database

The stores_demo database contains a set of tables that describe an imaginary

business. The examples in the IBM Informix Guide to SQL: Syntax, the IBM Informix

Guide to SQL: Tutorial, and other IBM Informix publications are based on this

demonstration database. The stores_demo database uses the default (U.S. English)

locale and is not ANSI compliant.

This appendix contains the following sections:

v The first section describes the structure of the tables in the stores_demo

database. It identifies the primary key of each table, lists the name and data type

of each column, and indicates whether the column has a default value or check

constraint. Indexes on columns are also identified and classified as unique,

allowing duplicate values.

v The second section (“The stores_demo Database Map” on page A-5) shows a

map of the tables in the stores_demo database and indicates the relationships

among columns.

v The third section (“Primary-Foreign Key Relationships” on page A-5) describes

the primary-foreign key relationships among columns in tables.

v The final section (“Data in the stores_demo Database” on page A-10) lists the

data contained in each table of the stores_demo database.

For information on how to create and populate the stores_demo database, see the

IBM Informix DB–Access User’s Guide. For information on how to design and

implement a relational database, see the IBM Informix Database Design and

Implementation Guide.

Structure of the Tables

The stores_demo database contains information about a fictitious sporting-goods

distributor that services stores in the western United States. This database includes

the following tables:

v customer (page A-1)

v orders (page A-2)

v items (page A-2)

v stock (page A-3)

v catalog (page A-3)

v cust_calls (page A-4)

v call_type (page A-4)

v manufact (page A-4)

v state (page A-4)

Sections that follow describe each table. The unique identifying value for each

table (primary key) is shaded.

The customer Table

The customer table contains information about the retail stores that place orders

from the distributor. Table A-1 on page A-2 shows the columns of the customer

table.

© Copyright IBM Corp. 1996, 2008 A-1

The zipcode column in Table A-1 is indexed and allows duplicate values.

 Table A-1. The customer Table

Column Name Data Type Description

customer_num SERIAL(101) System-generated customer number

fname CHAR(15) First name of store representative

lname CHAR(15) Last name of store representative

company CHAR(20) Name of store

address1 CHAR(20) First line of store address

address2 CHAR(20) Second line of store address

city CHAR(15) City

state CHAR(2) State (foreign key to state table)

zipcode CHAR(5) Zipcode

phone CHAR(18) Telephone number

The orders Table

The orders table contains information about orders placed by the customers of the

distributor. Table A-2 shows the columns of the orders table.

 Table A-2. The orders Table

Column Name Data Type Description

order_num SERIAL(1001) System-generated order number

order_date DATE Date order entered

customer_num INTEGER Customer number (foreign key to customer table)

ship_instruct CHAR(40) Special shipping instructions

backlog CHAR(1) Indicates order cannot be filled because the item is backlogged:

y = yes

n = no

po_num CHAR(10) Customer purchase order number

ship_date DATE Shipping date

ship_weight DECIMAL(8,2) Shipping weight

ship_charge MONEY(6) Shipping charge

paid_date DATE Date order paid

The items Table

An order can include one or more items. One row exists in the items table for each

item in an order. Table A-3 on page A-3 shows the columns of the items table.

A-2 IBM Informix Guide to SQL: Reference

Table A-3. The items Table

Column Name Data Type Description

item_num SMALLINT Sequentially assigned item number for an order

order_num INTEGER Order number (foreign key to orders table)

stock_num SMALLINT Stock number for item (foreign key to stock table)

manu_code CHAR(3) Manufacturer code for item ordered (foreign key to manufact table)

quantity SMALLINT Quantity ordered (value must be > 1)

total_price MONEY(8) Quantity ordered * unit price = total price of item

The stock Table

The distributor carries 41 types of sporting goods from various manufacturers.

More than one manufacturer can supply an item. For example, the distributor

offers racing goggles from two manufacturers and running shoes from six

manufacturers.

The stock table is a catalog of the items sold by the distributor. Table A-4 shows

the columns of the stock table.

 Table A-4. The stock Table

Column Name Data Type Description

stock_num SMALLINT Stock number that identifies type of item

manu_code CHAR(3) Manufacturer code (foreign key to manufact table)

description CHAR(15) Description of item

unit_price MONEY(6,2) Unit price

unit CHAR(4) Unit by which item is ordered:

v Each

v Pair

v Case

v Box

unit_descr CHAR(15) Description of unit

The catalog Table

The catalog table describes each item in stock. Retail stores use this table when

placing orders with the distributor. Table A-5 shows the columns of the catalog

table.

 Table A-5. The catalog Table

Column Name Data Type Description

catalog_num SERIAL(10001) System-generated catalog number

stock_num SMALLINT Distributor stock number (foreign key to stock table)

manu_code CHAR(3) Manufacturer code (foreign key to manufact table)

cat_descr TEXT Description of item

cat_picture BYTE Picture of item (binary data)

cat_advert VARCHAR(255, 65) Tag line underneath picture

Appendix A. The stores_demo Database A-3

The cust_calls Table

All customer calls for information on orders, shipments, or complaints are logged.

The cust_calls table contains information about these types of customer calls.

Table A-6 shows the columns of the cust_calls table.

 Table A-6. The cust_calls Table

Column Name Data Type Description

customer_num INTEGER Customer number (foreign key to customer

table)

call_dtime DATETIME YEAR TO MINUTE Date and time when call was received

user_id CHAR(18) Name of person logging call (default is user

login name)

call_code CHAR(1) Type of call (foreign key to call_type table)

call_descr CHAR(240) Description of call

res_dtime DATETIME YEAR TO MINUTE Date and time when call was resolved

res_descr CHAR(240) Description of how call was resolved

The call_type Table

The call codes associated with customer calls are stored in the call_type table.

Table A-7 shows the columns of the call_type table.

 Table A-7. The call_type Table

Column Name Data Type Description

call_code CHAR(1) Call code

code_descr CHAR (30) Description of call type

The manufact Table

Information about the nine manufacturers whose sporting goods are handled by

the distributor is stored in the manufact table. Table A-8 shows the columns of the

manufact table.

 Table A-8. The manufact Table

Column Name Data Type Description

manu_code CHAR(3) Manufacturer code

manu_name CHAR(15) Name of manufacturer

lead_time INTERVAL DAY(3) TO DAY Lead time for shipment of orders

The state Table

The state table contains the names and postal abbreviations for the 50 states of the

United States. Table A-9 shows the columns of the state table.

 Table A-9. The state Table

Column Name Data Type Description

code CHAR(2) State code

sname CHAR(15) State name

A-4 IBM Informix Guide to SQL: Reference

The stores_demo Database Map

Figure A-1 displays the joins in the stores_demo database. The gray shading that

connects a column in one table to a column with the same name in another table

indicates the relationships, or joins, between tables.

Primary-Foreign Key Relationships

The tables of the stores_demo database are linked by the primary-foreign key

relationships that Figure A-1 shows and are identified in this section. This type of

relationship is called a referential constraint because a foreign key in one table

references the primary key in another table. Figure A-2 on page A-6 through

m
an

u_
co

de

m
an

u_
na

m
e

le
ad

_t
im

e

ca
ta

lo
g_

nu
m

st
oc

k_
nu

m

m
an

u_
co

de

ca
t_

de
sc

r

ca
t_

pi
ct

ur
e

ca
t_

ad
ve

rt

st
oc

k_
nu

m

m
an

u_
co

de

de
sc

rip
tio

n

un
it_

pr
ic

e

un
it

un
it_

de
sc

r

ite
m

_n
um

or
de

r_
nu

m

st
oc

k_
nu

m

m
an

u_
co

de

qu
an

tit
y

to
ta

l_
pr

ic
e

cu
st

om
er

_n
um

or
de

r_
nu

m

or
de

r_
da

te

sh
ip

_i
ns

tru
ct

ba
ck

lo
g

pa
id

_d
at

e

po
_n

um

sh
ip

_d
at

e

sh
ip

_w
ei

gh
t

sh
ip

_c
ha

rg
e

ln
am

e

cu
st

om
er

_n
um

fn
am

e

co
m

pa
ny

ad
dr

es
s1

ph
on

e

ad
dr

es
s2

ci
ty

st
at

e

zi
pc

od
e

us
er

_i
d

cu
st

om
er

_n
um

ca
ll_

dt
im

e

ca
ll_

co
de

ca
ll_

de
sc

r

sn
am

e

re
s_

dt
im

e

re
s_

de
sc

r

co
de

ca
ll_

co
de

co
de

_d
es

cr

ca
ll_

ty
pe

st
at

e

cu
st

_c
al

ls
cu

st
om

er

or
de

rs

ite
m

s

st
oc

k

ca
ta

lo
g

m
an

uf
ac

t

Figure A-1. Joins in the stores_demo Database

Appendix A. The stores_demo Database A-5

Figure A-9 on page A-10 show the relationships among tables and how

information stored in one table supplements information stored in others.

The customer and orders Tables

The customer table contains a customer_num column that holds a number that

identifies a customer and columns for the customer name, company, address, and

telephone number. For example, the row with information about Anthony Higgins

contains the number 104 in the customer_num column. The orders table also

contains a customer_num column that stores the number of the customer who

placed a particular order. In the orders table, the customer_num column is a

foreign key that references the customer_num column in the customer table.

Figure A-2 shows this relationship.

According to Figure A-2, customer 104 (Anthony Higgins) has placed two orders,

as his customer number appears in two rows of the orders table. Because the

customer number is a foreign key in the orders table, you can retrieve Anthony

Higgins’s name, address, and information about his orders at the same time.

The orders and items Tables

The orders and items tables are linked by an order_num column that contains an

identification number for each order. If an order includes several items, the same

order number appears in several rows of the items table. In the items table, the

order_num column is a foreign key that references the order_num column in the

orders table. Figure A-3 on page A-7 shows this relationship.

customer_num
101
102
103
104

fname
Ludwig
Carole
Philip
Anthony

lname
Pauli
Sadler
Currie
Higgins

customer Table (detail)

customer_num
104
101
104
106

order_num
1001
1002
1003
1004

orders Table (detail)

order_date
05/20/1998
05/21/1998
05/22/1998
05/22/1998

Figure A-2. Tables That the customer_num Column Joins

A-6 IBM Informix Guide to SQL: Reference

The items and stock Tables

The items table and the stock table are joined by two columns: the stock_num

column, which stores a stock number for an item, and the manu_code column,

which stores a code that identifies the manufacturer. You need both the stock

number and the manufacturer code to uniquely identify an item. For example, the

item with the stock number 1 and the manufacturer code HRO is a Hero baseball

glove; the item with the stock number 1 and the manufacturer code HSK is a Husky

baseball glove.

The same stock number and manufacturer code can appear in more than one row

of the items table, if the same item belongs to separate orders. In the items table,

the stock_num and manu_code columns are foreign keys that reference the

stock_num and manu_code columns in the stock table. Figure A-4 shows this

relationship.

order_num
1001
1002
1002
1003
1003
1003

stock_num
1
4
3
9
8
5

manu_code
HRO
HSK
HSK
ANZ
ANZ
ANZ

items Table (detail)

customer_num
104
101
104

order_num
1001
1002
1003

orders Table (detail)

order_date
05/20/1998
05/21/1998
05/22/1998

item_num
1
4
3
9
8
5

Figure A-3. Tables That the order_num Column Joins

order_num
1001
1002
1002
1003
1003
1003
1004

stock_num
1
4
3
9
8
5
1

manu_code
HRO
HSK
HSK
ANZ
ANZ
ANZ
HRO

items Table (detail)

Description
baseball gloves
baseball gloves
baseball gloves

stock_num
1
1
1

stock Table (detail)

manu_code
HRO
HSK
SMT

item_num
1
1
2
1
2
3
1

Figure A-4. Tables That the stock_num and manu_code Columns Join

Appendix A. The stores_demo Database A-7

The stock and catalog Tables

The stock table and catalog table are joined by two columns: the stock_num

column, which stores a stock number for an item, and the manu_code column,

which stores a code that identifies the manufacturer. You need both columns to

uniquely identify an item. In the catalog table, the stock_num and manu_code

columns are foreign keys that reference the stock_num and manu_code columns in

the stock table. Figure A-5 shows this relationship.

The stock and manufact Tables

The stock table and the manufact table are joined by the manu_code column. The

same manufacturer code can appear in more than one row of the stock table if the

manufacturer produces more than one piece of equipment. In the stock table, the

manu_code column is a foreign key that references the manu_code column in the

manufact table. Figure A-6 shows this relationship.

The cust_calls and customer Tables

The cust_calls table and the customer table are joined by the customer_num

column. The same customer number can appear in more than one row of the

cust_calls table if the customer calls the distributor more than once with a problem

or question. In the cust_calls table, the customer_num column is a foreign key that

references the customer_num column in the customer table. Figure A-7 on page

A-9 shows this relationship.

catalog_num
10001
10002
10003
10004

stock_num
1
1
1
2

manu_code
HRO
HSK
SMT
HRO

catalog Table (detail)

Description
baseball gloves
baseball gloves
baseball gloves

stock_num
1
1
1

stock Table (detail)

manu_code
HRO
HSK
SMT

Figure A-5. Tables That the stock_num and manu_code Columns Join

manu_code
NRG
HSK
HRO

manufact Table (detail)

Description
baseball gloves
baseball gloves
baseball gloves

stock_num
1
1
1

stock Table (detail)

manu_code
HRO
HSK
SMT

manu_name
Norge
Husky
Hero

Figure A-6. Tables That the manu_code Column Joins

A-8 IBM Informix Guide to SQL: Reference

The call_type and cust_calls Tables

The call_type and cust_calls tables are joined by the call_code column. The same

call code can appear in more than one row of the cust_calls table because many

customers can have the same type of problem. In the cust_calls table, the call_code

column is a foreign key that references the call_code column in the call_type table.

Figure A-8 shows this relationship.

The state and customer Tables

The state table and the customer table are joined by a column that contains the

state code. This column is called code in the state table and state in the customer

table. If several customers live in the same state, the same state code appears in

several rows of the table. In the customer table, the state column is a foreign key

that references the code column in the state table. Figure A-9 on page A-10 shows

this relationship.

customer_num
101
102
103
104
105
106

fname
Ludwig
Carole
Philip
Anthony
Raymond
George

lname
Pauli
Sadler
Currie
Higgins
Vector
Watson

customer Table (detail)

user_id
maryj
maryj
mannyh
mannyh

cust_calls Table (detail)

call_dtime
1998-06-12 08:20
1998-07-31 14:30
1997-11-28 13:34
1997-12-21 11:24

customer_num
106
127
116
116

Figure A-7. Tables That the customer_num Column Joins

call_code
B
D
I
L
O

code_descr
Billing error
Damaged goods
Incorrect merchandise sent
Late shipment
Other

call_type Table (detail)

call_code
D
I
I
I

cust_calls Table (detail)

call_dtime
1998-06-12 08:20
1998-07-31 14:30
1997-11-28 13:34
1997-12-21 11:24

customer_num
106
127
116
116

Figure A-8. Tables That the call_code Column Joins

Appendix A. The stores_demo Database A-9

Data in the stores_demo Database

The following tables display the data in the stores_demo database.

customer Table

cu
st

om
er

_n
u

m

fn
am

e

ln
am

e

co
m

p
an

y

ad
d

re
ss

1

ad
d

re
ss

2

ci
ty

st
at

e

zi
p

co
d

e

p
h

on
e

101 Ludwig Pauli All Sports

Supplies

213 Erstwild

Court

Sunnyvale CA 94086 408-
789-
8075

102 Carole Sadler Sports Spot 785 Geary

Street

San Francisco CA 94117 415-
822-
1289

103 Philip Currie Phil’s Sports 654 Poplar P. O. Box

3498

Palo Alto CA 94303 650-
328-
4543

104 Anthony Higgins Play Ball! East Shopping

Center

422 Bay

Road

Redwood

City

CA 94026 650-
368-
1100

105 Raymond Vector Los Altos

Sports

1899 La Loma

Drive

Los Altos CA 94022 650-
776-
3249

106 George Watson Watson &

Son

1143 Carver

Place

Mountain

View

CA 94063 650-
389-
8789

107 Charles Ream Athletic

Supplies

41 Jordan

Avenue

Palo Alto CA 94304 650-
356-
9876

108 Donald Quinn Quinn’s

Sports

587 Alvarado Redwood

City

CA 94063 650-
544-
8729

customer_num
101
102
103

state
CA
CA
CA

customer Table (detail)

code
AK
AL
AR
AZ
CA

state Table (detail)

sname
Alaska
Alabama
Arkansas
Arizona
California

lname
Pauli
Sadler
Currie

fname
Ludwig
Carole
Philip

Figure A-9. Relationship Between the state Column and the code Column

A-10 IBM Informix Guide to SQL: Reference

cu
st

om
er

_n
u

m

fn
am

e

ln
am

e

co
m

p
an

y

ad
d

re
ss

1

ad
d

re
ss

2

ci
ty

st
at

e

zi
p

co
d

e

p
h

on
e

109 Jane Miller Sport Stuff Mayfair Mart 7345 Ross

Blvd.

Sunnyvale CA 94086 408-
723-
8789

110 Roy Jaeger AA Athletics 520 Topaz Way Redwood

City

CA 94062 650-
743-
3611

111 Frances Keyes Sports Center 3199 Sterling

Court

Sunnyvale CA 94085 408-
277-
7245

112 Margaret Lawson Runners &

Others

234 Wyandotte

Way

Los Altos CA 94022 650-
887-
7235

113 Lana Beatty Sportstown 654 Oak Grove Menlo Park CA 94025 650-
356-
9982

114 Frank Albertson Sporting

Place

947 Waverly

Place

Redwood

City

CA 94062 650-
886-
6677

115 Alfred Grant Gold Medal

Sports

776 Gary

Avenue

Menlo Park CA 94025 650-
356-
1123

116 Jean Parmelee Olympic City 1104 Spinosa

Drive

Mountain

View

CA 94040 650-
534-
8822

117 Arnold Sipes Kids Korner 850 Lytton

Court

Redwood

City

CA 94063 650-
245-
4578

118 Dick Baxter Blue Ribbon

Sports

5427 College Oakland CA 94609 650-
655-
0011

119 Bob Shorter The

Triathletes

Club

2405 Kings

Highway

Cherry Hill NJ 08002 609-
663-
6079

120 Fred Jewell Century Pro

Shop

6627 N. 17th

Way

Phoenix AZ 85016 602-
265-
8754

121 Jason Wallack City Sports Lake Biltmore

Mall

350 W.

23rd Street

Wilmington DE 19898 302-
366-
7511

122 Cathy O’Brian The Sporting

Life

543 Nassau

Street

Princeton NJ 08540 609-
342-
0054

123 Marvin Hanlon Bay Sports 10100 Bay

Meadows Road

Suite 1020 Jacksonville FL 32256 904-
823-
4239

Appendix A. The stores_demo Database A-11

cu
st

om
er

_n
u

m

fn
am

e

ln
am

e

co
m

p
an

y

ad
d

re
ss

1

ad
d

re
ss

2

ci
ty

st
at

e

zi
p

co
d

e

p
h

on
e

124 Chris Putnum Putnum’s

Putters

4715 S.E.

Adams Blvd

Suite 909C Bartlesville OK 74006 918-
355-
2074

125 James Henry Total Fitness

Sports

1450

Common-
wealth Avenue

Brighton MA 02135 617-
232-
4159

126 Eileen Neelie Neelie’s

Discount

Sports

2539 South

Utica Street

Denver CO 80219 303-
936-
7731

127 Kim Satifer Big Blue Bike

Shop

Blue Island

Square

12222

Gregory

Street

Blue Island NY 60406 312-
944-
5691

128 Frank Lessor Phoenix

University

Athletic

Department

1817 N.

Thomas

Road

Phoenix AZ 85008 602-
533-
1817

items Table

 item_num order_num stock_num manu_code quantity total_price

1 1001 1 HRO 1 250.00

1 1002 4 HSK 1 960.00

2 1002 3 HSK 1 240.00

1 1003 9 ANZ 1 20.00

2 1003 8 ANZ 1 840.00

3 1003 5 ANZ 5 99.00

1 1004 1 HRO 1 250.00

2 1004 2 HRO 1 126.00

3 1004 3 HSK 1 240.00

4 1004 1 HSK 1 800.00

1 1005 5 NRG 10 280.00

2 1005 5 ANZ 10 198.00

3 1005 6 SMT 1 36.00

4 1005 6 ANZ 1 48.00

1 1006 5 SMT 5 125.00

2 1006 5 NRG 5 140.00

3 1006 5 ANZ 5 99.00

4 1006 6 SMT 1 36.00

5 1006 6 ANZ 1 48.00

1 1007 1 HRO 1 250.00

2 1007 2 HRO 1 126.00

3 1007 3 HSK 1 240.00

A-12 IBM Informix Guide to SQL: Reference

item_num order_num stock_num manu_code quantity total_price

4 1007 4 HRO 1 480.00

5 1007 7 HRO 1 600.00

1 1008 8 ANZ 1 840.00

2 1008 9 ANZ 5 100.00

1 1009 1 SMT 1 450.00

1 1010 6 SMT 1 36.00

2 1010 6 ANZ 1 48.00

1 1011 5 ANZ 5 99.00

1 1012 8 ANZ 1 840.00

2 1012 9 ANZ 10 200.00

1 1013 5 ANZ 1 19.80

2 1013 6 SMT 1 36.00

3 1013 6 ANZ 1 48.00

4 1013 9 ANZ 2 40.00

1 1014 4 HSK 1 960.00

2 1014 4 HRO 1 480.00

1 1015 1 SMT 1 450.00

1 1016 101 SHM 2 136.00

2 1016 109 PRC 3 90.00

3 1016 110 HSK 1 308.00

4 1016 114 PRC 1 120.00

1 1017 201 NKL 4 150.00

2 1017 202 KAR 1 230.00

3 1017 301 SHM 2 204.00

1 1018 307 PRC 2 500.00

2 1018 302 KAR 3 15.00

3 1018 110 PRC 1 236.00

4 1018 5 SMT 4 100.00

5 1018 304 HRO 1 280.00

1 1019 111 SHM 3 1499.97

1 1020 204 KAR 2 90.00

2 1020 301 KAR 4 348.00

1 1021 201 NKL 2 75.00

2 1021 201 ANZ 3 225.00

3 1021 202 KAR 3 690.00

4 1021 205 ANZ 2 624.00

1 1022 309 HRO 1 40.00

2 1022 303 PRC 2 96.00

3 1022 6 ANZ 2 96.00

1 1023 103 PRC 2 40.00

2 1023 104 PRC 2 116.00

Appendix A. The stores_demo Database A-13

item_num order_num stock_num manu_code quantity total_price

3 1023 105 SHM 1 80.00

4 1023 110 SHM 1 228.00

5 1023 304 ANZ 1 170.00

6 1023 306 SHM 1 190.00

call_type Table

 call_code code_descr

B billing error

D damaged goods

I incorrect merchandise sent

L late shipment

O other

orders Table

or
d

er
_n

u
m

or
d

er
_d

at
e

cu
st

om
er

_n
u

m

sh
ip

_i
n

st
ru

ct

b
ac

k
lo

g

p
o_

n
u

m

sh
ip

_d
at

e

sh
ip

_w
ei

gh
t

sh
ip

_c
h

ar
ge

p
ai

d
_d

at
e

1001 05/20/1998 104 express n B77836 06/01/1998 20.40 10.00 07/22/1998

1002 05/21/1998 101 PO on box;

