
.

FitrixTM
Technical Reference
Edition 0390-120117

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Your license agreement with Fourth Generation Software Solutions, which is included with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in whole or in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is a registered trademark of Fourth Generation Software Solutions Corporation.
Informix is a registered trademark of Informix Software, Inc.

UNIX is a registered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALS IS WITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com

Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated.

Fitrix Technical Reference

Welcome to the Fitrix Technical Reference. This manual is designed to
be a focused step-by-step guide. We hope that you find all of this infor-
mation clear and useful.
Although the pictures in this manual are all of character based screens,
please keep in mind that all of our products offer the option of being
viewed in a graphic based Windows screen. Examples of graphic based
product viewing modes are shown below in Example 1 and Example 2.

Example 1: Menu Graphical Windows Mode

Fitrix Technical Reference

Here is another example:

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users.
However, your viewing mode is a user preference. Changing from
character based to graphical based is a product specific procedure, so if
you wish to view some applications in character mode, and some in
graphical mode, that can be done as well.
If you have any questions about how to view your products in graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. You can also contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.
We hope you enjoy using our products and look forward to serving you
in the future.

Thank You,
Fourth Generation

Fitrix Technical Reference

i

Table of Contents tc-

Chapter 1: Introduction
About this Manual.. 1-1

Modifiability by Design ... 1-5

What Can Make Tailoring Source Code Difficult .. 1-5

Modification Types by Difficulty ... 1-6

Three Time-Consuming Tasks Modifying Code .. 1-8

General Techniques for Creating Modifiable Code...................................... 1-9

The CASE Code Generators .. 1-15

The Start-Up Phase ... 1-15

The Building Block Phase .. 1-16

The Library Phase ... 1-16

CASE and Code Generation ... 1-17

Chapter 2: Code Structure
Directory and File Organization .. 2-1

Installation of Fitrix Accounting... 2-2

Disk Space Requirements ... 2-2

Directory Organization ... 2-3

The Fitrix Accounting Application Directory .. 2-4

Structure of the .4gm Directories.. 2-7

Contents of a Program Directory .. 2-8

Keeping Modified Program Code Separate .. 2-11

Managing Parallel Program Directories ... 2-11

Functions Within Files.. 2-12

Menu Directory Structure ... 2-12

Diagram of Menu Directories ... 2-15

Chapter 3: Interacting with the Database
Database Design Criteria ... 3-2

Fitrix Technical Reference

ii

Fitrix Accounting Data Flow Overview .. 3-3

Before-the-Post Tables ... 3-3

Data Layout After Posting .. 3-5

Fitrix Accounting Database Table Overview .. 3-8

Entering Information Into Reference and Entry Tables 3-11

Entering Information Into Transaction and Activity Tables....................... 3-12

Entering Information Into Open Item Tables ... 3-13

Viewing Database Table Descriptions... 3-14

Using Database Transactions for Posting .. 3-15

Posting from Custom Applications to Fitrix Accounting General Ledger . 3-15

Data Posting Functions ... 3-16

Posting Function Description Section .. 3-18

Sample Program Using the Posting Function... 3-20

SQL Query Optimization... 3-22

How RDSQL Constructs a Query Plan .. 3-22

Improving Performance Through Indexing .. 3-26

Merging Databases with dbmerge 3-29

What Does dbmerge Do? ... 3-30

How Does dbmerge Merge Databases? ... 3-31

Recompiling the dbmerge program .. 3-31

When is dbmerge Used? .. 3-32

Moving the Database to a New Location... 3-33

Exporting Activity Data... 3-35

Passing Information Between Databases ... 3-36

Using Dbload..................................... 3-36

Using Temporary Tables .. 3-39

Chapter 4: Program Design and Modification
4GL Library Functions .. 4-4

Why Use Libraries? .. 4-4

Creating 4GL Libraries... 4-5

Function Library & Sample Functions .. 4-8

User Interface Functions... 4-8

Fitrix Technical Reference

iii

Global Application Functions ... 4-10

Module Specific Functions ... 4-13

Modifying Fitrix Accounting with Custom Functions....................................... 4-15

Locating Functions/Displaying Function Descriptions...................................... 4-18