deliver back door

only

n 9270 05/26/1998 50.60 15.30 06/03/1998

1003 05/22/1998 104 express n B77890 05/23/1998 35.60 10.80 06/14/1998

1004 05/22/1998 106 ring bell twice y 8006 05/30/1998 95.80 19.20

1005 05/24/1998 116 call before

delivery

n 2865 06/09/1998 80.80 16.20 06/21/1998

1006 05/30/1998 112 after 10AM y Q13557 70.80 14.20

1007 05/31/1998 117 n 278693 06/05/1998 125.90 25.20

1008 06/07/1998 110 closed Monday y LZ230 07/06/1998 45.60 13.80 07/21/1998

1009 06/14/1998 111 door next to

grocery

n 4745 06/21/1998 20.40 10.00 08/21/1998

1010 06/17/1998 115 deliver 776 King

St. if no answer

n 429Q 06/29/1998 40.60 12.30 08/22/1998

1011 06/18/1998 104 express n B77897 07/03/1998 10.40 5.00 08/29/1998

1012 06/18/1998 117 n 278701 06/29/1998 70.80 14.20

1013 06/22/1998 104 express n B77930 07/10/1998 60.80 12.20 07/31/1998

1014 06/25/1998 106 ring bell, kick

door loudly

n 8052 07/03/1998 40.60 12.30 07/10/1998

1015 06/27/1998 110 closed Mondays n MA003 07/16/1998 20.60 6.30 08/31/1998

1016 06/29/1998 119 delivery entrance

off Camp St.

n PC6782 07/12/1998 35.00 11.80

A-14 IBM Informix Guide to SQL: Reference

or
d

er
_n

u
m

or
d

er
_d

at
e

cu
st

om
er

_n
u

m

sh
ip

_i
n

st
ru

ct

b
ac

k
lo

g

p
o_

n
u

m

sh
ip

_d
at

e

sh
ip

_w
ei

gh
t

sh
ip

_c
h

ar
ge

p
ai

d
_d

at
e

1017 07/09/1998 120 North side of

clubhouse

n DM3543

31

07/13/1998 60.00 18.00

1018 07/10/1998 121 SW corner of

Biltmore Mall

n S22942 07/13/1998 70.50 20.00 08/06/1998

1019 07/11/1998 122 closed til noon

Mondays

n Z55709 07/16/1998 90.00 23.00 08/06/1998

1020 07/11/1998 123 express n W2286 07/16/1998 14.00 8.50 09/20/1998

1021 07/23/1998 124 ask for Elaine n C3288 07/25/1998 40.00 12.00 08/22/1998

1022 07/24/1998 126 express n W9925 07/30/1998 15.00 13.00 09/02/1998

1023 07/24/1998 127 no deliveries

after 3 p.m.

n KF2961 07/30/1998 60.00 18.00 08/22/1998

stock Table

 stock_num manu_code description unit_rice unit unit_descr

1 HRO baseball gloves 250.00 case 10 gloves/case

1 HSK baseball gloves 800.00 case 10 gloves/case

1 SMT baseball gloves 450.00 case 10 gloves/case

2 HRO baseball 126.00 case 24/case

3 HSK baseball bat 240.00 case 12/case

3 SHM baseball bat 280.00 case 12/case

4 HSK football 960.00 case 24/case

4 HRO football 480.00 case 24/case

5 NRG tennis racquet 28.00 each each

5 SMT tennis racquet 25.00 each each

5 ANZ tennis racquet 19.80 each each

6 SMT tennis ball 36.00 case 24 cans/case

6 ANZ tennis ball 48.00 case 24 cans/case

7 HRO basketball 600.00 case 24/case

8 ANZ volleyball 840.00 case 24/case

9 ANZ volleyball net 20.00 each each

101 PRC bicycle tires 88.00 box 4/box

101 SHM bicycle tires 68.00 box 4/box

102 SHM bicycle brakes 220.00 case 4 sets/case

102 PRC bicycle brakes 480.00 case 4 sets/case

103 PRC front derailleur 20.00 each each

104 PRC rear derailleur 58.00 each each

105 PRC bicycle wheels 53.00 pair pair

105 SHM bicycle wheels 80.00 pair pair

Appendix A. The stores_demo Database A-15

stock_num manu_code description unit_rice unit unit_descr

106 PRC bicycle stem 23.00 each each

107 PRC bicycle saddle 70.00 pair pair

108 SHM crankset 45.00 each each

109 PRC pedal binding 30.00 case 6 pairs/case

109 SHM pedal binding 200.00 case 4 pairs/case

110 PRC helmet 236.00 case 4/case

110 ANZ helmet 244.00 case 4/case

110 SHM helmet 228.00 case 4/case

110 HRO helmet 260.00 case 4/case

110 HSK helmet 308.00 case 4/case

111 SHM 10-spd, assmbld 499.99 each each

112 SHM 12-spd, assmbld 549.00 each each

113 SHM 18-spd, assmbld 685.90 each each

114 PRC bicycle gloves 120.00 case 10 pairs/case

201 NKL golf shoes 37.50 each each

201 ANZ golf shoes 75.00 each each

201 KAR golf shoes 90.00 each each

202 NKL metal woods 174.00 case 2 sets/case

202 KAR std woods 230.00 case 2 sets/case

203 NKL irons/wedges 670.00 case 2 sets/case

204 KAR putter 45.00 each each

205 NKL 3 golf balls 312.00 case 24/case

205 ANZ 3 golf balls 312.00 case 24/case

205 HRO 3 golf balls 312.00 case 24/case

301 NKL running shoes 97.00 each each

301 HRO running shoes 42.50 each each

301 SHM running shoes 102.00 each each

301 PRC running shoes 75.00 each each

301 KAR running shoes 87.00 each each

301 ANZ running shoes 95.00 each each

302 HRO ice pack 4.50 each each

302 KAR ice pack 5.00 each each

303 PRC socks 48.00 box 24 pairs/box

303 KAR socks 36.00 box 24 pair/box

304 ANZ watch 170.00 box 10/box

304 HRO watch 280.00 box 10/box

305 HRO first-aid kit 48.00 case 4/case

306 PRC tandem adapter 160.00 each each

306 SHM tandem adapter 190.00 each each

307 PRC infant jogger 250.00 each each

308 PRC twin jogger 280.00 each each

A-16 IBM Informix Guide to SQL: Reference

stock_num manu_code description unit_rice unit unit_descr

309 HRO ear drops 40.00 case 20/case

309 SHM ear drops 40.00 case 20/case

310 SHM kick board 80.00 case 10/case

310 ANZ kick board 89.00 case 12/case

311 SHM water gloves 48.00 box 4 pairs/box

312 SHM racer goggles 96.00 box 12/box

312 HRO racer goggles 72.00 box 12/box

313 SHM swim cap 72.00 box 12/box

313 ANZ swim cap 60.00 box 12/box

catalog Table

 catalog

_num

stock

_num

manu

_code

cat_descr cat_picture cat_advert

10001 1 HRO Brown leather. Specify first

baseman’s or infield/outfield style.

Specify right- or left-handed.

<BYTE value> Your First Season’s Baseball

Glove

10002 1 HSK Babe Ruth signature glove. Black

leather. Infield/outfield style.

Specify right- or left-handed.

<BYTE value> All-Leather, Hand-Stitched,

Deep-Pockets, Sturdy

Webbing that Won’t Let Go

10003 1 SMT Catcher’s mitt. Brown leather.

Specify right- or left-handed.

<BYTE value> A Sturdy Catcher’s Mitt With

the Perfect Pocket

10004 2 HRO Jackie Robinson signature glove.

Highest Professional quality, used

by National League.

<BYTE value> Highest Quality Ball

Available, from the

Hand-Stitching to the

Robinson Signature

10005 3 HSK Pro-style wood. Available in sizes:

31, 32, 33, 34, 35.

<BYTE value> High-Technology Design

Expands the Sweet Spot

10006 3 SHM Aluminum. Blue with black tape.

31″, 20 oz or 22 oz; 32″, 21 oz or 23

oz; 33″, 22 oz or 24 oz.

<BYTE value> Durable Aluminum for High

School and Collegiate

Athletes

10007 4 HSK Norm Van Brocklin signature style. <BYTE value> Quality Pigskin with Norm

Van Brocklin Signature

10008 4 HRO NFL-Style pigskin. <BYTE value> Highest Quality Football for

High School and Collegiate

Competitions

10009 5 NRG Graphite frame. Synthetic strings. <BYTE value> Wide Body Amplifies Your

Natural Abilities by

Providing More Power

Through Aerodynamic

Design

10010 5 SMT Aluminum frame. Synthetic

strings.

<BYTE value> Mid-Sized Racquet for the

Improving Player

10011 5 ANZ Wood frame, cat-gut strings. <BYTE value> Antique Replica of Classic

Wooden Racquet Built with

Cat-Gut Strings

10012 6 SMT Soft yellow color for easy visibility

in sunlight or artificial light.

<BYTE value> High-Visibility Tennis, Day or

Night

Appendix A. The stores_demo Database A-17

catalog

_num

stock

_num

manu

_code

cat_descr cat_picture cat_advert

10013 6 ANZ Pro-core. Available in neon yellow,

green, and pink.

<BYTE value> Durable Construction

Coupled with the Brightest

Colors Available

10014 7 HRO Indoor. Classic NBA style. Brown

leather.

<BYTE value> Long-Life Basketballs for

Indoor Gymnasiums

10015 8 ANZ Indoor. Finest leather. Professional

quality.

<BYTE value> Professional Volleyballs for

Indoor Competitions

10016 9 ANZ Steel eyelets. Nylon cording.

Double-stitched. Sanctioned by the

National Athletic Congress.

<BYTE value> Sanctioned Volleyball Netting

for Indoor Professional and

Collegiate Competition

10017 101 PRC Reinforced, hand-finished tubular.

Polyurethane belted. Effective

against punctures. Mixed tread for

super wear and road grip.

<BYTE value> Ultimate in Puncture

Protection, Tires Designed for

In-City Riding

10018 101 SHM Durable nylon casing with butyl

tube for superior air retention.

Center-ribbed tread with

herringbone side. Coated sidewalls

resist abrasion.

<BYTE value> The Perfect Tire for Club

Rides or Training

10019 102 SHM Thrust bearing and coated pivot

washer/ spring sleeve for smooth

action. Slotted levers with soft

gum hoods. Two-tone paint

treatment. Set includes calipers,

levers, and cables.

<BYTE value> Thrust-Bearing and

Spring-Sleeve Brake Set

Guarantees Smooth Action

10020 102 PRC Computer-aided design with

low-profile pads. Cold-forged alloy

calipers and beefy caliper bushing.

Aero levers. Set includes calipers,

levers, and cables.

<BYTE value> Computer Design Delivers

Rigid Yet Vibration-Free

Brakes

10021 103 PRC Compact leading-action design

enhances shifting. Deep cage for

super-small granny gears. Extra

strong construction to resist

off-road abuse.

<BYTE value> Climb Any Mountain:

ProCycle’s Front Derailleur

Adds Finesse to Your ATB

10022 104 PRC Floating trapezoid geometry with

extra thick parallelogram arms.

100-tooth capacity. Optimum

alignment with any freewheel.

<BYTE value> Computer-Aided Design

Engineers 100-Tooth Capacity

Into ProCycle’s Rear

Derailleur

10023 105 PRC Front wheels laced with 15g

spokes in a 3-cross pattern. Rear

wheels laced with 14g spikes in a

3-cross pattern.

<BYTE value> Durable Training Wheels

That Hold True Under

Toughest Conditions

10024 105 SHM Polished alloy. Sealed-bearing,

quick-release hubs. Double-butted.

Front wheels are laced 15g/2-cross.

Rear wheels are laced 15g/3-cross.

<BYTE value> Extra Lightweight Wheels for

Training or

High-Performance Touring

10025 106 PRC Hard anodized alloy with pearl

finish. 6mm hex bolt hardware.

Available in lengths of 90-140mm

in 10mm increments.

<BYTE value> ProCycle Stem with Pearl

Finish

A-18 IBM Informix Guide to SQL: Reference

catalog

_num

stock

_num

manu

_code

cat_descr cat_picture cat_advert

10026 107 PRC Available in three styles: Men’s

racing; Men’s touring; and

Women’s. Anatomical gel

construction with lycra cover.

Black or black/hot pink.

<BYTE value> The Ultimate In Riding

Comfort, Lightweight With

Anatomical Support

10027 108 SHM Double or triple crankset with

choice of chainrings. For double

crankset, chainrings from 38-54

teeth. For triple crankset,

chainrings from 24-48 teeth.

<BYTE value> Customize Your Mountain

Bike With Extra-Durable

Crankset

10028 109 PRC Steel toe clips with nylon strap.

Extra wide at buckle to reduce

pressure.

<BYTE value> Classic Toeclip Improved to

Prevent Soreness at Clip

Buckle

10029 109 SHM Ingenious new design combines

button on sole of shoe with slot on

a pedal plate to give riders new

options in riding efficiency. Choose

full or partial locking. Four plates

mean both top and bottom of

pedals are slotted—no fishing

around when you want to engage

full power. Fast unlocking ensures

safety when maneuverability is

paramount.

<BYTE value> Ingenious Pedal/Clip Design

Delivers Maximum Power

and Fast Unlocking

10030 110 PRC Super-lightweight. Meets both

ANSI and Snell standards for

impact protection. 7.5 oz.

Quick-release shadow buckle.

<BYTE value> Feather-Light, Quick-Release,

Maximum Protection Helmet

10031 110 ANZ No buckle so no plastic touches

your chin. Meets both ANSI and

Snell standards for impact

protection. 7.5 oz. Lycra cover.

<BYTE value> Minimum Chin Contact,

Feather-Light, Maximum

Protection Helmet

10032 110 SHM Dense outer layer combines with

softer inner layer to eliminate the

mesh cover, no snagging on brush.

Meets both ANSI and Snell

standards for impact protection.

8.0 oz.

<BYTE value> Mountain Bike Helmet:

Smooth Cover Eliminates the

Worry of Brush Snags But

Delivers Maximum

Protection

10033 110 HRO Newest ultralight helmet uses

plastic shell. Largest ventilation

channels of any helmet on the

market. 8.5 oz.

<BYTE value> Lightweight Plastic with

Vents Assures Cool Comfort

Without Sacrificing Protection

10034 110 HSK Aerodynamic (teardrop) helmet

covered with anti-drag fabric.

Credited with shaving 2

seconds/mile from winner’s time

in Tour de France time-trial. 7.5 oz.

<BYTE value> Teardrop Design Used by

Yellow Jerseys, You Can Time

the Difference

10035 111 SHM Light-action shifting 10 speed.

Designed for the city commuter

with shock-absorbing front fork

and drilled eyelets for carry-all

racks or bicycle trailers. Internal

wiring for generator lights. 33 lbs.

<BYTE value> Fully Equipped Bicycle

Designed for the Serious

Commuter Who Mixes

Business With Pleasure

Appendix A. The stores_demo Database A-19

catalog

_num

stock

_num

manu

_code

cat_descr cat_picture cat_advert

10036 112 SHM Created for the beginner

enthusiast. Ideal for club rides and

light touring. Sophisticated

triple-butted frame construction.

Precise index shifting. 28 lbs.

<BYTE value> We Selected the Ideal

Combination of Touring Bike

Equipment, then Turned It

Into This Package Deal:

High-Performance on the

Roads, Maximum Pleasure

Everywhere

10037 113 SHM Ultra-lightweight. Racing frame

geometry built for aerodynamic

handlebars. Cantilever brakes.

Index shifting. High-performance

gearing. Quick-release hubs. Disk

wheels. Bladed spokes.

<BYTE value> Designed for the Serious

Competitor, The Complete

Racing Machine

10038 114 PRC Padded leather palm and stretch

mesh merged with terry back;

Available in tan, black, and cream.

Sizes S, M, L, XL.

<BYTE value> Riding Gloves for Comfort

and Protection

10039 201 NKL Designed for comfort and stability.

Available in white & blue or white

& brown. Specify size.

<BYTE value> Full-Comfort, Long-Wearing

Golf Shoes for Men and

Women

10040 201 ANZ Guaranteed waterproof. Full

leather upper. Available in white,

bone, brown, green, and blue.

Specify size.

<BYTE value> Waterproof Protection

Ensures Maximum Comfort

and Durability In All

Climates

10041 201 KAR Leather and leather mesh for

maximum ventilation. Waterproof

lining to keep feet dry. Available in

white and gray or white and ivory.

Specify size.

<BYTE value> Karsten’s Top Quality Shoe

Combines Leather and

Leather Mesh

10042 202 NKL Complete starter set utilizes gold

shafts. Balanced for power.

<BYTE value> Starter Set of Woods, Ideal

for High School and

Collegiate Classes

10043 202 KAR Full set of woods designed for

precision control and power

performance.

<BYTE value> High-Quality Woods

Appropriate for High School

Competitions or Serious

Amateurs

10044 203 NKL Set of eight irons includes 3

through 9 irons and pitching

wedge. Originally priced at

$489.00.

<BYTE value> Set of Irons Available From

Factory at Tremendous

Savings: Discontinued Line

10045 204 KAR Ideally balanced for optimum

control. Nylon-covered shaft.

<BYTE value> High-Quality Beginning Set

of Irons Appropriate for High

School Competitions

10046 205 NKL Fluorescent yellow. <BYTE value> Long Drive Golf Balls:

Fluorescent Yellow

10047 205 ANZ White only. <BYTE value> Long Drive Golf Balls: White

10048 205 HRO Combination fluorescent yellow

and standard white.

<BYTE value> HiFlier Golf Balls: Case

Includes Fluorescent Yellow

and Standard White

A-20 IBM Informix Guide to SQL: Reference

catalog

_num

stock

_num

manu

_code

cat_descr cat_picture cat_advert

10049 301 NKL Super shock-absorbing gel pads

disperse vertical energy into a

horizontal plane for extraordinary

cushioned comfort. Great motion

control. Men’s only. Specify size.

<BYTE value> Maximum Protection For

High-Mileage Runners

10050 301 HRO Engineered for serious training

with exceptional stability. Fabulous

shock absorption. Great durability.

Specify men’s/women’s, size.

<BYTE value> Pronators and Supinators

Take Heart: A Serious

Training Shoe For Runners

Who Need Motion Control

10051 301 SHM For runners who log heavy miles

and need a durable, supportive,

stable platform. Mesh/synthetic

upper gives excellent moisture

dissipation. Stability system uses

rear antipronation platform and

forefoot control plate for extended

protection during high-intensity

training. Specify men’s/women’s

size.

<BYTE value> The Training Shoe

Engineered for Marathoners

and Ultra-Distance Runners

10052 301 PRC Supportive, stable racing flat.

Plenty of forefoot cushioning with

added motion control. Women’s

only. D widths available. Specify

size.

<BYTE value> A Woman’s Racing Flat That

Combines Extra Forefoot

Protection With a Slender

Heel

10053 301 KAR Anatomical last holds your foot

firmly in place. Feather-weight

cushioning delivers the

responsiveness of a racing flat.

Specify men’s/women’s size.

<BYTE value> Durable Training Flat That

Can Carry You Through

Marathon Miles

10054 301 ANZ Cantilever sole provides shock

absorption and energy rebound.

Positive traction shoe with ample

toe box. Ideal for runners who

need a wide shoe. Available in

men’s and women’s. Specify size.

<BYTE value> Motion Control, Protection,

and Extra Toebox Room

10055 302 KAR Reusable ice pack with velcro

strap. For general use. Velcro strap

allows easy application to arms or

legs.

<BYTE value> Finally, an Ice Pack for

Achilles Injuries and Shin

Splints That You Can Take to

the Office

10056 303 PRC Neon nylon. Perfect for running or

aerobics. Indicate color:

Fluorescent pink, yellow, green,

and orange.

<BYTE value> Knock Their Socks Off With

YOUR Socks

10057 303 KAR 100% nylon blend for optimal

wicking and comfort. We’ve taken

out the cotton to eliminate the risk

of blisters and reduce the

opportunity for infection. Specify

men’s or women’s.

<BYTE value> 100% Nylon Blend Socks -

No Cotton

10058 304 ANZ Provides time, date, dual display

of lap/cumulative splits, 4-lap

memory, 10 hr count-down timer,

event timer, alarm, hour chime,

waterproof to 50m, velcro band.

<BYTE value> Athletic Watch w/4-Lap

Memory

Appendix A. The stores_demo Database A-21

catalog

_num

stock

_num

manu

_code

cat_descr cat_picture cat_advert

10059 304 HRO Split timer, waterproof to 50m.

Indicate color: Hot pink, mint,

green, space black.

<BYTE value> Waterproof Triathlete Watch

In Competition Colors

10060 305 HRO Contains ace bandage,

anti-bacterial cream, alcohol

cleansing pads, adhesive bandages

of assorted sizes, and instant-cold

pack.

<BYTE value> Comprehensive First-Aid Kit

Essential for Team Practices,

Team Traveling

10061 306 PRC Converts a standard tandem bike

into an adult/child bike.

User-tested assembly instructions

<BYTE value> Enjoy Bicycling With Your

Child on a Tandem; Make

Your Family Outing Safer

10062 306 SHM Converts a standard tandem bike

into an adult/child bike.

Lightweight model.

<BYTE value> Consider a Touring Vacation

for the Entire Family: A

Lightweight, Touring Tandem

for Parent and Child

10063 307 PRC Allows mom or dad to take the

baby out too. Fits children up to 21

pounds. Navy blue with black

trim.

<BYTE value> Infant Jogger Keeps A

Running Family Together

10064 308 PRC Allows mom or dad to take both

children! Rated for children up to

18 pounds.

<BYTE value> As Your Family Grows,

Infant Jogger Grows With

You

10065 309 HRO Prevents swimmer’s ear. <BYTE value> Swimmers Can Prevent Ear

Infection All Season Long

10066 309 SHM Extra-gentle formula. Can be used

every day for prevention or

treatment of swimmer’s ear.

<BYTE value> Swimmer’s Ear Drops

Specially Formulated for

Children

10067 310 SHM Blue heavy-duty foam board with

Shimara or team logo.

<BYTE value> Exceptionally Durable,

Compact Kickboard for Team

Practice

10068 310 ANZ White. Standard size. <BYTE value> High-Quality Kickboard

10069 311 SHM Swim gloves. Webbing between

fingers promotes strengthening of

arms. Cannot be used in

competition.

<BYTE value> Hot Training Tool - Webbed

Swim Gloves Build Arm

Strength and Endurance

10070 312 SHM Hydrodynamic egg-shaped lens.

Ground-in anti-fog elements;

Available in blue or smoke.

<BYTE value> Anti-Fog Swimmer’s

Goggles: Quantity Discount

10071 312 HRO Durable competition-style goggles.

Available in blue, grey, or white.

<BYTE value> Swim Goggles: Traditional

Rounded Lens For Greater

Comfort

10072 313 SHM Silicone swim cap. One size.

Available in white, silver, or navy.

Team Logo Imprinting Available.

<BYTE value> Team Logo Silicone Swim

Cap

10073 314 ANZ Silicone swim cap. Squared-off top.

One size. White

<BYTE value> Durable Squared-off Silicone

Swim Cap

10074 315 HRO Re-usable ice pack. Store in the

freezer for instant first-aid. Extra

capacity to accommodate water

and ice.

<BYTE value> Water Compartment

Combines With Ice to

Provide Optimal Orthopedic

Treatment

A-22 IBM Informix Guide to SQL: Reference

cust_calls Table

 customer

_num

call_

dtime

user_id call_

code

call_descr res_dtime res_descr

106 1998-
06-12 8:20

maryj D Order was received,

but two of the cans of

ANZ tennis balls

within the case were

empty.

1998-06-12

8:25

Authorized credit for two

cans to customer, issued

apology. Called ANZ buyer to

report the QA problem.

110 1998-
07-07

10:24

richc L Order placed one

month ago (6/7) not

received.

1998-07-07

10:30

Checked with shipping (Ed

Smith). Order sent yesterday-

we were waiting for goods

from ANZ. Next time will call

with delay if necessary.

119 1998-
07-01

15:00

richc B Bill does not reflect

credit from previous

order.

1998-07-02

8:21

Spoke with Jane Akant in

Finance. She found the error

and is sending new bill to

customer.

121 1998-
07-10

14:05

maryj O Customer likes our

merchandise. Requests

that we stock more

types of infant joggers.

Will call back to place

order.

1998-07-10

14:06

Sent note to marketing group

of interest in infant joggers.

127 1998-
07-31

14:30

maryj I Received Hero watches

(item # 304) instead of

ANZ watches.

Sent memo to shipping to

send ANZ item 304 to

customer and pickup HRO

watches. Should be done

tomorrow, 8/1.

116 1997-
11-28

13:34

mannyn I Received plain white

swim caps (313 ANZ)

instead of navy with

team logo (313 SHM).

1997-11-28

16:47

Shipping found correct case in

warehouse and express

mailed it in time for swim

meet.

116 1997-
12-21

11:24

mannyn I Second complaint from

this customer! Received

two cases right-handed

outfielder gloves (1

HRO) instead of one

case lefties.

1997-12-27

08:19

Memo to shipping (Ava

Brown) to send case of

left-handed gloves, pick up

wrong case; memo to billing

requesting 5% discount to

placate customer due to

second offense and lateness of

resolution because of holiday.

Appendix A. The stores_demo Database A-23

manufact Table

 manu_code manu_name lead_time

ANZ Anza 5

HSK Husky 5

HRO Hero 4

NRG Norge 7

SMT Smith 3

SHM Shimara 30

KAR Karsten 21

NKL Nikolus 8

PRC ProCycle 9

state Table

 code sname code sname

AK Alaska MT Montana

AL Alabama NE Nebraska

AR Arkansas NC North Carolina

AZ Arizona ND North Dakota

CA California NH New Hampshire

CT Connecticut NJ New Jersey

CO Colorado NM New Mexico

DC Washington, D.C. NV Nevada

DE Delaware NY New York

FL Florida OH Ohio

GA Georgia OK Oklahoma

HI Hawaii OR Oregon

IA Iowa PA Pennsylvania

ID Idaho PR Puerto Rico

IL Illinois RI Rhode Island

IN Indiana SC South Carolina

KY Kentucky TN Tennessee

LA Louisiana TX Texas

MA Massachusetts UT Utah

MD Maryland VA Virginia

ME Maine VT Vermont

MI Michigan WA Washington

MN Minnesota WI Wisconsin

MO Missouri WV West Virginia

MS Mississippi WY Wyoming

A-24 IBM Informix Guide to SQL: Reference

Appendix B. The sales_demo and superstores_demo

Databases

In addition to the stores_demo database that is described in detail in Appendix A,

IBM Informix products include the following demonstration databases:

Extended Parallel Server

v The sales_demo database illustrates a dimensional schema for data-warehousing applications.

End of Extended Parallel Server

Dynamic Server

v The superstores_demo database illustrates an object-relational schema.

End of Dynamic Server

This appendix discusses the structures of these two demonstration databases.

For information on how to create and populate the demonstration databases, including relevant SQL files,

see the IBM Informix DB–Access User’s Guide. For conceptual information about demonstration databases,

see the IBM Informix Database Design and Implementation Guide.

The sales_demo Database (XPS)

Your database server product contains SQL scripts for the sales_demo dimensional

database. The sales_demo database provides an example of a simple

data-warehousing environment and works in conjunction with the stores_demo

database. The scripts for the sales_demo database create new tables and add extra

rows to the items and orders tables of stores_demo.

To create the sales_demo database, you must first create the stores_demo database

with the logging option. Once you create the stores_demo database, you can

execute the scripts that create and load the sales_demo database from DB–Access.

The files are named createdw.sql and loaddw.sql.

Dimensional Model of the sales_demo Database

Figure B-1 on page B-2 gives an overview of the tables in the sales_demo database.

© Copyright IBM Corp. 1996, 2008 B-1

For information on how to create and populate the sales_demo database, see the

IBM Informix DB–Access User’s Guide. For information on how to design and

implement dimensional databases, see the IBM Informix Database Design and

Implementation Guide. For information on the stores_demo database, see

Appendix A

The next section describes the schema of these five tables, and identifies the

column in the fact table that logically associates each dimension table to the fact

table.

Structure of the sales_demo Tables

The sales_demo database includes the following tables:

v customer

v geography

v product

v sales

v time

The tables are listed alphabetically, not in the order in which they are created. The

customer, geography, product, and time tables are the dimensions for the sales

fact table.

The sales_demo database is not an ANSI-compliant database.

The following sections describe the column names, data types, and column

descriptions for each table. A SERIAL field serves as the primary key for the

district_code column of the geography table. The primary and foreign key

relationships that exist between the fact (sales) table and its dimension tables are

not defined, however, because data-loading performance improves dramatically

when the database server does not enforce constraint checking.

customer code

product code

product name
vendor
vendor name
product line
product line name

revenue
cost
units sold
net profit

customer code

customer name
company name

time code

order date
month code
month name
quarter code
quarter name
year

district code

district
state
state name
region

product code

time code

District code

Time
Dimension

Product
Dimension

Fact Table: Sales

Customer
Dimension

Geography
Dimension

Figure B-1. The sales_demo Dimensional Data Model

B-2 IBM Informix Guide to SQL: Reference

The customer Table

The customer table contains information about sales customers. Table B-1 shows

the columns of the customer table.

 Table B-1. The customer Table

Name Type Description

customer_code INTEGER Customer code

customer_name CHAR(31) Customer name

company_name CHAR(20) Company name

The geography Table

The geography table contains information about the sales district and region.

Table B-2 shows the columns of the geography table.

 Table B-2. The geography Table

Name Type Description

district_code SERIAL District code

district_name CHAR(15) District name

state_code CHAR(2) State code

state_name CHAR(18) State name

region SMALLINT Region name

The product Table

The product table contains information about the products sold through the data

warehouse. Table B-3 shows the columns of the product table.

 Table B-3. The product Table

Name Type Description

product_code INTEGER Product code

product_name CHAR(31) Product name

vendor_code CHAR(3) Vendor code

vendor_name CHAR(15) Vendor name

product_line_code SMALLINT Product line code

product_line_name CHAR(15) Name of product line

The sales Table

The sales fact table contains information about product sales and has a pointer to

each dimension table. For example, the customer_code column references the

customer table, the district_code column references the geography table, and so

on. The sales table also contains the measures for the units sold, revenue, cost, and

net profit. Table B-4 on page B-4 shows the columns of the sales table.

Appendix B. The sales_demo and superstores_demo Databases B-3

Table B-4. The sales Table

Name Type Description

customer_code INTEGER Customer code (references customer)

district_code SMALLINT District code (references geography)

time_code INTEGER Time code (references time)

product_code INTEGER Product code (references product)

units_sold SMALLINT Number of units sold

revenue MONEY(8,2) Amount of sales revenue

cost MONEY(8,2) Cost of sale

net_profit MONEY(8,2) Net profit of sale

The time Table

The time table contains time information about the sale. Table B-5 shows the

columns of the time table.

 Table B-5. The time Table

Name Type Description

time_code INTEGER Time code

order_date DATE Order date

month_code SMALLINT Month code

month_name CHAR(10) Name of month

quarter_code SMALLINT Quarter code

quarter_name CHAR(10) Name of quarter

year INTEGER Year

The superstores_demo Database (IDS)

SQL files and user-defined routines (UDRs) that are provided with DB–Access let

you derive the superstores_demo object-relational database.

The superstores_demo database uses the default locale and is not ANSI compliant.

This section provides the following superstores_demo information:

v The structure of all the tables in the superstores_demo database

v A list and definition of the extended data types that superstores_demo uses

v A map of table hierarchies

v The primary-foreign key relationships among the columns in the database tables

For information on how to create and populate the superstores_demo database,

see the IBM Informix DB–Access User’s Guide. For information on how to work with

object-relational databases, see the IBM Informix Database Design and Implementation

Guide. For information on the stores_demo database on which superstores_demo is

based, see Appendix A.

B-4 IBM Informix Guide to SQL: Reference

Structure of the superstores_demo Tables

The superstores_demo database includes the following tables. Although many

tables have the same name as stores_demo tables, they are different. The tables are

listed alphabetically, not in the order in which they are created.

v call_type

v catalog

v cust_calls

v customer

– retail_customer (new)

– whlsale_customer (new)
v items

v location (new)

– location_non_us (new)

– location_us (new)
v manufact

v orders

v region (new)

v sales_rep (new)

v state

v stock

v stock_discount (new)

v units (new)

This section lists the names, data types, and descriptions of the columns for each

table in the superstores_demo database. The unique identifying value for each

table (primary key) is shaded. Columns that represent extended data types are

discussed in “User-Defined Routines and Extended Data Types” on page B-13.

Primary-foreign key relationships between the tables are outlined in “Referential

Relationships” on page B-15.

The call_type Table

The call codes associated with customer calls are stored in the call_type table.

Table B-6 shows the columns of the call_type table.

 Table B-6. The call_type Table

Name Type Description

call_code CHAR(1) Call code

codel_descr CHAR (30) Description of call code

The catalog Table

The catalog table describes each item in stock. Retail stores use this table when

placing orders with the distributor. Table B-7 on page B-6 shows the columns of the

catalog table.

Appendix B. The sales_demo and superstores_demo Databases B-5

Table B-7. The catalog Table

Name Type Description

catalog_num SERIAL(1001) System-generated catalog number

stock_num SMALLINT Distributor stock number (foreign key to stock

table)

manu_code CHAR(3) Manufacturer code (foreign key to stock table)

unit CHAR(4) Unit by which item is ordered (foreign key to

stock table)

advert ROW (picture BLOB,

caption LVARCHAR)

Picture of item and caption

advert_descr CLOB Tag line underneath picture

The cust_calls Table

All customer calls for information on orders, shipments, or complaints are logged.

The cust_calls table contains information about these types of customer calls.

Table B-8 shows the columns of the cust_calls table.

 Table B-8. The cust_calls Table

Name Type Description

customer_num INTEGER Customer number (foreign key to customer

table)

call_dtime DATETIME YEAR TO

MINUTE

Date and time call received

user_id CHAR(18) Name of person logging call (default is user

login name)

call_code CHAR(1) Type of call (foreign key to call_type table)

call_descr CHAR(240) Description of call

res_dtime DATETIME YEAR TO

MINUTE

Date and time call resolved

res_descr CHAR(240) Description of how call was resolved

The customer, retail_customer, and whlsale_customer Tables

In this hierarchy, retail_customer and whlsale_customer are subtables that are

created under the customer supertable, as Figure B-2 on page B-15 shows.

For information about table hierarchies, see the IBM Informix Database Design and

Implementation Guide.

The customer Table: The customer table contains information about the retail

stores that place orders from the distributor. Table B-9 on page B-7 shows the

columns of the customer table.

B-6 IBM Informix Guide to SQL: Reference

Table B-9. The customer Table

Name Type Description

customer_num SERIAL Unique customer identifier

customer_type CHAR(1) Code to indicate type of customer:

R = retail

W = wholesale

customer_name name_t Name of customer

customer_loc INTEGER Location of customer (foreign key to

location table)

contact_dates LIST(DATETIME YEAR

TO DAY NOT NULL)

Dates of contact with customer

cust_discount percent Customer discount

credit_status CHAR(1) Customer credit status:

D = deadbeat

L = lost

N = new

P = preferred

R = regular

The retail_customer Table: The retail_customer table contains general

information about retail customers. Table B-10 shows the columns of the

retail_customer table.

 Table B-10. The retail_customer Table

Name Type Description

customer_num SERIAL Unique customer identifier

customer_type CHAR(1) Code to indicate type of customer:

R = retail

W = wholesale

customer_name name_t Name of customer

customer_loc INTEGER Location of customer

contact_dates LIST(DATETIME YEAR

TO DAY NOT NULL)

Dates of contact with customer

cust_discount percent Customer discount

credit_status CHAR(1) Customer credit status:

D = deadbeat

L = lost

N = new

P = preferred

R = regular

credit_num CHAR(19) Credit card number

expiration DATE Expiration data of credit card

The whlsale_customer Table: The whlsale_customer table contains general

information about wholesale customers. Table B-11 on page B-8 shows the columns

of the whlsale_customer table.

Appendix B. The sales_demo and superstores_demo Databases B-7

Table B-11. The whlsale_customer Table

Name Type Description

customer_num SERIAL Unique customer identifier

customer_type CHAR(1) Code to indicate type of customer:

R = retail

W = wholesale

customer_name name_t Name of customer

customer_loc INTEGER Location of customer

contact_dates LIST(DATETIME YEAR

TO DAY NOT NULL)

Dates of contact with customer

cust_discount percent Customer discount

credit_status CHAR(1) Customer credit status:

D = deadbeat

L = lost

N = new

P = preferred

R = regular

resale_license CHAR(15) Resale license number

terms_net SMALLINT Net term in days

The items Table

An order can include one or more items. One row exists in the items table for each

item in an order. Table B-12 shows the columns of the items table.

 Table B-12. The items Table

Name Type Description

item_num SMALLINT Sequentially assigned item number for an

order

order_num INT8 Order number (foreign key to orders table)

stock_num SMALLINT Stock number for item (foreign key to stock

table)

manu_code CHAR(3) Manufacturer code for item ordered (foreign

key to stock table)

unit CHAR(4) Unit by which item is ordered (foreign key

to stock table)

quantity SMALLINT Quantity ordered (value must be > 1)

item_subtotal MONEY(8,2) Quantity ordered * unit price = total price of

item

The location, location_non_us, and location_us Tables

In this hierarchy, location_non_us and location_us are subtables that are created

under the location supertable, as shown in the diagram in “Table Hierarchies” on

page B-14. For information about table hierarchies, see the IBM Informix Database

Design and Implementation Guide.

The location Table

The location table contains general information about the locations (addresses) that

the database tracks. Table B-13 on page B-9 shows the columns of the location

table.

B-8 IBM Informix Guide to SQL: Reference

Table B-13. The location Table

Name Type Description

location_id SERIAL Unique identifier for location

loc_type CHAR(2) Code to indicate type of location

company VARCHAR(20) Name of company

street_addr LIST(VARCHAR(25) NOT

NULL)

Street address

city VARCHAR(25) City for address

country VARCHAR(25) Country for address

The location_non_us Table

The location_non_us table contains specific address information for locations

(addresses) that are outside the United States. Table B-14 shows the columns of the

location_non_us table.

 Table B-14. The location_non_us Table

Name Type Description

location_id SERIAL Unique identifier for location

loc_type CHAR(2) Code to indicate type of location

company VARCHAR(20) Name of company

street_addr LIST(VARCHAR(25) NOT

NULL)

Street address

city VARCHAR(25) City for address

country VARCHAR(25) Country for address

province_code CHAR(2) Province code

zipcode CHAR(9) Zip code

phone CHAR(15) Phone number

The location_us Table

The location_us table contains specific address information for locations

(addresses) that are in the United States. Table B-15 shows the columns of the

location_us table.

 Table B-15. The location_us Table

Name Type Description

location_id SERIAL Unique identifier for location

loc_type CHAR(2) Code to indicate type of location

company VARCHAR(20) Name of company

street_addr LIST(VARCHAR(25) NOT

NULL)

Street address

city VARCHAR(25) City for address

country VARCHAR(25) Country for address

state_code CHAR(2) State code (foreign key to state table)

zip CHAR(9) Zip code

phone CHAR(15) Phone number

Appendix B. The sales_demo and superstores_demo Databases B-9

The manufact Table

Information about the manufacturers whose sporting goods are handled by the

distributor is stored in the manufact table. Table B-16 shows the columns of the

manufact table.