The Tag Utility.. 4-18

Displaying Functions Within Programs.. 4-20

Using the Make Utility .. 4-22

UNIX and Make................................... 4-22

Location of Makefiles 4-22

Sample Makefiles 4-25

Characteristics of the Makefiles 4-27

Data Entry Code Design & Modification .. 4-28

Data Entry Code Design Levels.. 4-28

Special Note for Serial Columns .. 4-30

Source Code Files Created by Screen... 4-31

Multi-Language Handling.. 4-33

Transaction Processing .. 4-35

A Short Discussion of Data I/O .. 4-35

Locking Tables and Rows... 4-35

The Data Entry Form ... 4-40

Converting INFORMIX-SQL Perform Files .. 4-42

Adding Fields to Data Entry Forms.. 4-42

RDS vs. 4GL: Choosing an Informix Environment... 4-44

What Are the Advantages of an Interpreter? .. 4-44

Other Advantages of RDS .. 4-45

Drawbacks of RDS ... 4-45

Using the RDS Linker.. 4-47

Rules for Using make.rds............................ 4-47

Syntax for make.rds 4-47

How to Avoid Recompiling the Entire RDS Library 4-49

Converting Libraries to make.rds 4-50

Understanding Program Linkers ... 4-51

Shell Escapes While Running Fitrix Accounting Applications 4-56

Fitrix Technical Reference

iv

Preventing Shell Escapes .. 4-57

Chapter 5: System Administration Issues
Setting Up Your Printers.. 5-1

System Performance Issues - RDS Profiler ... 5-3

A Typical Problem.. 5-3

Tracing Function with FIFO Pipes ... 5-5

Timing Function Execution .. 5-7

Running the RDS Profiler with Informix 4.0 ... 5-9

Writing Termcap Entries ... 5-16

The Termcap File.. 5-16

The Termcap Entry ... 5-16

The Labels .. 5-19

The Capability Codes ... 5-19

Special Characters .. 5-20

The Codes ... 5-20

Interpretation and Action.. 5-22

Testing the Keys ... 5-24

Action Codes .. 5-24

The Other Codes ... 5-25

Observations ... 5-26

Chapter 6: Programming Conventions
Naming Conventions ... 6-2

System File Naming Conventions .. 6-2

Using MenuShell .. 6-2

Standard File Names Construction ... 6-3

Module Naming Conventions... 6-5

Menu Item Naming Conventions.. 6-5

Database Table Naming Conventions .. 6-6

Program Naming Conventions ... 6-9

Standard File Name Extensions.. 6-10

Function Naming Conventions ... 6-11

Fitrix Technical Reference

v

4GL Program Variable Naming Conventions .. 6-14

User Interface Style.. 6-16

Product Names .. 6-16

Specific Terms .. 6-17

Describing Keystrokes ... 6-19

Representing User Input... 6-20

Adding or Modifying Tables.. 6-21

Table Naming ... 6-21

Testing Modifications to Tables .. 6-23

Adding a Column.. 6-23

Modifications to Tables .. 6-23

Input Program Conventions ... 6-24

Primary Screens .. 6-24

Data Entry Screen Design... 6-29

Zoom Screens ... 6-31

Entry-By-Exception(EBE) Custom Input Screens 6-33

Standard Report Design ... 6-36

Output Program Modifications .. 6-37

 .ifg Files ... 6-38

Report Conventions: ... 6-40

Report Width... 6-41

Posting Program Modifications ... 6-42

Basic Requirements .. 6-42

OnLine compatible ... 6-42

Commit/Rollback Logic ... 6-42

Menu Design Conventions... 6-43

Menu Options ... 6-43

Menu Item Files .. 6-45

Main Menu Design ... 6-46

Submenu Design ... 6-48

Window Menus... 6-50

Browse Windows .. 6-51

Detail Menus... 6-52

Fitrix Technical Reference

vi

Help/Error Messages .. 6-52

User Prompts and Messages ... 6-53

Automatic Data Entry Help from Form Comments 6-54

Error Messages ... 6-55

Standard Error Messages .. 6-56

General Conventions-Programming .. 6-58

Programming Style ... 6-58

Zoom Pickers .. 6-64

Posting Routines ... 6-64

Input Programs Testing Checklist.. 6-65

Adding or Modifying Tables Checklist ... 6-67

Tabs.. 6-68

Report Program Testing Checklist... 6-71

Posting Programs Testing Checklist .. 6-72

Required