 Table B-16. The manufact Table

Name Type Description

manu_code CHAR(3) Manufacturer code

manu_name VARCHAR(15) Name of manufacturer

lead_time INTERVAL DAY(3) TO

DAY

Lead time for shipment of orders

manu_loc INTEGER Manufacturer location (foreign key to

location table)

manu_account CHAR(32) Distributor account number with

manufacturer

account_status CHAR(1) Status of account with manufacturer

terms_net SMALLINT Distributor terms with manufacturer (in

days)

discount percent Distributor volume discount with

manufacturer

The orders Table

The orders table contains information about orders placed by the customers of the

distributor. Table B-17 shows the columns of the orders table.

 Table B-17. The orders Table

Name Type Description

order_num SERIAL8(1001) System-generated order number

order_date DATE Date order entered

customer_num INTEGER Customer number (foreign key to customer

table)

shipping ship_t Special shipping instructions

backlog BOOLEAN Indicates order cannot be filled because the

item is back ordered

po_num CHAR(10) Customer purchase order number

paid_date DATE Date order paid

The region Table

The region table contains information about the sales regions for the distributor.

Table B-18 shows the columns of the region table.

 Table B-18. The region Table

Name Type Description

region_num SERIAL System-generated region number

region_name VARCHAR(20)

UNIQUE

Name of sales region

region_loc INTEGER Location of region office (foreign key to

location table)

B-10 IBM Informix Guide to SQL: Reference

The sales_rep Table

The sales_rep table contains information about the sales representatives for the

distributor. Table B-19 shows the columns of the sales_rep table.

 Table B-19. The sales_rep Table

Name Type Description

rep_num SERIAL(101) System-generated sales rep number

name name_t Name of sales rep

region_num INTEGER Region in which sales rep works (foreign

key to the region table)

home_office BOOLEAN Home office location of sales rep

sales SET(ROW (month

DATETIME YEAR TO

MONTH, amount MONEY)

NOT NULL)

Amount of monthly sales for rep

commission percent Commission rate for sales rep

The state Table

The state table contains the names and postal abbreviations, as well as sales tax

information, for the 50 states of the United States. Table B-20 shows the columns of

the state table.

 Table B-20. The state Table

Name Type Description

code CHAR(2) State code

sname CHAR(15) State name

sales_tax percent State sales tax

The stock Table

The stock table is a catalog of the items sold by the distributor. Table B-21 on page

B-12 shows the columns of the stock table.

Appendix B. The sales_demo and superstores_demo Databases B-11

Table B-21. The stock Table

Name Type Description

stock_num SMALLINT Stock number that identifies type of

item

manu_code CHAR(3) Manufacturer code (foreign key to

manufact)

unit CHAR(4) Unit by which item is ordered

description VARCHAR(15) Description of item

unit_price MONEY(6,2) Unit price

min_reord_qty SMALLINT Minimum reorder quantity

min_inv_qty SMALLINT Quantity of stock below which item

should be reordered

manu_item_num CHAR(20) Manufacturer item number

unit_cost MONEY(6,2) Distributor cost per unit of item from

manufacturer

status CHAR(1) Status of item:

A = active

D = discontinued

N = no order

bin_num INTEGER Bin number

qty_on_hand SMALLINT Quantity in stock

bigger_unit CHAR(4) Stock unit for next larger unit (for same

stock_num and manu_code)

per_bigger_unit SMALLINT How many of this item in bigger_unit

The stock_discount Table

The stock_discount table contains information about stock discounts. (There is no

primary key). Table B-22 shows the columns of the stock_discount table.

 Table B-22. The stock_discount Table

Name Type Description

discount_id SERIAL System-generated discount identifier

stock_num SMALLINT Distributor stock number (part of foreign key to

stock table)

manu_code CHAR(3) Manufacturer code (part of foreign key to stock

table)

unit CHAR(4) Unit by which item is ordered (each, pair, case,

and so on) (foreign key to units table; part of

foreign key to stock table)

unit_discount percent Unit discount during sale period

start_date DATE Discount start date

end_date DATE Discount end date

The units Table

The units table contains information about the units in which the inventory items

can be ordered. Each item in the stock table is available in one or more types of

container. Table B-23 on page B-13 shows the columns of the units table.

B-12 IBM Informix Guide to SQL: Reference

Table B-23. The units Table

Name Type Description

unit_name CHAR(4) Units by which an item is ordered (each, pair,

case, box)

unit_descr VARCHAR(15) Description of units

User-Defined Routines and Extended Data Types

The superstores_demo database uses user-defined routines (UDRs) and extended

data types.

A UDR is a routine that you define that can be invoked within an SQL statement

or another UDR. A UDR can either return values or not.

The data type system of Dynamic Server is an extensible and flexible system that

supports the creation of following kinds of data types:

v Extensions of existing data types by, redefining some of the behavior for data

types that the database server provides

v Definitions of customized data types by a user

This section lists the extended data types and UDRs created for the

superstores_demo database. For information about creating and using UDRs and

extended data types, see IBM Informix User-Defined Routines and Data Types

Developer’s Guide.

The superstores_demo database creates the distinct data type, percent, in a UDR, as

follows:

CREATE DISTINCT TYPE percent AS DECIMAL(5,5);

DROP CAST (DECIMAL(5,5) AS percent);

CREATE IMPLICIT CAST (DECIMAL(5,5) AS percent);

The superstores_demo database creates the following named row types:

v location hierarchy:

– location_t

– loc_us_t

– loc_non_us_t

v customer hierarchy:

– name_t

– customer_t

– retail_t

– whlsale_t

v orders table

– ship_t

location_t definition

location_id SERIAL

loc_type CHAR(2)

company VARCHAR(20)

street_addr LIST(VARCHAR(25) NOT NULL)

city VARCHAR(25)

country VARCHAR(25)

Appendix B. The sales_demo and superstores_demo Databases B-13

loc_us_t definition

state_code CHAR(2)

zip ROW(code INTEGER, suffix SMALLINT)

phone CHAR(18)

loc_non_us_t definition

province_code CHAR(2)

zipcode CHAR(9)

phone CHAR(15)

name_t definition

first VARCHAR(15)

last VARCHAR(15)

customer_t definition

customer_num SERIAL

customer_type CHAR(1)

customer_name name_t

customer_loc INTEGER

contact_dates LIST(DATETIME YEAR TO DAY NOT NULL)

cust_discount percent

credit_status CHAR(1)

retail_t definition

credit_num CHAR(19)

expiration DATE

whlsale_t definition

resale_license CHAR(15)

terms_net SMALLINT

ship_t definition

date DATE

weight DECIMAL(8,2)

charge MONEY(6,2)

instruct VARCHAR(40)

Table Hierarchies

Figure B-2 on page B-15 shows how the hierarchical tables of the

superstores_demo database are related. See “The customer and location Tables” on

page B-16 for an explanation of the foreign key and primary relationships between

those two tables, which are indicated by shaded arrows that point from the

customer.custnum and customer.loc columns to the location.location_id columns

in the following diagram.

B-14 IBM Informix Guide to SQL: Reference

Referential Relationships

The tables of the superstores_demo database are linked by the primary-foreign key

relationships that are identified in this section. This type of relationship is called a

referential constraint because a foreign key in one table references the primary key in

another table.

The customer and orders Tables

The customer table contains a customer_num column that holds a number that

identifies a customer. The orders table also contains a customer_num column that

stores the number of the customer who placed a particular order. In the orders

table, the customer_num column is a foreign key that references the

customer_num column in the customer table.

The orders and items Tables

The orders and items tables are linked by an order_num column that contains an

identification number for each order. If an order includes several items, the same

order number appears in several rows of the items table. In the items table, the

order_num column is a foreign key that references the order_num column in the

orders table.

The items and stock Tables

The items table and the stock table are joined by three columns: the stock_num

column, which stores a stock number for an item, the manu_code column, which

stores a code that identifies the manufacturer, and the units column, which

identifies the types of unit in which the item can be ordered. You need the stock

number, the manufacturer code, and the units to uniquely identify an item. The

same stock number and manufacturer code can appear in more than one row of

the items table, if the same item belongs to separate orders. In the items table, the

stock_num, manu_code, and unit columns are foreign keys that reference the

stock_num, manu_code, and unit columns in the stock table.

The stock and catalog Tables

The stock table and catalog table are joined by three columns: the stock_num

column, which stores a stock number for an item, the manu_code column, which

stores a code that identifies the manufacturer, and the unit column, which

identifies the type of units in which the item can be ordered. You need all three

columns to uniquely identify an item. In the catalog table, the stock_num,

customer
customer_num
customer_type
customer_name
customer_loc
contact_dates
cust_discount
credit_status

retail_customer
credit_num
expiration

whlsale_customer
resale_license
terms_net

location
location_id
loc_type
company
street_addr
city
country

location_us
state_code
zip
phone

location_non_us
province_code
zipcode
phone

Figure B-2. Hierarchies of superstores_demo Tables

Appendix B. The sales_demo and superstores_demo Databases B-15

manu_code, and unit columns are foreign keys that reference the stock_num,

manu_code, and unit columns in the stock table.

The stock and manufact Tables

The stock table and the manufact table are joined by the manu_code column. The

same manufacturer code can appear in more than one row of the stock table if the

manufacturer produces more than one piece of equipment. In the stock table, the

manu_code column is a foreign key that references the manu_code column in the

manufact table.

The cust_calls and customer Tables

The cust_calls table and the customer table are joined by the customer_num

column. The same customer number can appear in more than one row of the

cust_calls table if the customer calls the distributor more than once with a problem

or question. In the cust_calls table, the customer_num column is a foreign key that

references the customer_num column in the customer table.

The call_type and cust_calls Tables

The call_type and cust_calls tables are joined by the call_code column. The same

call code can appear in more than one row of the cust_calls table, because many

customers can have the same type of problem. In the cust_calls table, the call_code

column is a foreign key that references the call_code column in the call_type table.

The state and customer Tables

The state table and the customer table are joined by a column that contains the

state code. This column is called code in the state table and state in the customer

table. If several customers live in the same state, the same state code appears in

several rows of the table. In the customer table, the state column is a foreign key

that references the code column in the state table.

The customer and location Tables

In the customer table, the customer_loc column is a foreign key that references the

location_id of the location table. The customer_loc and location_id columns each

uniquely identify the customer location.

The manufact and location Tables

The manu_loc column in the manufact table is a foreign key that references the

location_id column, which is the primary key in the location table. Both manu_loc

and location_id uniquely identify the manufacturer location.

The state and location_us Tables

The state and location_us tables are joined by the column that contains the state

code. The state_code column in the location_us table is a foreign key that

references the code column in the state table.

The sales_rep and region Tables

The region_num column is the primary key in the region table. It is a

system-generated region number. The region_num column in the sales_rep table is

a foreign key that references and joins the region_num column in the region table.

The region and location Tables

The region_loc column in the region table identifies the regional office location. It

is a foreign key that references the location_id column in the location table, which

is a unique identifier for location.

B-16 IBM Informix Guide to SQL: Reference

The stock and stock_discount Tables

The stock table and the stock_discount table are joined by three columns:

stock_num, manu_code, and unit. These columns form the primary key for the

stock table. The stock_discount table has no primary key and references the stock

table.

The stock and units Tables

The unit_name column of the units table is a primary key that identifies the kinds

of units that can be ordered, such as case, pair, box, and so on. The unit column of

the stock table joins the unit_name column of the units table

Appendix B. The sales_demo and superstores_demo Databases B-17

B-18 IBM Informix Guide to SQL: Reference

Appendix C. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft Windows navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our publications are available in dotted decimal format. For more

information about the dotted decimal format, go to “Dotted Decimal Syntax

Diagrams.”

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

Dotted Decimal Syntax Diagrams

The syntax diagrams in our publications are available in dotted decimal format,

which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two

or more syntax elements are always present together (or always absent together),

the elements can appear on the same line, because they can be considered as a

single compound syntax element.

© Copyright IBM Corp. 1996, 2008 C-1

http://www.ibm.com/able

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To

hear these numbers correctly, make sure that your screen reader is set to read

punctuation. All syntax elements that have the same dotted decimal number (for

example, all syntax elements that have the number 3.1) are mutually exclusive

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can

include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a

syntax element with dotted decimal number 3 is followed by a series of syntax

elements with dotted decimal number 3.1, all the syntax elements numbered 3.1

are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add

information about the syntax elements. Occasionally, these words and symbols

might occur at the beginning of the element itself. For ease of identification, if the

word or symbol is a part of the syntax element, the word or symbol is preceded by

the backslash (\) character. The * symbol can be used next to a dotted decimal

number to indicate that the syntax element repeats. For example, syntax element

*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE

indicates that syntax element FILE repeats. Format 3* * FILE indicates that

syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax

elements, are shown in the syntax just before the items they separate. These

characters can appear on the same line as each item, or on a separate line with the

same dotted decimal number as the relevant items. The line can also show another

symbol that provides information about the syntax elements. For example, the lines

5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the

LASTRUN and DELETE syntax elements, the elements must be separated by a comma.

If no separator is given, assume that you use a blank to separate each syntax

element.

If a syntax element is preceded by the % symbol, this identifies a reference that is

defined elsewhere. The string following the % symbol is the name of a syntax

fragment rather than a literal. For example, the line 2.1 %OP1 means that you

should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed

by the ? symbol indicates that all the syntax elements with a

corresponding dotted decimal number, and any subordinate syntax

elements, are optional. If there is only one syntax element with a dotted

decimal number, the ? symbol is displayed on the same line as the syntax

element (for example, 5? NOTIFY). If there is more than one syntax element

with a dotted decimal number, the ? symbol is displayed on a line by

itself, followed by the syntax elements that are optional. For example, if

you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax

elements NOTIFY and UPDATE are optional; that is, you can choose one or

none of them. The ? symbol is equivalent to a bypass line in a railroad

diagram.

! Specifies a default syntax element. A dotted decimal number followed by

the ! symbol and a syntax element indicates that the syntax element is the

default option for all syntax elements that share the same dotted decimal

number. Only one of the syntax elements that share the same dotted

decimal number can specify a ! symbol. For example, if you hear the lines

C-2 IBM Informix Guide to SQL: Reference

2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

default option for the FILE keyword. In this example, if you include the

FILE keyword but do not specify an option, default option KEEP is applied.

A default option also applies to the next higher dotted decimal number. In

this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1

(DELETE), the default option KEEP only applies to the next higher dotted

decimal number, 2.1 (which does not have an associated keyword), and

does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A

dotted decimal number followed by the * symbol indicates that this syntax

element can be used zero or more times; that is, it is optional and can be

repeated. For example, if you hear the line 5.1* data-area, you know that

you can include more than one data area or you can include none. If you

hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include

HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is

only one item with that dotted decimal number, you can repeat that

same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items

have that dotted decimal number, you can use more than one item

from the list, but you cannot use the items more than once each. In the

previous example, you could write HOST STATE, but you could not write

HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax

diagram.

+ Specifies a syntax element that must be included one or more times. A

dotted decimal number followed by the + symbol indicates that this syntax

element must be included one or more times. For example, if you hear the

line 6.1+ data-area, you must include at least one data area. If you hear

the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,

STATE, or both. As for the * symbol, you can only repeat a particular item if

it is the only item with that dotted decimal number. The + symbol, like the

* symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix C. Accessibility C-3

C-4 IBM Informix Guide to SQL: Reference

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 D-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

D-2 IBM Informix Guide to SQL: Reference

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices D-3

http://www.ibm.com/legal/copytrade.shtml

D-4 IBM Informix Guide to SQL: Reference

Index

Special characters
(_), underscore

in SQL identifiers 3-35

(;), semicolon
list separator 3-49, 3-60

(:), colon
cast (::) operator 2-43, 2-46

DATETIME delimiter 2-11

INTERVAL delimiter 2-18

list separator 3-29, 3-36, 3-49, 3-56, 3-60

(!=), not equal to
relational operator 2-46

(/), slash
DATE separator 2-9, 2-37, 3-21

division operator 2-34, 2-46

pathname delimiter 3-7, 3-27, 3-56

(’), single quotes
string delimiter 3-25, 3-35

(″), double quotes
delimited SQL identifiers 3-35

string delimiter 2-1, 2-19, 2-21, 2-28

(()), parentheses
delimiters in expressions 2-37

($), dollar sign
currency symbol 2-20, 3-24

pathname indicator 3-14, 3-60

(\), backslash
invalid as delimiter 3-22

pathname delimiter 3-9, 3-51

([]), brackets
MATCHES range delimiters 2-31

substring operator 2-7, 2-29, 2-46

(%), percentage
DBTIME escape symbol 3-31

pathname indicator 3-14, 3-30

(>), greater than
angle (< >) brackets 2-7, A-17

relational operator 1-7, 2-46

(<), less than
angle (< >) brackets 2-7, A-17

relational operator 2-46, 3-22

(|), vertical bar
absolute value delimiter 2-16

concatenation (||) operator 2-46

field delimiter 3-22

(#), sharp
comment indicator 3-4

({ }), braces
collection delimiters 2-19, 2-21, 2-27, 2-28, 2-39

pathname delimiters 3-6

(-), hyphen
DATE separator 3-20

DATETIME delimiter 2-11

INTERVAL delimiter 2-18

subtraction operator 2-34, 2-46

symbol in syscolauth 1-5, 1-16

symbol in sysfragauth 1-27

symbol in systabauth 1-47

unary operator 2-35, 2-46

(,), comma
decimal point 3-25

(,), comma (continued)
list separator 2-21, 2-24, 3-29

thousands separator 2-20

(.), period
DATE separator 3-21

DATETIME delimiter 2-11

decimal point 2-14, 2-20, 3-25

execution symbol 3-5

INTERVAL delimiter 2-18

membership operator 2-46

nested dot notation 2-40

(), blank space
DATETIME delimiter 2-11

INTERVAL delimiter 2-18

padding CHAR values 2-8

padding VARCHAR values 2-30

(*), asterisk
multiplication operator 2-26, 2-34, 2-37, 2-46

systabauth value 1-5, 1-47

wildcard symbol 1-15, 1-57

(+), plus sign
addition operator 2-34, 2-46

truncation indicator 3-42

unary operator 2-46

(=), equality
assignment operator 3-9

relational operator 1-15, 2-5, 2-9, 2-46

(~), tilde
pathname indicator 3-7

A
Abbreviated year values 2-12, 3-18, 3-19, 3-21, 3-32

AC_CONFIG environment variable 3-14

ac_config.std file 3-14

ACCESS keyword 1-11, 2-33

Access method
B-tree 1-13, 1-31, 3-34

built-in 1-11, 1-13

primary 1-11, 1-46

R-Tree 3-34

secondary 1-11, 1-21, 1-32, 2-22

sysams data 1-11

sysindices data 1-32

sysopclasses data 1-34

systabamdata data 1-46

accessibility C-1

keyboard C-1

shortcut keys C-1

Accessibility
dotted decimal format of syntax diagrams C-1

syntax diagrams, reading in a screen reader C-1

Activity-log files 3-55

Addition (+) operator 2-34, 2-46

Administrative listener port 3-46

AFCRASH configuration parameter 3-14

AFDEBUG environment variable 3-14

Aggregate functions
built-in 2-19, 2-21, 2-27

no BYTE argument 2-6

no collection arguments 2-19, 2-21, 2-27

© Copyright IBM Corp. 1996, 2008 X-1

Aggregate functions (continued)
no TEXT argument 2-29

sysaggregates data 1-10

user-defined 1-10

AIX operating system 3-57

Alias of a table 1-5

Alignment of data type 1-14, 1-56

ALL operator 2-46

ALTER OPTICAL CLUSTER statement 1-36

Alter privilege 1-5, 1-47, 1-58

ALTER SEQUENCE statement 3-67

ALTER TABLE statement
casting effects 2-42

changing data types 2-3

lock mode 3-40

next extent size 1-8

SERIAL columns 2-25

SERIAL8 columns 2-26

synonyms 3-67

systables.version 1-49

am_beginscan() function 1-12

am_close() function 1-12

am_getnext() function 1-11

am_insert() function 1-12

am_open() function 1-12

AND operator 1-15, 2-46

ANSI compliance
-ansi flag 3-17

DATETIME literals 3-32

DBANSIWARN environment variable 3-17

DECIMAL range 2-13

DECIMAL(p) data type 2-13

Information Schema views 1-57

isolation level 1-60

public synonyms 1-46, 1-48

ANSIOWNER environment variable 3-14

ANY operator 2-46

Arabic locales 2-7

archecker utility 3-14

Archiving
setting DBREMOTECMD 3-28

Arithmetic
DATE operands 2-9, 2-35

DATETIME operands 2-34

integer operands 2-16, 2-26, 2-28

INTERVAL operands 2-17, 2-35

operators 2-46

string operands 2-7

time operands 2-33

AS keyword 2-43, 2-44

ASCII code set 1-27

assign() support function 2-39

AT keyword 2-19

Attached indexes 1-29, 3-20, 3-64

Audit Analysis officer 3-53

See AAO

Authorization identifier 1-52, 1-60

B
B-tree access method 1-13, 1-31, 3-34

B+ tree index 1-29

Backslash (\) symbol 3-22

Backup
file prefix 3-44

Bandwidth 3-44

BETWEEN operator 2-46

BIGINT data type
length (syscolumns) 1-20

BIGSERIAL data type
length (syscolumns) 1-20

bin subdirectory 3-6

Binding style 1-59

Blank spaces 3-56

BLOB data type
casting not available 2-5

coltype code 1-19

defined 2-5

inserting data 2-5

syscolattribs data 1-15

Blobspaces
defined 2-32

memory cache for staging 3-49

names 3-35

sysblobs data 1-14

BOOLEAN data type
coltype code 1-19

defined 2-6

Boolean expression
with BOOLEAN data type 2-6

with BYTE data type 2-6

with TEXT data type 2-29

Borland C compiler 3-47

Bourne shell 3-5

Braces ({ }) symbols 2-39

Bracket ([]) symbols 2-29

Buffers
BYTE or TEXT storage (DBBLOBBUF) 3-17

fetch buffer (FET_BUFFER_SIZE) 3-15, 3-36

floating-point display (DBFLTMASK) 3-23

network buffer (IFX_NETBUF_SIZE) 3-43

private network buffer pool 3-42

Built-in access method 1-11, 1-13

Built-in aggregates 1-10, 2-19, 2-21, 2-27

Built-in casts 1-14, 2-41

Built-in data types
casts 2-41, 2-45

listed 2-31

syscolumns.coltype code 1-18

sysdistrib.type code 1-24

sysxtdtypes data 1-56

BY keyword 2-6, 2-29

BYTE data type
casting to BLOB 2-7

defined 2-6

increasing buffer size 3-17

inserting values 2-6

restrictions
in Boolean expression 2-6

systables.npused 1-49

with GROUP BY 2-6

with LIKE or MATCHES 2-6

with ORDER BY 2-6

selecting from BYTE columns 2-7

setting buffer size 3-17

sysblobs data 1-13

syscolumns data 1-21

sysfragments data 1-28

sysopclstr data 1-35

C
C compiler

default name 3-47

X-2 IBM Informix Guide to SQL: Reference

C compiler (continued)
INFORMIXC setting 3-47

thread package 3-67

C shell 3-5

.cshrc file 3-5

.login file 3-5

C++ map file 3-49

call_type table in stores_demo database A-4

call_type table in superstores_demo database B-5

CARDINALITY() function 2-19, 2-21, 2-27

Cartesian join 3-38

Cascading deletes 1-41

Cast (::) operator 2-43, 2-46

CAST AS keywords 2-43

Casts 2-41, 2-45

built-in 1-14, 2-41, 2-44

distinct data type 2-44

explicit 1-14, 2-44

from BYTE to BLOB 2-7

from TEXT to CLOB 2-29

implicit 1-14, 2-43, 2-44

rules of precedence 2-44

syscasts data 1-14

CHAR data type
built-in casts 2-42

collation 2-7, 2-31

conversion to NCHAR 2-22, 3-25, 3-26

defined 2-7

nonprintable characters 2-8

storing numeric values 2-7

Character data types
Boolean comparisons 2-30

casting between 2-41

data strings 2-4

listed 2-31

syscolumns data 1-20

Character string
CHAR data type 2-7

CHARACTER VARYING data type 2-8

CLOB data type 2-8

DATETIME literals 2-12, 2-36, 3-32

INTERVAL literals 2-18

LVARCHAR data type 2-19

NCHAR data type 2-21

NVARCHAR data type 2-22

TEXT data type 2-28

VARCHAR data type 2-30

with DELIMIDENT set 3-35

CHARACTER VARYING data type
defined 2-8

length (syscolumns) 1-20

Character-based applications 3-52, 3-65

Check constraints
creation-time value 3-19, 3-22

syschecks data 1-15

syscheckudrdep data 1-15

syscoldepend data 1-17

sysconstraints data 1-22

chkenv utility 3-5

error message 3-7

syntax 3-6

Chunks 2-32

CLIENT_LOCALE environment variable 3-21

Client/server
Datablade API 2-33

default database 3-50

INFORMIXSQLHOSTS environment variable 3-51

Client/server (continued)
shared memory communication segments 3-51

stacksize for client session 3-52

CLOB data type
casting not available 2-9

code-set conversion 2-9

collation 2-9

coltype code 1-19

defined 2-8

inserting data 2-9

multibyte characters 2-9

syscolattribs data 1-15

CLOSE statement 3-59

Clustering 1-11, 1-29, 1-31

Code sets
ASCII 1-27

collation order 2-31

conversion 3-69

East Asian 2-7, 2-31, 3-33

EBCDIC 1-27, 1-60

ISO 8859-1 1-25

Collation
CHAR data type 2-7

CLOB data type 2-9

GL_COLLATE table 1-50

NCHAR data type 2-22

server_attribute data 1-60

TEXT data type 2-29

VARCHAR data type 2-31

Collection data type
casting matrix 2-45

defined 2-39

empty 2-39

LIST 2-18

MULTISET 2-21

SET 2-27

sysattrtypes data 1-13

sysxtddesc data 1-54

sysxtdtypes data 1-55

Colon
cast (::) operator 2-43

DATETIME delimiter 2-11

INTERVAL delimiter 2-18

pathname separator 3-56

Color and intensity screen attributes 3-52

Column-level privileges
systabauth data 1-5

systabauth table 1-47

Columns
changing data type 2-3, 2-41

constraints (sysconstraints) 1-21

default values (sysdefaults) 1-22

hashed 1-28

in sales_demo database B-2, B-4

in stores_demo database A-1, A-4

in superstores_demo database B-5, B-12

inserting BLOB data 2-5

range of values 1-21

referential constraints (sysreferences) 1-41

syscolumns data 1-18

Combine function 1-10

Comment indicator 3-4

Comment lines 3-4

Committed read 1-60

Communications support module 3-47

Commutator function 1-39

Index X-3

Compiling
ESQL/C programs 3-16

INFORMIXC setting 3-47

JAVA_COMPILER setting 3-55

multithreaded ESQL/C applications 3-67

Complex data type 2-38, 2-40

collection types 2-39

ROW types 2-40

sysattrtypes data 1-13

Compliance
ANSI/ISO standard for SQL 1-57, 3-17

sql_languages.conformance 1-59

X/Open CAE standards 1-57

XPG4 standard 1-58

Composite index 1-31

Concatenation (||) operator 2-46

concsm.cfg file 3-47

Configuration file
.cshrc file 3-5

.informix 3-4, 3-7, 3-36, 3-40

.login file 3-5

.profile file 3-5

for communications support module 3-47

for connectivity 3-46, 3-50, 3-51

for database servers 3-35, 3-57

for High-Performance Loader 3-62

for MaxConnect 3-46

for ON-Bar utility 3-14

for onxfer utility 3-68

for terminal I/O 3-52, 3-66

Configuration parameters
COSERVER 3-58

DBSPACETEMP 3-30

DEF_TABLE_LOCKMODE 3-40

DIRECTIVES 3-41

DISABLE_B162428_XA_FIX 3-45

END 3-58

EXT_DIRECTIVES 1-23, 3-41

MITRACE_OFF 1-50, 1-51

NODE 3-58

OPCACHEMAX 3-50

OPT_GOAL 3-60

OPTCOMPIND 3-58

shared memory base 3-45

STACKSIZE 3-52

STMT_CACHE 3-65

USEOSTIME 2-12

CONNECT DEFAULT statement 3-50

Connect privilege 1-7, 1-52

CONNECT statement 3-26, 3-48, 3-50

Connections
coserver 3-50

INFORMIXCONRETRY environment variable 3-47

INFORMIXCONTIME environment variable 3-48

INFORMIXSERVER environment variable 3-50

Connectivity information 3-46, 3-51

Constraints
check

creation-time value 3-22

loading performance B-2

syschecks data 1-15

syscheckudrdep data 1-15

syscoldepend data 1-17

column
sysconstraints data 1-21

not null
collection data types 2-19, 2-21, 2-27, 2-39

Constraints (continued)
not null (continued)

syscoldepend data 1-17

syscolumns data 1-19

sysconstraints data 1-21

object mode 1-33

primary key
sysconstraints data 1-21

sysreferences data 1-41

unique SERIAL values 2-25

unique SERIAL8 values 2-26

referential
stores_demo data A-5

superstores_demo data B-15

sysconstraints data 1-21

sysreferences data 1-41

table
sysconstraints data 1-21

unique
sysconstraints data 1-21

violations 1-53

Constructors 2-27, 2-39

Converting data types
CHAR and NCHAR 3-25

DATE and DATETIME 2-43

INTEGER and DATE 2-43

number and string 2-42

number to number 2-42

retyping a column 2-41

VARCHAR and NVARCHAR 3-25

Coserver
sysexternal data 1-27

sysviolations data 1-53

COSERVER configuration parameter 3-50, 3-58

CPFIRST environment variable 3-15

CPU cost 3-65

CREATE ACCESS METHOD statement 1-11

CREATE CAST statement 1-14, 2-43

CREATE DATABASE statement 3-27

CREATE DISTINCT TYPE statement 1-56, 2-15, B-13

CREATE DUPLICATE statement 1-29

CREATE EXTERNAL TABLE statement 1-26, 1-27

CREATE FUNCTION statement 1-42

CREATE IMPLICIT CAST statement B-13

CREATE INDEX statement 1-30, 1-31, 1-33, 1-41, 1-49, 3-34

storage options 3-34

CREATE OPAQUE TYPE statement 2-22

CREATE OPERATOR CLASS statement 1-34

CREATE OPTICAL CLUSTER statement 1-36

CREATE PROCEDURE statement 1-42, 3-57

CREATE ROLE statement 1-42

CREATE ROUTINE FROM statement 1-42, 3-57

CREATE ROW TYPE statement 1-18, 2-23

CREATE SCHEMA statement 1-3

CREATE SEQUENCE statement 1-45

CREATE SYNONYM statement 1-45, 1-46

CREATE TABLE statement
assigning data types 2-3

default lock mode 3-40

default privileges 3-57

SET constructor 2-27

typed tables 2-23

CREATE TEMP TABLE statement 3-30

CREATE TRIGGER statement 1-52

CREATE VIEW statement 1-5, 1-53

Currency symbol 2-20, 3-24

Current date 1-22, 3-18

X-4 IBM Informix Guide to SQL: Reference

CURRENT keyword 2-34, 3-37

cust_calls table in stores_demo database A-4

cust_calls table in superstores_demo database B-6

customer table in sales_demo database B-3

customer table in stores_demo database A-1

customer table in superstores_demo database B-6, B-7

D
Data compression 3-54

Data corruption 1-8, 1-16

Data dependencies
syscheckudrdep data 1-15

syscoldepend data 1-17

sysdepend data 1-23

sysnewdepend data 1-33

Data dictionary 1-2

Data distributions 1-8, 1-24, 3-33

Data encryption 3-54

Data integrity 1-59

Data pages 1-16, 1-31, 1-48

Data types
approximate 1-58

BIGINT 2-5

BIGSERIAL 2-5

BLOB 2-5

BOOLEAN 2-6

BYTE 2-6

casting 2-41, 2-45

CHAR 2-7

CHARACTER 2-8

CHARACTER VARYING 2-8

classified by category 2-2

CLOB 2-8

collection 2-39

complex 2-38

conversion 2-41

DATE 2-9

DATETIME 2-10

DEC 2-12

DECIMAL 2-12

distinct 2-14, 2-40

DISTINCT 2-14

DOUBLE PRECISION 2-15

exact numeric 1-58

extended 2-38

fixed point 2-13

FLOAT 2-15

floating-point 2-12, 2-15, 2-28

IDSSECURITYLABEL 2-15

inheritance 2-23

INT 2-16

INT8 2-16

INTEGER 2-16

internal 2-5

INTERVAL 2-16

LIST 2-18

LVARCHAR 2-19

MONEY 2-20

MULTISET 2-21

named ROW 2-23

NCHAR 2-21

NUMERIC 2-22

NVARCHAR 2-22

opaque 2-22, 2-41

OPAQUE 2-22

REAL 2-22

Data types (continued)
ROW 2-23, 2-24

sequential integer 2-26

SERIAL 2-25

SERIAL8 2-26

SET 2-27

simple large object 2-32

SMALLFLOAT 2-28

SMALLINT 2-28

smart large object 2-32

summary list 2-3

TEXT 2-28

unique numeric value 2-26

unnamed ROW 2-24

VARCHAR 2-30

Data warehousing B-1

Database identifiers 3-35

Database server administrator (DBSA) 1-3

Database Server Administrator (DBSA) 3-53

Database servers
attributes in Information Schema view 1-59

codeset 1-60

coserver name 3-50

default connection 3-50

default isolation level 1-60

optimizing queries 3-60

pathname for 3-26

remote 3-15, 3-36

role separation 3-52

server name 1-22, 3-27

DATABASE statement 3-26

Databases
data types 2-2

dimensional B-2

identifiers 3-34

joins in stores_demo A-5

object-relational B-1

objects, sysobjectstate data 1-33

privileges 1-52

sales_demo B-1

stores_demo A-1

superstores_demo B-2, B-4

syscrd 1-3

sysmaster 1-3

sysutils 1-3

sysuuid 1-3

DataBlade modules
Client and Server API 2-33

data types (sysbuiltintypes) 1-3

trace messages (systracemsgs) 1-50

user messages (syserrors) 1-25

DATE data type
abbreviated year values 3-18

casting to integer 2-43

converting to DATETIME 2-43

defined 2-9

display format 3-20

in expressions 2-33, 2-35

international date formats 2-10

source data 2-36

DATE() function 2-36, 3-21

DATETIME data type
abbreviated year values 3-18

converting to DATE 2-43

defined 2-10

display format 3-31

EXTEND function 2-35

Index X-5

DATETIME data type (continued)
extending precision 2-34

field qualifiers 2-10

in expressions 2-33, 2-37

international formats 2-11, 2-12, 2-17

length (syscolumns) 1-20

literal values 2-12

precision and size 2-10

source data 2-36

two-digit year values and DBDATE variable 2-12

year to fraction example 2-11

DAY keyword
DATETIME qualifier 2-10

INTERVAL qualifier 2-17

UNITS operator 2-9, 2-36

DB-Access utility 1-7, 1-57, 3-8, 3-23, 3-26, 3-30, 3-50

DBA privilege 1-25, 1-50, 1-51, 1-52

DBA routines 1-39

DBACCNOIGN environment variable 3-16

DBANSIWARN environment variable 3-17

DBBLOBBUF environment variable 3-17

DBCENTURY environment variable
defined 3-18

effect on functionality of DBDATE 3-21

expanding abbreviated years 2-12, 3-18

DBDATE environment variable 2-10, 3-20

DBDELIMITER environment variable 3-22

DBEDIT environment variable 3-22

dbexport utility 3-22

DBFLTMASK environment variable 3-23

DBLANG environment variable 3-23

dbload utility 2-5, 2-6, 2-29, 3-22

DBMONEY environment variable 2-20, 3-24

DBNLS environment variable 3-25

DBONPLOAD environment variable 3-26

DBPATH environment variable 3-26

DBPRINT environment variable 3-28

DBREMOTECMD environment variable 3-28

dbschema utility 3-67

Dbserver group 3-50

DBSERVERNAME configuration parameter 3-50

dbservername.cmd batch file 3-9

dbslice 1-28, 1-29

dbspace
for BYTE or TEXT values 1-14

for system catalog 1-2

for table fragments 1-27

for temporary tables 3-29

name 3-35

DBSPACE keyword 1-28

DBSPACETEMP configuration parameter 3-29

DBSPACETEMP environment variable 3-29

DBTEMP environment variable 3-30

DBTIME environment variable 2-12, 3-31

DBUPSPACE environment variable 3-33

DECIMAL data type
built-in casts 2-42

defined 2-12

disk storage 2-13

display format 3-23, 3-24

fixed point 2-13

floating point 2-13

length (syscolumns) 1-20

Decimal digits, display of 3-23

Decimal point
DBFLTMASK setting 3-23

DBMONEY setting 3-24

Decimal point (continued)
DECIMAL radix 2-14

Decimal separator 3-24

DECLARE statement 3-59

DECRYPT_BINARY function 2-9

DECRYPT_CHAR function 2-9

DEF_TABLE_LOCKMODE configuration parameter 3-40

DEFAULT_ATTACH environment variable 3-34

Defaults
C compiler 3-47

century 3-18, 3-32

CHAR length 2-7

character set for SQL identifiers 3-35

compilation order 3-15

configuration file 3-58

connection 3-50

data type 2-24

database server 3-27, 3-50

DATE display format 2-9

DATE separator 3-21

DATETIME display format 2-12

DECIMAL precision 2-13

detached indexes 3-34

detail level 3-54

disk space for sorting 3-33

fetch buffer size 3-36

heap size 3-56

isolation level 1-60

join method 3-58

level of parallelism 3-61

lock mode 3-40

message directory 3-23

MONEY scale 2-20

operator class 1-11, 1-34

printing program 3-28

query optimizer goal 3-60

sysdefaults.default 1-22

table privileges 3-57

temporary dbspace 3-30

termcap file 3-66

text editor 3-22

DEFINE statement of SPL 2-25, 2-26

Delete privilege 1-28, 1-47, 3-57

DELETE statements 1-8, 1-53

Delete trigger 1-52

DELIMIDENT environment variable 3-34

DELIMITED files 1-26, 1-27

Delimited identifiers 3-34, 3-35

Delimiter
for DATETIME values 2-11

for fields 1-27, 3-22

for identifiers 3-34

for INTERVAL values 2-18

Demonstration databases
tables A-1, A-4, B-5

Descending index 1-31

DESCRIBE statement 3-44

Describe-for-updates 3-45

destroy() support function 2-39

Detached index 3-34

Deutsche mark (DM) currency symbol 3-25

Diagnostics table 1-53

Dimension tables, in push-down hash joins 3-39

DIRECTIVES configuration parameter 3-41

Directives for query optimization 3-40, 3-58, 3-60

Disabilities, visual
reading syntax diagrams C-1

X-6 IBM Informix Guide to SQL: Reference

disability C-1

Disabled object 1-53

Disk space
for data distributions 3-33

for temporary data 3-30

Distinct data types
casts 2-44

defined 2-14

sysxtddesc data 1-54

sysxtdtypes data 1-55, 1-56, 2-15

Distributed Computing Environment (DCE) 3-67

Distributed queries 2-38, 3-15, 3-36

Dollar ($) sign 2-20, 3-24

Dotted decimal format of syntax diagrams C-1

double (C) data type 2-15

Double-precision floating-point number 2-15

DROP CAST statement B-13

DROP DATABASE statement 3-26

DROP FUNCTION statement 1-39

DROP INDEX statement 1-49

DROP OPTICAL CLUSTER statement 1-36

DROP PROCEDURE statement 1-39

DROP ROUTINE statement 1-39

DROP ROW TYPE statement 2-23

DROP SEQUENCE statement 3-67

DROP TABLE statement 3-67

DROP TYPE statement 2-15, 2-22

DROP VIEW statement 1-57, 3-67

E
EBCDIC collation 1-27, 1-60

Editor, DBEDIT setting 3-22

EMACS text editor 3-23

Empty set 2-39

ENCRYPT_DES function 2-9

ENCRYPT_TDES function 2-9

Encryption 3-55

END configuration parameter 3-58

Enterprise Replication 1-3

env utility 3-6

ENVIGNORE environment variable
defined 3-5, 3-35

relation to chkenv utility 3-7

Environment configuration file
debugging with chkenv 3-7

setting environment variables in UNIX 3-4

Environment variables
AC_CONFIG 3-14

AFDEBUG 3-14

ANSIOWNER 3-14

CC8BITLEVEL 3-11

CLIENT_LOCALE 3-11, 3-21

command-line utilities 3-8

CPFIRST 3-15

DB_LOCALE 3-11

DBACCNOIGN 3-16

DBANSIWARN 3-17

DBBLOBBUF 3-17

DBCENTURY 3-18

DBDATE 2-10, 3-20

DBDELIMITER 3-22

DBEDIT 3-22

DBFLTMASK 3-23

DBLANG 3-23

DBMONEY 2-20, 3-24

DBNLS 3-25

Environment variables (continued)
DBONPLOAD 3-26

DBPATH 3-26

DBPRINT 3-28

DBREMOTECMD 3-28

DBSPACETEMP 3-29

DBTEMP 3-30

DBTIME 2-12, 3-31

DBUPSPACE 3-33

DEFAULT_ATTACH 3-34

DELIMIDENT 3-34

displaying current settings 3-6, 3-9

ENVIGNORE 3-35

ESQLMF 3-11

FET_BUF_SIZE 3-15, 3-36

GL_DATE 2-10, 3-20

GL_DATETIME 2-12, 3-20

GLOBAL_DETACH_INFORM 3-11, 3-37

GLS8BITFSYS 3-11

how to set
in Bourne shell 3-5

in C shell 3-5

in Korn shell 3-5

how to set in Bourne shell 3-5

how to set in Korn shell 3-5

IBM_XPS_PARAMS 3-37

IFMX_CART_ALRM 3-38

IFMX_OPT_NON_DIM_TABS 3-39

IFX_DEF_TABLE_LOCKMODE 3-40

IFX_DIRECTIVES 3-40

IFX_EXTDIRECTIVES 1-23, 3-41

IFX_LONGID 3-42

IFX_NETBUF_PVTPOOL_SIZE 3-42

IFX_NETBUF_SIZE 3-43

IFX_NO_TIMELIMIT_WARNING 3-43

IFX_NODBPROC 3-43

IFX_NOT_STRICT_THOUS_SEP 3-43

IFX_ONTAPE_FILE_PREFIX 3-44

IFX_OPT_FACT_TABS 3-38

IFX_PAD_VARCHAR 3-44

IFX_UPDDESC 3-44

IFX_XASTDCOMPLIANCE_XAEND 3-45

IFX_XFER_SHMBASE 3-45

IMCADMIN 3-46

IMCCONFIG 3-46

IMCSERVER 3-46

INF_ROLE_SEP 3-52

INFORMIXC 3-47

INFORMIXCONCSMCFG 3-47

INFORMIXCONRETRY 3-47

INFORMIXCONTIME 3-48

INFORMIXCPPMAP 3-49

INFORMIXDIR 3-49

INFORMIXOPCACHE 3-49

INFORMIXSERVER 3-50

INFORMIXSHMBASE 3-51

INFORMIXSQLHOSTS 3-51

INFORMIXSTACKSIZE 3-52

INFORMIXTERM 3-52

INTERACTIVE_DESKTOP_OFF 3-53

ISM_COMPRESSION 3-54

ISM_DEBUG_FILE 3-54

ISM_DEBUG_LEVEL 3-54

ISM_ENCRYPTION 3-54

ISM_MAXLOGSIZE 3-55

ISM_MAXLOGVERS 3-55

JAR_TEMP_PATH 3-55

Index X-7

Environment variables (continued)
JAVA_COMPILER 3-55

JVM_MAX_HEAP_SIZE 3-56

LD_LIBRARY_PATH 3-56

LIBERAL_MATCH 3-56

LIBPATH 3-57

listed alphabetically 3-10

listed by topic 3-68

manipulating in Windows environments 3-8

modifying settings 3-6

NODEFDAC 3-57

ONCONFIG 3-57

OPT_GOAL 3-59

OPTCOMPIND 3-58

OPTMSG 3-59

OPTOFC 3-59

overriding a setting 3-5, 3-35

PATH 3-60

PDQPRIORITY 3-60

PLCONFIG 3-62

PLOAD_LO_PATH 3-62

PLOAD_SHMBASE 3-62

PSORT_DBTEMP 3-63

PSORT_NPROCS 3-63

RTREE_COST_ADJUST_VALUE 3-64

rules of precedence in UNIX 3-7

rules of precedence in Windows 3-10

scope of reference 3-8

SERVER_LOCALE 3-13

setting 3-8

at the command line 3-4

in a configuration file 3-4

in a login file 3-4

in a shell file 3-5

in Windows environments 3-8

with the System applet 3-8

setting in autoexec.bat 3-9

SHLIB_PATH 3-65

standard UNIX system 3-3

STMT_CACHE 3-65

TERM 3-65

TERMCAP 3-66

TERMINFO 3-66

THREADLIB 3-67

TOBIGINT 3-67

types of 3-3

unsetting 3-6, 3-9, 3-35

USETABLENAME 3-67

view current setting 3-6

where to set 3-5

XFER_CONFIG 3-67

Equality (=) operator 2-9

Era-based dates 3-33

Error message files 3-23

esql command 3-16, 3-47

ESQL/C
DATETIME routines 3-31

esqlc command 3-16

long identifiers 3-42

message chaining 3-59

multithreaded applications 3-67

program compilation order 3-16

Exact numeric data types 1-58

Executable programs 3-60

Execute privilege 1-36, 3-57

Explicit cast 1-14, 2-44

Explicit pathnames 3-9, 3-28

Explicit temporary tables 3-29

Exponent 2-14

Exponential notation 2-13

Export support function 2-39

export utility 3-5

export_binary() support function 2-39

Expression-based fragmentation 1-28, 3-19, 3-22

EXT_DIRECTIVES configuration parameter 1-23, 3-41

EXTEND function 2-35

Extended data types 1-55, 2-38, B-13

Extended Parallel Server (XPS) 1-8, 3-10, B-1

Extensible Markup Language (XML) 2-8

Extension checking (DBANSIWARN) 3-17

Extents, changing size 1-8

External database 1-46

External database server 1-46

External directives for query optimization 3-41

External routines 1-38

External tables
sysextcols data 1-26

sysextdfiles data 1-26

sysexternal data 1-27

syssyntable data 1-46

systables data 1-48

External view 1-46

extspace 1-11

F
Fact table

dimensional example B-2

in push-down hash joins 3-38

FALSE setting
BOOLEAN value 2-6

CPFIRST 3-16

ISM_COMPRESSION 3-54

Farsi locales 2-7

FET_BUF_SIZE environment variable 3-15, 3-36

Fetch buffer 3-36

Fetch buffer size 3-15, 3-36

FETCH statement 3-59

Field delimiter
DBDELIMITER 3-22

Field of a ROW data type 2-40

Field qualifier
DATETIME values 2-10

EXTEND function 2-35

INTERVAL values 2-16

Fields of a ROW data type 2-40

File extensions
.a 3-42

.cfg 3-47

.cmd 3-10

.ec 3-16

.ecp 3-16

.iem 3-24

.jar 3-55

.rc 3-4, 3-7, 3-35, 3-40

.so 3-42

.sql 1-57, 3-26, 3-27, 3-35, B-1, B-4

.std 3-14, 3-58, 3-65

.xps 3-58

Files
environment configuration files 3-7

installation directory 3-49

permission settings 3-4

shell 3-5

X-8 IBM Informix Guide to SQL: Reference

Files (continued)
temporary 3-29, 3-31, 3-63

temporary for SE 3-31

termcap, terminfo 3-52, 3-66

FILETOBLOB function 2-5

FILETOCLOB function 2-9

Filtering mode 1-34, 1-53

Finalization function 1-10

FIXED column format 1-26, 1-27

Fixed point decimal 2-13, 2-20, 3-24

Fixed-length UDT 1-56

FLOAT data type
built-in casts 2-42

defined 2-15

display format 3-23, 3-24

Floating-point decimal 2-13, 2-15, 2-28, 3-23

Foreign key A-6, B-2

Formatting
DATE values with DBDATE 3-21

DATE values with GL_DATE 3-33

DATETIME values with DBTIME 3-31

DATETIME values with GL_DATETIME 3-33

DECIMAL(p) values with DBFLTMASK 3-23

FLOAT values with DBFLTMASK 3-23

MONEY values with DBMONEY 3-24

SMALLFLOAT values with DBFLTMASK 3-23

Formatting mask
with DBDATE 3-20

with DBFLTMASK 3-23

with DBMONEY 3-24

with DBTIME 3-31

with GL_DATE 3-33

with GL_DATETIME 3-33

FRACTION keyword
DATETIME qualifier 2-10

INTERVAL qualifier 2-17

FRAGMENT BY clause 3-30

Fragmentation
distribution strategy 1-28

expression 1-28, 3-19, 3-22

list 1-28

PDQPRIORITY environment variable 3-61

PSORT_NPROCS environment variable 3-64

round robin 1-28

setting priority levels for PDQ 3-60

sysfragauth data 1-27

sysfragments data 1-28

FROM keyword 1-7, 1-15

Function keys 3-52

Functional index 1-31, 2-40

Functions
for BLOB columns 2-5

for CLOB columns 2-9

for MULTISET columns 2-21

support for complex types 2-39

fwritable gcc option 3-47

G
gcc compiler 3-47

Generalized-key index
sysindexes data 1-30

sysnewdepend data 1-33

sysrepository data 1-41

Generic B-trees 1-31

geography table in sales_demo database B-3

GET DIAGNOSTICS statement 1-25

getenv utility 3-4

GL_COLLATE table 1-50

GL_CTYPE table 1-50

GL_DATE environment variable 2-10, 3-20, 3-21

GL_DATETIME environment variable 2-12, 3-20

Global Language Support (GLS) 3-25

Global network buffer pool 3-42

GLOBAL_DETACH_INFORM environment variable 3-37

Globally detached index 1-29

GLS environment variables 3-7

GNU C compiler 3-47

GRANT statement 1-42

Graphic characters 3-52

Greenwich Mean Time (GMT) 3-37

GROUP BY clause 2-6, 2-29, 3-30

Group informix 3-24

H
Hash-join 3-39, 3-58

Hashed columns 1-28

Hashing parameters 1-46

Heap size 3-56

Hebrew locales 2-7

Hexadecimal digits 3-22

HIGH INTEG keywords
ALTER TABLE statement 2-33

CREATE TABLE statement 2-33

HIGH keyword
PDQPRIORITY 3-61

UPDATE STATISTICS 1-8, 1-24

High-Performance Loader 3-26, 3-62

Histogram 1-24

Host language 1-59

Host variable 2-5, 2-6, 2-29, 2-40

HOUR keyword
DATETIME qualifier 2-10

INTERVAL qualifier 2-17

HP-UX operating system 3-65

HTML (Hypertext Markup Language) 2-8

Hybrid fragmentation strategy 1-29

Hyphen
DATETIME delimiter 2-11

INTERVAL delimiter 2-18

I
I/O overhead 3-65

IBM Informix Dynamic Server (IDS) 1-8

IBM Informix ESQL/C 3-15, 3-21, 3-31, 3-42, 3-59

IBM Informix Extended Parallel Server (XPS) 1-8, 3-10

IBM Informix Storage Manager (ISM) 3-54, 3-55

IBM_XPS_PARAMS environment variable 3-37

IDS (Informix Dynamic Server) 1-8

IFMX_CART_ALRM environment variable 3-38

IFMX_OPT_FACT_TABS environment variable 3-38

IFMX_OPT_NON_DIM_TABS environment variable 3-39

IFX_DEF_TABLE_LOCKMODE environment variable 3-40

IFX_DIRECTIVES environment variable 3-40

IFX_EXTDIRECTIVES environment variable 1-23, 3-41

IFX_LONGID environment variable 3-42

IFX_NETBUF_PVTPOOL_SIZE environment variable 3-42

IFX_NETBUF_SIZE environment variable 3-43

IFX_NO_TIMELIMIT_WARNING environment variable 3-43

IFX_NODBPROC environment variable 3-43

IFX_NOT_STRICT_THOUS_SEP environment variable 3-43

Index X-9

IFX_ONTAPE_FILE_PREFIX environment variable 3-44

IFX_PAD_VARCHAR environment variable 3-44

IFX_UPDDESC environment variable 3-44

IFX_XASTDCOMPLIANCE_XAEND environment

variable 3-45

IFX_XFER_SHMBASE environment variable 3-45

imcadmin administrative tool 3-46

IMCADMIN environment variable 3-46

IMCCONFIG environment variable 3-46

IMCSERVER environment variable 3-46

IMPEX data type 2-44

IMPEXBIN data type 2-44

Implicit cast 1-14, 2-43

Implicit connection 3-50

Implicit temporary tables 3-29

import_binary() support function 2-39

import() support function 2-39

IN clause 3-30

IN keyword 1-28, 2-6, 2-21, 2-25, 2-27, 2-29, 2-46

IN TABLE storage option 3-34

Index
attached 1-29, 3-20, 3-34, 3-64

B-tree 1-31, 3-34

clustered 1-30, 1-31

composite 1-30, 1-31

default values for attached 3-64

descending 1-31

detached 3-34

distribution scheme 3-34

fragmented 1-28

functional 1-31, 2-40

generalized-key 1-30, 1-33, 1-41

globally detached 1-29, 3-37

nonfragmented 3-34

of data types 2-3

of environment variables 3-68

of system catalog 1-8

R-Tree 3-34

sysindexes data 1-30

sysindices data 1-31

sysobjstate data 1-33

threads for sorting 3-64

unique 1-22, 1-30, 2-25, 2-26

Index privilege 1-47

Indexkey structure 1-31

Indirect typing 2-25, 2-26

Industry standards, compliance with 1-59

INF_ROLE_SEP environment variable 3-52

Information Schema views
accessing 1-57

columns 1-58

defined 1-56

generating 1-57

server_info 1-59

sql_languages 1-59

tables 1-58

Informational messages 1-25

Informix extension checking (DBANSIWARN) 3-17

informix owner name 1-8, 1-14, 1-24, 1-30, 1-31, 1-48, 3-24,

3-52

informix.rc file 3-4, 3-7, 3-40

INFORMIXC environment variable 3-47

INFORMIXCONCSMCFG environment variable 3-47

INFORMIXCONRETRY environment variable 3-47

INFORMIXCONTIME environment variable 3-48

INFORMIXCPPMAP environment variable 3-49

INFORMIXDIR environment variable 3-49

INFORMIXOPCACHE environment variable 3-49

INFORMIXSERVER environment variable 3-50

INFORMIXSHMBASE environment variable 3-51

INFORMIXSTACKSIZE environment variable 3-52

INFORMIXTERM environment variable 3-52

Inheritance hierarchy 1-32, 2-24

Initialization function 1-10, 1-42

Input support function 2-19

input() support function 2-39

Insert privilege 1-28, 1-47, 3-57

INSERT statements 1-50, 1-53, 2-11, 2-39, 3-17, 3-21

Insert trigger 1-52

Installation directory 3-49

INSTEAD OF trigger 1-52

INT8 data type
built-in casts 2-42

defined 2-16

using with SERIAL8 2-26

INTEG keyword 2-33

INTEGER data type
built-in casts 2-42

defined 2-16

length (syscolumns) 1-19

Intensity attributes 3-52

INTERACTIVE_DESKTOP_OFF environment variable 3-53

Internationalized trace messages 1-50

Interprocess communications (IPC) 3-51

INTERVAL data type
defined 2-16

field delimiters 2-18

in expressions 2-33, 2-34, 2-37, 2-38

length (syscolumns) 1-20

ipcshm protocol 3-51

IS NULL operator 2-6, 2-29

ISM_COMPRESSION environment variable 3-54

ISM_DEBUG_FILE environment variable 3-54

ISM_DEBUG_LEVEL environment variable 3-54

ISM_ENCRYPTION environment variable 3-54

ISM_MAXLOGSIZE environment variable 3-55

ISM_MAXLOGVERS environment variable 3-55

ISO 8859-1 code set 1-60

Isolation level 1-60, 3-58

items table in stores_demo database A-2

items table in superstores_demo database B-8

Iterator functions 1-10

J
Japanese eras 3-33

Jar management procedures 3-55

JAR_TEMP_PATH environment variable 3-55

Java virtual machine (JVM) 3-14, 3-55, 3-56

JAVA_COMPILER environment variable 3-55

JIT compiler 3-56

Join columns A-5, B-15

Join methods 3-58

Join operations 1-8, 3-30

Join, Cartesian 3-38

JVM_MAX_HEAP_SIZE environment variable 3-56

K
KEEP ACCESS TIME keywords

ALTER TABLE statement 2-33

CREATE TABLE statement 2-33

X-10 IBM Informix Guide to SQL: Reference

Key
foreign A-6, B-2

generalized 1-33, 1-41

primary 1-21, 1-41, 1-53, A-5, B-5

Key scan 1-11

Keyboard I/O
INFORMIXTERM setting 3-52

TERM setting 3-65

TERMCAP setting 3-66

TERMINFO setting 3-66

Korn shell 3-5

L
Language

C 1-42, 3-16, 3-47

C++ 3-49

CLIENT_LOCALE setting 3-21

DBLANG setting 3-23

Extensible Markup Language (XML) 2-8

Hypertext Markup Language (HTML) 2-8

Informix ESQL/C 2-33, 2-40, 3-67

Java 3-14, 3-55, 3-56

sql_languages information schema view 1-59

Stored Procedure Language (SPL) 2-39, 3-19, 3-22

syslangauth data 1-32

sysroutinelangs data 1-42

Large-object data type
defined 2-32

listed 2-31

LD_LIBRARY_PATH environment variable 3-56

Leaf pages 1-29

LIBERAL_MATCH environment variable 3-56

libos.a library 3-42

LIBPATH environment variable 3-57

LIKE keyword of SPL 2-25, 2-26

LIKE operator 2-6, 2-29, 2-46, 3-57

Linearized code 1-51

List
of data types 2-3

of environment variables 3-10

of environment variables, by topic 3-68

of system catalog tables 1-8

LIST data type, defined 2-18

LOAD statement 2-5, 2-6, 2-29, 3-22

Locales
collation order 1-50, 2-31

multibyte 2-7

of trace messages 1-50

right-to-left 2-7

specifying 3-68, 3-71

Lock-table overflow 3-40

LOCKMODE keyword 3-40

LOCOPY function 2-5, 2-9

LOG keyword
ALTER TABLE statement 2-33

CREATE TABLE statement 2-33

Logging mode 1-16

Long identifiers
client version 3-42

IFX_LONGID setting 3-42

Information Schema views 1-58

LOTOFILE function 2-5, 2-9

LOW keyword
PDQPRIORITY 3-61

UPDATE STATISTICS 1-24

Lowercase mode codes 1-39

Lowercase privilege codes 1-6, 1-16, 1-27, 1-47, 1-55

LVARCHAR data type
casting opaque types 2-44

coltype code 1-19

defined 2-19

M
Machine notes 3-52

Magnetic storage media 1-14

Mantissa precision 1-58, 2-13

manufact table in superstores_demo database B-10

Map file for C++ programs 3-49

MATCHES operator 2-6, 2-29, 2-31, 2-46, 3-57

MaxConnect 3-46, 3-47

MEDIUM keyword 1-8, 1-21, 1-24

Membership operator 2-46

Memory cache, for staging blobspace 3-49

Message file
specifying subdirectory with DBLANG 3-23

XBSA 3-54

Messages
chaining 3-59

error in syserrors 1-25

optimized transfers 3-59

reducing requests 3-59

trace message template 1-50

warning in syserrors 1-25

mi_collection_card() function 2-19, 2-21, 2-27

mi_db_error_raise() function 1-25

Microsoft C compiler 3-47

MINUTE keyword
DATETIME qualifier 2-10

INTERVAL qualifier 2-17

MITRACE_OFF configuration parameter 1-50, 1-51

mkdir utility 3-24

MODERATE INTEG keywords
ALTER TABLE statement 2-33

CREATE TABLE statement 2-33

Modifiers
CLASS 1-39

COSTFUNC 1-39

HANDLESNULLS 1-39

INTERNAL 1-39

NEGATOR 1-39

NOT VARIANT 1-39

PARALLELIZABLE 1-39

SELCONST 1-39

STACK 1-39

VARIANT 1-39

MODIFY NEXT SIZE keywords 1-8

MONEY data type
built-in casts 2-42

defined 2-20

display format 3-24

international money formats 2-20

length (syscolumns) 1-20

MONTH keyword
DATETIME qualifier 2-10

INTERVAL qualifier 2-17

Multibyte characters
CLOB data type 2-9

VARCHAR data type 2-31

MULTISET data type
constructor 2-39

defined 2-21

Index X-11

N
N setting

sysroleauth.is_grantable 1-42

Named ROW data type
casting permitted 2-45

defined 2-23

defining 2-23

equivalence 2-23

inheritance 1-32, 2-23

typed tables 2-23

NCHAR data type
collation order 2-21

conversion to CHAR 3-26

defined 2-21

multibyte characters 2-21

Negator functions 1-39

Nested dot notation 2-40

Nested-loop join 3-58

Network buffers 3-43

Network environment variable, DBPATH 3-26

NFS directory 3-31

NO KEEP ACCESS TIME keywords
ALTER TABLE statement 2-33

CREATE TABLE statement 2-33

no setting of NODEFDAC 3-57

NODE configuration parameter 3-58

NODEFDAC environment variable 3-57

NOLOG keyword
ALTER TABLE statement 2-33

CREATE TABLE statement 2-33

NONE setting
ISM_ENCRYPTION 3-55

JAVA_COMPILER 3-56

Nonprintable characters
CHAR data type 2-8

TEXT data type 2-29

VARCHAR data type 2-30

NOT NULL constraint
collection elements 2-19, 2-21, 2-27, 2-39

syscoldepend data 1-17

sysconstraints data 1-22

NOT NULL keywords 2-6, 2-19, 2-29

NOT operator 2-46

NULL value
allowed or not allowed 1-10, 1-19

BOOLEAN literal 2-6

BYTE data type 2-6

TEXT data type 2-29

Numeric data types
casting between 2-42

casting to character types 2-42

listed 2-31

NVARCHAR data type
collation order 2-22

conversion to VARCHAR 3-26

defined 2-22

length (syscolumns) 1-20

multibyte characters 2-22

O
Object mode of database objects 1-33

Object-relational schema B-1

ODBC driver 3-56, 3-65

OFF setting
IFX_DIRECTIVES 3-40, 3-41

OFF setting (continued)
PDQPRIORITY 3-61

ON setting
IFX_DIRECTIVES 3-40, 3-41

ON-Bar utility 3-54

ONCONFIG environment variable 3-57

onconfig.std file 3-58, 3-65

onconfig.xps file 3-58

oninit command 3-40

Online transaction processing (OLTP) 1-29

onload utility 2-5, 2-6, 2-29

onpload utility 3-26, 3-62

onstat utility 3-3, 3-38

onutils utility 3-37

Opaque data types
cast matrix 2-45

comparing 2-44

defined 2-22

smart large objects 2-32

storage 2-19

sysxtddesc data 1-54

sysxtdtypes data 1-55

OPCACHEMAX configuration parameter 3-50

OPEN statement 3-59

Operator class
sysams data 1-11

sysindices data 1-32

sysopclasses data 1-34

Operator precedence 2-45

OPT_GOAL configuration parameter 3-60

OPT_GOAL environment variable 3-59

OPTCOMPIND configuration parameter 3-58

OPTCOMPIND environment variable 3-58

Optical cluster
INFORMIXOPCACHE setting 3-50

sysblobs.type 1-14

sysopclstr data 1-35

Optimizer
setting IFX_DIRECTIVES 3-41

setting IFX_EXTDIRECTIVES 3-41

setting OPT_GOAL 3-60

setting OPTCOMPIND 3-58

setting OPTOFC 3-59

sysdistrib data 1-24

Optimizer directives
sysdirectives data 1-23

OPTMSG environment variable 3-59

OPTOFC environment variable 3-59

OR operator 2-46

ORDER BY clause 2-6, 2-29, 3-30

orders table in superstores_demo database B-8, B-9, B-10

Ordinal positions 2-18

Output support function 2-19

output() support function 2-39

Overflow error 2-13

Owner routines 1-39, 3-57

P
PAGE lock mode 1-48, 3-40

Parallel distributed queries, setting with PDQPRIORITY 3-60

Parallel sorting, setting with PSORT_NPROCS 3-63

Partial characters 2-7

PATH environment variable 3-60

Pathname
for C compiler 3-47

for C++ map file 3-49

X-12 IBM Informix Guide to SQL: Reference

Pathname (continued)
for client or shared libraries 3-56

for concsm.cfg file 3-47

for connectivity information 3-51

for database server 3-26

for dynamic-link libraries 3-57, 3-65

for environment-configuration file 3-7

for executable programs 3-60

for installation 3-49

for message files 3-23

for parallel sorting 3-63

for remote shell 3-28

for smart-large-object handles 3-62

for temporary .jar files 3-55

for termcap file 3-66

for terminfo directory 3-66

for XBSA messages 3-54

for xfer_config file 3-68

separator symbols 3-60

PDQ
OPTCOMPIND environment variable 3-58

PDQPRIORITY environment variable 3-60

PDQPRIORITY configuration parameter 3-61

Percentage (%) symbol 3-31

Period
DATE delimiter 3-21

DATETIME delimiter 2-11

INTERVAL delimiter 2-18

Permissions 3-4, 3-24

PLCONFIG environment variable 3-62

plconfig file 3-62

PLOAD_LO_PATH environment variable 3-62

PLOAD_SHMBASE environment variable 3-62

PostScript 2-8

Precedence rules
for casts 2-44

for lock mode 3-40

for SQL operators 2-45

for UNIX environment variables 3-7

for Windows environment variables 3-10

Precision
of currency values 2-20

of numbers 1-58, 2-13, 2-15, 2-16, 2-28

of time values 2-10, 2-16, 2-34, 2-37

PREPARE statement 1-49

Prepared statement 1-49

Primary access method 1-11, 1-46

Primary key 1-22, 1-41, 1-53, 2-25, 2-26, A-1, B-5

Primary thread 3-52

printenv utility 3-6

Printing with DBPRINT 3-28

Private environment-configuration file 3-7, 3-36

Private network buffer pool 3-42, 3-43

Private synonym 1-48

Privilege
default table privileges 3-57

on columns (syscolauth table) 1-16

on procedures and functions (sysprocauth table) 1-36

on table fragments (sysfragauth table) 1-27

on tables (systabauth table) 1-47

on the database (sysusers table) 1-52

on UDTs and named row types (sysxtdtypeauth) 1-55

product table in sales_demo database B-3

Protected routines 1-40

Protected rows 2-15

Pseudo-machine code (p-code) 1-36

PSORT_DBTEMP environment variable 3-63

PSORT_NPROCS environment variable 3-63

Public synonym 1-46, 1-48

public user name 1-57

Purpose functions 1-11

Push-down hash join
dimension tables 3-39

fact tables 3-38

putenv utility 3-4

Q
Qualifier field

DATETIME 2-10

EXTEND 2-37

INTERVAL 2-17

UNITS 2-37

Query optimizer
defined 1-8

directives 3-40, 3-41

push-down hash-join plans 3-39

sysprocplan data 1-40

Quoted string
DATE and DATETIME literals 2-36

DELIMIDENT setting 3-35

INTERVAL literals 2-18

invalid with BYTE 2-7

invalid with TEXT 2-29

LVARCHAR data type 2-19

R
R-tree index 3-34, 3-64

Read committed 1-60

Read uncommitted 1-60

recv() support function 2-39

References privilege 1-16, 1-47

Referential constraint 1-22, 1-41, 1-53, A-5, B-15

region table in superstores_demo database B-10

Reject file 1-27

Relational operators 2-8, 2-46

Remote database server 3-15, 3-36

Remote shell 3-28

Remote tape devices 3-29

RENAME SEQUENCE statement 3-67

Repeatable read 3-58

Replica identifier 1-28

Resource contention 3-61

Resource Grant Manager (RGM) 1-29

Resource privilege 1-7, 1-52

REVOKE statement 1-47

Right-to-left locales 2-7

Role
default role 1-52

INF_ROLE_SEP setting 3-52

sysroleauth data 1-42

sysusers data 1-52

Role separation 3-52

Round-robin fragmentation 1-28

Routines
DataBlade API routine 1-50

DATETIME formatting 3-31

identifier 1-37

owner 1-38

privileges 1-36

protected 1-40

Stored Procedure Language (SPL) 2-39

Index X-13

Routines (continued)
syserrors data 1-25

syslangauth data 1-32

sysprocauth data 1-36

sysprocbody data 1-36

sysprocedures data 1-37

sysprocplan data 1-40

sysroutinelangs data 1-42

systraceclasses data 1-50

systracemsgs data 1-50

ROW data types 2-40

casting permitted 2-45

equivalence 2-23

fields 1-13, 2-40

inheritance 1-32, 2-23

inserting values 2-25

named 2-23, 2-40

sysattrtypes data 1-13

sysxtddesc data 1-54

sysxtdtypes data 1-55

unnamed 2-24, 2-40

ROW lock mode 1-48, 3-40

ROWIDS 1-11

RTNPARAMTYPES data type 1-38

RTREE_COST_ADJUST_VALUE environment variable 3-64

Runtime
warnings (DBANSIWARN) 3-17

S
sales table in sales_demo database B-3

sales_demo database
customer table columns B-3

defined B-2

geography table columns B-3

product table columns B-3

sales table columns B-3

time table columns B-4

sales_rep table in superstores_demo database B-11

Sample size 1-24

SAVE EXTERNAL DIRECTIVES statement 3-41

sbspaces
defined 2-8, 2-33

name 3-35

sysams data 1-11

syscolattribs data 1-16

systabamdata data 1-47

Scale of numbers 1-59, 2-13, 3-23

Scan cost 1-12

Schema Tools 3-8

Screen reader
reading syntax diagrams C-1

SECOND keyword
DATETIME qualifier 2-10

INTERVAL qualifier 2-17

Secondary-access methods 1-11, 1-21, 1-32, 1-34, 2-22

SELECT INTO TEMP statement 3-30

Select privilege 1-16, 1-47, 1-57, 3-57

SELECT statements 1-7, 1-24

SELECT triggers 1-52

Selectivity constant 1-39

Self-join 1-5

send() support function 2-39

SENDRECV data type 2-44

Sequence
syssequences data 1-45

syssynonyms data 1-46

Sequence (continued)
syssyntable data 1-46

systabauth data 1-47

systables data 1-48

Sequential integers
aggid code 1-10

am_id code 1-11

classid code 1-50

constrid code 1-22

extended_id code 1-56

id code 1-23, 1-25

langid code 1-42

msgid code 1-50

opclassid code 1-34

planid code 1-40

procid code 1-38

seqid code 1-45

SERIAL data type 2-25

SERIAL8 data type 2-26

tabid code 1-4, 1-45, 1-48

trigid code 1-52

udr_id code 1-15

SERIAL data type
defined 2-25

inserting values 2-25

length (syscolumns) 1-20

resetting values 2-25

SERIAL8 data type
assigning a starting value 2-26

defined 2-26

inserting values 2-26

length (syscolumns) 1-20

resetting values 2-26

using with INT8 2-26

Serializable transactions 1-60

SET ALL_MUTABLES statement 3-62

SET data type, defined 2-27

SET ENVIRONMENT statement 3-4, 3-8, 3-58, 3-62

SET OPTIMIZATION statement 3-60

SET PDQPRIORITY statement 3-61

SET SESSION AUTHORIZATION statement 1-39

SET STMT_CACHE statement 3-65

SET TEMP TABLE_SPACE statement 3-30

set utility 3-9

setenv utility 3-6

Setnet32 3-10

Setnet32 utility 3-8

Setting environment variables
in UNIX 3-4

in Windows 3-8

SGML (Standard Graphic Markup Language) 2-8

Shared environment-configuration file 3-7

Shared libraries 3-42

Shared memory
INFORMIXSHMBASE 3-51

PLOAD_SHMBASE 3-62

Shell
remote 3-28

search path 3-60

setting environment variables in a file 3-5

specifying with DBREMOTECMD 3-28

SHLIB_PATH environment variable 3-65

shortcut keys
keyboard C-1

Simple large objects
defined 2-32

location (sysblobs) 1-13

X-14 IBM Informix Guide to SQL: Reference

Single-precision floating-point number 2-22, 2-28

SMALLFLOAT data type
built-in casts 2-42

defined 2-28

display format 3-23, 3-24

SMALLINT data type
built-in casts 2-42

defined 2-28

length (syscolumns) 1-19

Smart large objects
defined 2-32

syscolattribs data 1-15

Smart-large-object handles 3-62

SOME operator 2-46

Sort-merge join 3-58

Sorting
DBSPACETEMP environment variable 3-29

PSORT_DBTEMP environment variable 3-63

PSORT_NPROCS environment variable 3-63

Space
DATETIME delimiter 2-11

INTERVAL delimiter 2-18

Spatial queries 3-65

SPL routines 1-37, 2-39, 3-19, 3-22

SPL variables 2-39

SQL (Structured Query Language) 3-17

SQL character set 3-35

SQL Communications Area 3-17

sqlhosts file 3-46, 3-50, 3-51

SQLHOSTS subkey 3-51

SQLSTATE values 1-25

SQLWARN array 3-17

Stack size 1-39, 3-52

STACKSIZE configuration parameter 3-52

Staging-area blobspace 3-50

Standard Graphic Markup Language (SGML) 2-8

START DATABASE statement 3-26

STAT data type 1-24

state table in stores_demo database A-4

state table in superstores_demo database B-11

Statement cache 3-65

Statements of SQL
ALTER OPTICAL CLUSTER 1-36

ALTER SEQUENCE 3-67

ALTER TABLE 1-8, 1-49, 3-67

CLOSE 3-59

CONNECT 3-26, 3-27, 3-48, 3-50

CREATE ACCESS METHOD 1-11

CREATE AGGREGATE 1-10

CREATE CAST 1-14, 2-43

CREATE DATABASE 3-27

CREATE DISTINCT TYPE 1-55, 2-15, B-13

CREATE EXTERNAL TABLE 1-26, 1-27

CREATE FUNCTION 1-42, 3-57

CREATE IMPLICIT CAST B-13

CREATE INDEX 1-3, 1-30, 1-31, 1-33, 1-41, 1-49, 3-34

CREATE OPAQUE TYPE 1-55, 2-22

CREATE OPERATOR CLASS 1-34

CREATE OPTICAL CLUSTER 1-35, 1-36

CREATE PROCEDURE 1-36, 1-42

CREATE ROLE 1-42, 1-52

CREATE ROUTINE FROM 1-42, 1-45

CREATE ROW TYPE 1-55, 2-23

CREATE SCHEMA AUTHORIZATION 1-3

CREATE SEQUENCE 1-45

CREATE SYNONYM 1-46

CREATE TABLE 1-22, 1-41, 1-46

Statements of SQL (continued)
CREATE TRIGGER 1-51

CREATE VIEW 1-53

DATABASE 3-27

DECLARE 3-59

DELETE 1-8, 1-40, 1-53

DESCRIBE 3-44

DROP CAST B-13

DROP DATABASE 3-27

DROP FUNCTION 1-39

DROP INDEX 1-49

DROP OPTICAL CLUSTER 1-36

DROP PROCEDURE 1-39

DROP ROUTINE 1-39

DROP ROW TYPE 2-23

DROP SEQUENCE 3-67

DROP TABLE 3-67

DROP TYPE 2-15, 2-22

DROP VIEW 1-57, 3-67

FETCH 3-59

GET DIAGNOSTICS 1-25

GRANT 1-27, 1-42, 1-47, 1-57

INSERT 1-53, 2-39, 3-17, 3-21

LOAD 2-6, 2-29, 3-17, 3-22

OPEN 3-59

PREPARE 1-49

RENAME SEQUENCE 3-67

RENAME TABLE 3-67

REVOKE 1-47, 1-52

SELECT 1-7, 1-24, 1-40, 3-30

SET ALL_MUTABLES 3-62

SET ENVIRONMENT 3-58, 3-62

SET ENVIRONMENT CLIENT_TZ 3-37, 3-38

SET OPTIMIZATION 3-60

SET PDQPRIORITY 3-61

SET SESSION AUTHORIZATION 1-39

SET STMT_CACHE 3-65

SET TEMP TABLE_SPACE 3-30

START DATABASE 3-27

UNLOAD 3-17, 3-22

UPDATE 2-6, 2-29, 3-17

UPDATE STATISTICS 1-8, 3-33

UPDATE STATISTICS FOR PROCEDURE 1-40

static option of ESQL/C 3-42

STMT_CACHE configuration parameter 3-65

STMT_CACHE environment variable 3-65

STMT_CACHE keyword 3-65

stock table in stores_demo database A-3

stock table in superstores_demo database B-11

stock_discount table in superstores_demo database B-12

Storage identifiers 3-35

Stored procedure language (SPL) 1-37, 2-39, 3-19

stores_demo database
call_type table columns A-4

catalog table columns A-3

cust_calls table columns A-4

customer table columns A-1

data values A-10

defined A-1

items table columns A-2

join columns A-5

manufact table columns A-4

primary-foreign key relationships A-5

stock table columns A-3

structure of tables A-1

strings option of gcc 3-47

Structured Query Language (SQL) 3-17

Index X-15

Subscripts 2-7, 2-29

SUBSTRING function 1-7

Subtable 1-28, 1-32, B-8, B-14

Subtype 1-32, 2-23

Summary
of data types 2-3

of environment variables, by topic 3-68

of environment variables, by type of server 3-10

of system catalog tables, by type of server 1-8

superstores_demo database
call_type table columns B-5

catalog table columns B-5

cust_calls table columns B-6

customer table columns B-6, B-7

defined B-4

items table columns B-8

manufact table columns B-10

orders table columns B-8, B-9, B-10

primary-foreign key relationships B-15, B-17

sales_rep table columns B-11

stock table columns B-11

stock_discount table columns B-12

structure of tables B-5

Supertable 1-32, B-8, B-14

Supertype 1-32, 2-23

Support functions
DISTINCT data types 2-40

OPAQUE data types 2-22, 2-39

routine identifier 1-37

Symbol table 1-38

Synonym
syssynonyms data 1-45

syssyntable data 1-46

systables data 1-48

USETABLENAME setting 3-67

Syntax diagrams
reading in a screen reader C-1

sysaggregates system catalog table 1-10

sysams system catalog table 1-11

sysattrtypes system catalog table 1-13

sysblobs system catalog table 1-13

sysbuiltintypes table 1-3

syscasts system catalog table 1-14, 2-41

syschecks system catalog table 1-15

syscheckudrdep system catalog table 1-15

syscolattribs system catalog table 1-15

syscolauth system catalog table 1-16

syscoldepend system catalog table 1-17

syscolumns system catalog table 1-18

sysconstraints system catalog table 1-21

syscrd database 1-3

sysdbclose
disabling with IFX_NODBPROC 3-43

sysdbclose() routine 3-4

sysdbopen
disabling with IFX_NODBPROC 3-43

sysdbopen() routine 3-4

sysdefaults system catalog table 1-22

sysdepend system catalog table 1-23

sysdirectives system catalog table 1-23

sysdistrib system catalog table 1-24

sysdomains system catalog table 1-25

syserrors system catalog table 1-25

sysextcols system catalog table 1-26

sysextdfiles system catalog table 1-26

sysexternal system catalog table 1-27

sysfragauth system catalog table 1-27

sysfragments system catalog table 1-28

sysindexes system catalog table 1-30

sysindexes system catalog tables 1-31

sysinherits system catalog table 1-32

syslangauth system catalog table 1-32

syslogmap system catalog table 1-33

sysmaster database 1-3

initialization 3-3, 3-50

versus system catalog tables 1-3

sysnewdepend system catalog table 1-33

sysobjstate system catalog table 1-33

sysopclasses system catalog table 1-34

sysopclstr system catalog table 1-35

sysprocauth system catalog table 1-36

sysprocbody system catalog table 1-36

sysproccolumns system catalog table 1-37

sysprocedures system catalog table 1-37

sysprocplan system catalog table 1-40

sysreferences system catalog table 1-41

sysrepository system catalog table 1-41

sysroleauth system catalog table 1-42

sysroutinelangs system catalog table 1-42

sysseclabelauth system catalog table 1-45

sysseclabelcomponentelements system catalog table 1-43

sysseclabelcomponents system catalog table 1-42

sysseclabelnames system catalog table 1-45

sysseclabels system catalog table 1-44

syssecpolicies system catalog table 1-43

syssecpolicycomponents system catalog table 1-44

syssecpolicyexemptions system catalog table 1-44

syssequences system catalog table 1-45

syssynonyms system catalog table 1-45

syssyntable system catalog table 1-46

systabamdata system catalog table 1-46

systabauth system catalog table 1-47

systables system catalog table 1-48

System administrator (DBA) 1-3

System applet 3-8

System catalog tables
access methods 1-11, 1-46

accessing 1-7

altering contents 1-8

authorization identifiers 1-52

casts 1-14

columns 1-18

complex data types 1-13, 1-55

constraint violations 1-53

constraints 1-15, 1-17, 1-21

data distributions 1-24

database tables 1-48

default values 1-22

defined 1-2

dependencies 1-23, 1-33

example
syscolauth 1-5

syscolumns 1-4

sysindexes 1-6

systabauth 1-5

systables 1-4

external tables 1-26, 1-27

fragmentation 1-27, 1-28

indexes 1-30, 1-31, 1-41

inheritance 1-32

list of tables 1-8

messages 1-25, 1-50

operator classes 1-34

optical clusters 1-35

X-16 IBM Informix Guide to SQL: Reference

System catalog tables (continued)
privileges 1-16, 1-27, 1-47, 1-52, 1-55

programming languages 1-32, 1-42

referential constraints 1-21, 1-41, 1-53

roles 1-42

routines 1-36, 1-37, 1-40

security label components 1-42

sequence objects 1-45

simple large objects 1-13

smart large objects 1-15

synonyms 1-45, 1-46

trace classes 1-50

trace messages 1-50

triggers 1-51, 1-52

updating 1-8

use by database server 1-3

user-defined aggregates 1-10

User-defined data types 1-54, 1-55

views 1-48, 1-53

System catalogs
sysaggregates 1-10

sysams 1-11

sysattrtypes 1-13

sysblobs 1-13

syscasts 1-14

syschecks 1-15

syscheckudrdep 1-15

syscolattribs 1-15

syscolauth 1-16

syscoldepend 1-17

syscolumns 1-18

sysconstraints 1-21

sysdefaults 1-22

sysdepend 1-23

sysdirectives 1-23

sysdistrib 1-24

sysdomains 1-25

syserrors 1-25

sysextcols 1-26

sysextdfiles 1-26

sysexternal 1-27

sysfragauth 1-27

sysfragments 1-28

sysindexes 1-30

sysindices 1-31

sysinherits 1-32

syslangauth 1-32

syslogmap 1-33

sysnewdepend 1-33

sysobjstate 1-33

sysopclasses 1-34

sysopclstr 1-35

sysprocauth 1-36

sysprocbody 1-36

sysproccolumns 1-37

sysprocedures 1-37

sysprocplan 1-40

sysreferences 1-41

sysrepository 1-41

sysroleauth 1-42

sysroutinelangs 1-42

sysseclabelauth 1-45

sysseclabelcomponentelements 1-43

sysseclabelcomponents 1-42

sysseclabelnames 1-45

sysseclabels 1-44

syssecpolicies 1-43

System catalogs (continued)
syssecpolicycomponents 1-44

syssecpolicyexemptions 1-44

syssequences 1-45

syssynonyms 1-45

syssyntable 1-46

systabamdata 1-46

systabauth 1-47

systables 1-48

systraceclasses 1-50

systracemsgs 1-50

systrigbody 1-51

systriggers 1-51

sysusers 1-52

sysviews 1-53

sysviolations 1-53

sysxadatasources 1-54

sysxasourcetypes 1-54

sysxtddesc 1-54

sysxtdtypeauth 1-55

sysxtdtypes 1-55

SYSTEM() command, on NT 3-53

systraceclasses system catalog table 1-50

systracemsgs system catalog table 1-50

systrigbody system catalog table 1-51

systriggers system catalog table 1-51

sysusers system catalog table 1-52

sysutils database 1-3

sysuuid database 1-3

sysviews system catalog table 1-53

sysviolations system catalog table 1-53

sysxadatasources system catalog table 1-54

sysxasourcetypes system catalog table 1-54

sysxtddesc system catalog table 1-54

sysxtdtypeauth system catalog table 1-55

sysxtdtypes system catalog table 1-55, 2-22, 2-23

T
tabid 1-4, 1-49

Table
changing a column data type 2-41

dependencies, in sysdepend 1-23

fragmented 1-28

hashing parameters 1-46

hierarchy 1-28, 1-32, 2-23, B-14

inheritance, sysinherits data 1-32

lock mode 3-40

nonfragmented 3-34

separate from large object storage 2-32

structure in superstores_demo database B-5

synonyms in syssyntable 1-45

system catalog tables 1-10, 1-55

temporary 3-29, 3-30

temporary in SE 3-31

typed, and named ROW type 2-23

untyped, and unnamed ROW 2-24

Table-based fragmentation 1-28

Table-level privileges
PUBLIC 1-57

sysfragauth data 1-27

systabauth data 1-5, 1-47

Tape management
setting DBREMOTECMD 3-28

Temporary dbspace 3-29

Temporary files 3-30

in SE, specifying directory with DBTEMP 3-31

Index X-17

Temporary files (continued)
setting DBSPACETEMP 3-29

setting PSORT_DBTEMP 3-63

Temporary tables 3-29

in SE, specifying directory with DBTEMP 3-31

specifying dbspace with DBSPACETEMP 3-29

TERM environment variable 3-65

TERMCAP environment variable 3-66

termcap file
setting INFORMIXTERM 3-52

setting TERMCAP 3-66

Terminal handling
setting INFORMIXTERM 3-52

setting TERM 3-65

setting TERMCAP 3-66

setting TERMINFO 3-66

terminfo directory 3-52, 3-66

TERMINFO environment variable 3-66

TEXT data type
casting to CLOB 2-29

collation 2-29

defined 2-28

increasing buffer size 3-17

inserting values 2-29

length (syscolumns) 1-21

nonprintable characters 2-29

queries 2-29

restrictions
in Boolean expression 2-29

with GROUP BY 2-29

with LIKE or MATCHES 2-29

with ORDER BY 2-29

setting buffer size 3-17

sysblobs data 1-13

sysfragments data 1-28

with control characters 2-29

Text editor 3-22

thousands separator 3-43

Thousands separator 2-20

thread flag of ESQL/C 3-67

THREADLIB environment variable 3-67

Time data types
arithmetic 2-34

length (syscolumns) 1-20

listed 2-31

time table in sales_demo database B-4

Time values
DBCENTURY setting 3-18

DBDATE setting 3-20

DBTIME setting 3-31

GL_DATETIME settings 3-33

USEOSTIME parameter 2-12

Time zone, specifying 3-37, 3-38

Time-limited licenses (IFX_NO_TIMELIMIT_WARNING) 3-43

TO keyword
DATETIME qualifier 2-10

EXTEND function 2-35

INTERVAL qualifier 2-17

TOBIGINT environment variable 3-67

TODAY operator 1-22, 3-37

Trace class 1-50

Trace statements 1-50

Trailing blank spaces 3-56

Transaction isolation level 1-60, 3-58

Transaction logging 1-16, 1-60, B-1

Triggers
creation-time value 3-19, 3-22

Triggers (continued)
sysobjstate data 1-33

systrigbody data 1-51

systriggers data 1-51

TRUE setting
BOOLEAN values 2-6

CPFIRST 3-16

ISM_COMPRESSION 3-54

ISM_ENCRYPTION 3-55

sysams table 1-11

Truncation 2-7

TYPE keyword 2-24

U
UDT indexes 3-65

Unary arithmetic operators 2-46

Uncommitted read 1-60

Under privilege 1-47

Unique constraint 2-25, 2-26

Unique index 1-30, 2-25

Unique keys 1-11

Unique numeric values
SERIAL data type 2-25

SERIAL8 data type 2-26

UNITS operator 2-9, 2-34, 2-36, 2-46

units table in superstores_demo database B-12

UNIX
BSD, default print utility 3-28

environment variables 3-3

PATH environment variable 3-60

System V
default print utility 3-28

terminfo libraries 3-52, 3-66

temporary files 3-63

TERM environment variable 3-65

TERMCAP environment variable 3-66

TERMINFO environment variable 3-66

UNLOAD statement 3-17, 3-22

Unnamed ROW data type
declaring 2-24

defined 2-24

inserting values 2-25

unset utility 3-6

unsetenv utility 3-6

Unsetting an environment variable 3-6

Untyped table 1-49

Update privilege 1-16, 1-28, 1-47, 3-57

UPDATE statements 1-53, 2-6, 2-29, 3-44

UPDATE STATISTICS FOR PROCEDURE statement 1-40

UPDATE STATISTICS statement 1-31, 3-33

and DBUPSPACE environment variable 3-33

effect on sysdistrib table 1-24

sysindices (index statistics) 1-36

sysindices data 1-32

update system catalog 1-8

Update trigger 1-52

Uppercase mode codes 1-39

Uppercase privilege codes 1-6, 1-16, 1-27, 1-47, 1-55

Usage privilege 1-55

USEOSTIME configuration parameter 2-12

User environment variable 3-10

User informix 1-8, 1-14, 2-41

User name 1-60

User privileges
syscolauth data 1-16

sysfragauth data 1-27

X-18 IBM Informix Guide to SQL: Reference

User privileges (continued)
syslangauth data 1-32

sysprocauth data 1-36

systabauth data 1-47

sysusers data 1-52

sysxtdtypeauth data 1-55

User-defined aggregates 1-10

User-defined casts 1-14, 2-43

User-defined data types
casting 2-43

casting into built-in type 2-41

opaque 2-41

sysxtddesc data 1-54

sysxtdtypes data 1-55

User-defined routines
casts (syscasts) 1-14

check constraints (syscheckudrdep) 1-15

error messages (syserrors) 1-25

for opaque data types 2-22

functional index 3-34

language authorization (syslangauth) 1-32

privileges 1-36, 3-57

protected 1-39

secondary access method 1-21

sysprocedures data 1-37

USETABLENAME environment variable 3-67

Utilities
archecker 3-14

chkenv 3-5, 3-6

DB-Access 1-7, 1-57, 3-8, 3-17, 3-23, 3-50, B-1

dbexport 3-22

dbload 2-5, 2-6, 2-29

dbschema 1-26, 1-27, 1-40, 3-67

env 3-6

export 3-5

gcc 3-47

getenv 3-4

ifx_getenv 3-8

ifx_putenv 3-8

imcadmin 3-46

load 1-27

lp 3-28

lpr 3-28

MaxConnect 3-47

ON-Bar utility 3-54

oninit 3-40

onload 2-5, 2-6, 2-29

onpload 3-26, 3-62

onstat utility 3-38

onutil 3-38

onutils 3-37

onxfer 3-68

printenv 3-6

putenv 3-4

set 3-9

setenv 3-6

Setnet32 3-8

source 3-5

unset 3-6

unsetenv 3-6, 3-35

vi 3-23

V
VARCHAR data type

collation 2-31

conversion to NVARCHAR 3-25, 3-26

VARCHAR data type (continued)
defined 2-30

length (syscolumns) 1-20

multibyte characters 2-31

nonprintable characters 2-30

storing numeric values 2-31

Variable-length packets 3-44

Variable-length UDT 1-56

VARIANT routine 1-39

vi text editor 3-23

View
columns view 1-58

Information Schema 1-56

server_info view 1-59

sql_languages view 1-59

sysdepend data 1-23

sysindexes view 1-32

syssynonyms data 1-45

syssyntable data 1-46

systabauth data 1-47

systables data 1-48

sysviews data 1-53

tables view 1-58

Violations
sysobjstate data 1-34

sysviolations data 1-53

Virtual machine 3-14, 3-56

Virtual processors 3-64

Visual disabilities
reading syntax diagrams C-1

W
Warning message 1-25, 3-17

WHERE keyword 1-7, 1-15, 2-29

Whitespace characters 3-56

Whitespace in identifiers 3-35

Window borders 3-52

Windows environments
manipulating environment variables 3-8

setting environment variables 3-8

X
X setting

sysams.am_sptype 1-11

systabauth.tabauth 1-47

X/Open
compliance 1-59

Information Schema views 1-57

server_info view 1-59

XBSA
debugging records 3-54

message log file 3-54

shared library 3-54

XFER_CONFIG environment variable 3-67

xfer_config file 3-68

XML (Extensible Markup Language) 2-8

XOR setting 3-55

XPG4 standard 1-58, 1-59

XPS (Extended Parallel Server) 1-8, 3-10, B-1

Y
Y setting

DBDATE 3-21

Index X-19

Y setting (continued)
DBTIME 3-32

sysroleauth.is_grantable 1-42

Year 2000 3-18

YEAR keyword
DATETIME qualifier 2-10

EXTEND function 2-35

INTERVAL qualifier 2-17

Year values, two and four digit 2-12, 3-18, 3-21, 3-32

yes setting
NODEFDAC 3-57

YES setting
columns.is_nullable 1-58

sql_languages.integrity 1-59

Z
Zero (0)

C null as terminator 2-31

DBDATE separator 3-21

DECIMAL scale 2-13

hexadecimal digit 3-22

IFX_DIRECTIVES setting 3-40, 3-41

IFX_LONGID setting 3-42

IFX_NETBUF_PVTPOOL_SIZE setting 3-42

INFORMIXOPCACHE setting 3-50

integer scale 1-59, 2-13

ISM_DEBUG_LEVEL setting 3-54

OPTCOMPIND setting 3-58

OPTMSG setting 3-59

OPTOFC setting 3-59

padding of 1-digit years 3-18

padding with DBFLTMASK 3-23

padding with DBTIME 3-32

PDQPRIORITY setting 3-61

PSORT_NPROCS setting 3-64

STMT_CACHE setting 3-65

sysams values 1-11

sysfragments.hybdpos 1-29

sysindices.nrows 1-31

systables.type_xid 1-49

sysxdtypes values 1-56

zip column B-9

zipcode column A-2, B-9

X-20 IBM Informix Guide to SQL: Reference

����

Printed in USA

SC23-7750-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

ix

Ve
rs

io
n

11
.5

0
IB

M

In

fo
rm

ix

Gu

id
e

to

SQ

L:

Re

fe
re

nc
e

�
�

�

	Contents
	Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	What's New in SQL Reference for Dynamic Server, Version 11.50
	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	How to Provide Documentation Feedback

	Chapter 1. System Catalog Tables
	In This Chapter
	Objects That the System Catalog Tables Track
	Using the System Catalog
	Structure of the System Catalog
	SYSAGGREGATES (IDS)
	SYSAMS (IDS)
	SYSATTRTYPES (IDS)
	SYSBLOBS
	SYSCASTS (IDS)
	SYSCHECKS
	SYSCHECKUDRDEP (IDS)
	SYSCOLATTRIBS (IDS)
	SYSCOLAUTH
	SYSCOLDEPEND
	SYSCOLUMNS
	SYSCONSTRAINTS
	SYSDEFAULTS
	SYSDEPEND
	SYSDIRECTIVES (IDS)
	SYSDISTRIB
	SYSDOMAINS (IDS)
	SYSERRORS (IDS)
	SYSEXTCOLS (XPS)
	SYSEXTDFILES (XPS)
	SYSEXTERNAL (XPS)
	SYSFRAGAUTH (IDS)
	SYSFRAGMENTS
	SYSINDEXES
	SYSINDICES (IDS)
	SYSINHERITS (IDS)
	SYSLANGAUTH (IDS)
	SYSLOGMAP (IDS)
	SYSNEWDEPEND (XPS)
	SYSOBJSTATE (IDS)
	SYSOPCLASSES (IDS)
	SYSOPCLSTR
	SYSPROCAUTH
	SYSPROCBODY
	SYSPROCCOLUMNS
	SYSPROCEDURES
	SYSPROCPLAN
	SYSREFERENCES
	SYSREPOSITORY (XPS)
	SYSROLEAUTH
	SYSROUTINELANGS (IDS)
	SYSSECLABELCOMPONENTS
	SYSSECLABELCOMPONENTELEMENTS
	SYSSECPOLICIES
	SYSSECPOLICYCOMPONENTS
	SYSSECPOLICYEXEMPTIONS
	SYSSECLABELS
	SYSSECLABELNAMES
	SYSSECLABELAUTH
	SYSSEQUENCES (IDS)
	SYSSYNONYMS
	SYSSYNTABLE
	SYSTABAMDATA (IDS)
	SYSTABAUTH
	SYSTABLES
	SYSTRACECLASSES (IDS)
	SYSTRACEMSGS (IDS)
	SYSTRIGBODY
	SYSTRIGGERS
	SYSUSERS
	SYSVIEWS
	SYSVIOLATIONS
	SYSXADATASOURCES
	SYSXASOURCETYPES
	SYSXTDDESC (IDS)
	SYSXTDTYPEAUTH (IDS)
	SYSXTDTYPES (IDS)
	Information Schema (IDS)
	Generating the Information Schema Views
	Accessing the Information Schema Views
	Structure of the Information Schema Views

	Chapter 2. Data Types
	In This Chapter
	Summary of Data Types
	Description of Data Types
	BIGINT
	BIGSERIAL
	BLOB (IDS)
	BOOLEAN (IDS)
	BYTE
	CHAR(n)
	CHARACTER(n)
	CHARACTER VARYING(m,r)
	CLOB (IDS)
	DATE
	DATETIME
	DEC
	DECIMAL
	Distinct (IDS)
	DOUBLE PRECISION
	FLOAT(n)
	IDSSECURITYLABEL
	INT
	INT8
	INTEGER
	INTERVAL
	LIST(e) (IDS)
	LVARCHAR(m) (IDS)
	MONEY(p,s)
	MULTISET(e) (IDS)
	NCHAR(n)
	NUMERIC(p,s)
	NVARCHAR(m,r)
	Opaque (IDS)
	REAL
	ROW, Named (IDS)
	ROW, Unnamed (IDS)
	SERIAL(n)
	SERIAL8(n)
	SET(e) (IDS)
	SMALLFLOAT
	SMALLINT
	TEXT
	VARCHAR(m,r)

	Built-In Data Types
	Large-Object Data Types
	Simple Large Objects
	Smart Large Objects (IDS)

	Time Data Types

	Extended Data Types (IDS)
	Complex Data Types
	Collection Data Types
	ROW Data Types

	Distinct Data Types
	Opaque Data Types

	Data Type Casting and Conversion
	Using Built-in Casts
	Converting from Number to Number
	Converting Between Number and Character
	Converting Between INTEGER and DATE
	Converting Between DATE and DATETIME

	Using User-Defined Casts
	Implicit Casts
	Explicit Casts

	Determining Which Cast to Apply
	Casts for Distinct Types
	What Extended Data Types Can Be Cast?

	Operator Precedence

	Chapter 3. Environment Variables
	In This Chapter
	Types of Environment Variables
	Using Environment Variables on UNIX
	Where to Set Environment Variables on UNIX
	Setting Environment Variables in a Configuration File
	Setting Environment Variables at Login Time
	Syntax for Setting Environment Variables
	Unsetting Environment Variables
	Modifying an Environment-Variable Setting
	Viewing Your Environment-Variable Settings
	Checking Environment Variables with the chkenv Utility
	Rules of Precedence

	Using Environment Variables on Windows
	Where to Set Environment Variables on Windows
	Environment Settings
	Using the System Applet to Change Environment Variables
	Using the Command Prompt to Change Environment Variables
	Using dbservername.cmd to Initialize a Command-Prompt Environment

	Rules of Precedence

	List of Environment Variables
	Environment Variables
	AC_CONFIG
	AFDEBUG
	ANSIOWNER (IDS)
	BIG_FET_BUF_SIZE (XPS)
	CPFIRST
	DBACCNOIGN
	DBANSIWARN
	DBBLOBBUF
	DBCENTURY
	DBDATE
	DBDELIMITER
	DBEDIT
	DBFLTMASK
	DBLANG
	DBMONEY
	DBNLS (IDS)
	DBONPLOAD (IDS)
	DBPATH
	DBPRINT
	DBREMOTECMD (UNIX)
	DBSPACETEMP
	DBTEMP (IDS)
	DBTIME
	DBUPSPACE
	DEFAULT_ATTACH
	DELIMIDENT
	ENVIGNORE (UNIX)
	FET_BUF_SIZE
	GLOBAL_DETACH_INFORM (XPS)
	IBM_XPS_PARAMS (XPS)
	IFMX_CART_ALRM (XPS)
	IFMX_HISTORY_SIZE (XPS)
	IFMX_OPT_FACT_TABS (XPS)
	IFMX_OPT_NON_DIM_TABS (XPS)
	IFX_DEF_TABLE_LOCKMODE (IDS)
	IFX_DIRECTIVES
	IFX_EXTDIRECTIVES
	IFX_LONGID
	IFX_NETBUF_PVTPOOL_SIZE (UNIX)
	IFX_NETBUF_SIZE
	IFX_NO_TIMELIMIT_WARNING
	IFX_NODBPROC
	IFX_NOT_STRICT_THOUS_SEP
	IFX_ONTAPE_FILE_PREFIX
	IFX_PAD_VARCHAR (IDS)
	IFX_UPDDESC (IDS)
	IFX_XASTDCOMPLIANCE_XAEND
	IFX_XFER_SHMBASE
	IMCADMIN
	IMCCONFIG
	IMCSERVER
	INFORMIXC (UNIX)
	INFORMIXCONCSMCFG (IDS)
	INFORMIXCONRETRY
	INFORMIXCONTIME
	INFORMIXCPPMAP (IDS)
	INFORMIXDIR
	INFORMIXOPCACHE (IDS)
	INFORMIXSERVER
	INFORMIXSHMBASE (UNIX)
	INFORMIXSQLHOSTS
	INFORMIXSTACKSIZE
	INFORMIXTERM (UNIX)
	INF_ROLE_SEP (IDS)
	INTERACTIVE_DESKTOP_OFF (Windows)
	ISM_COMPRESSION
	ISM_DEBUG_FILE
	ISM_DEBUG_LEVEL
	ISM_ENCRYPTION
	ISM_MAXLOGSIZE
	ISM_MAXLOGVERS
	JAR_TEMP_PATH (IDS)
	JAVA_COMPILER (IDS)
	JVM_MAX_HEAP_SIZE (IDS)
	LD_LIBRARY_PATH (UNIX)
	LIBERAL_MATCH (XPS)
	LIBPATH (UNIX)
	NODEFDAC
	ONCONFIG
	OPTCOMPIND
	OPTMSG
	OPTOFC
	OPT_GOAL (IDS, UNIX)
	PATH
	PDQPRIORITY
	Using PDQPRIORITY with Dynamic Server
	Using PDQPRIORITY with Extended Parallel Server

	PLCONFIG (IDS)
	PLOAD_LO_PATH (IDS)
	PLOAD_SHMBASE (IDS)
	PSORT_DBTEMP
	PSORT_NPROCS
	RTREE_COST_ADJUST_VALUE (IDS)
	SHLIB_PATH (UNIX)
	STMT_CACHE (IDS)
	TERM (UNIX)
	TERMCAP (UNIX)
	TERMINFO (UNIX)
	THREADLIB (UNIX)
	TOBIGINT (XPS)
	USETABLEAME (IDS)
	XFER_CONFIG (XPS)

	Index of Environment Variables

	Appendix A. The stores_demo Database
	Appendix B. The sales_demo and superstores_demo Databases
	Appendix C. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Dotted Decimal Syntax Diagrams

	Notices
	Trademarks

	Index

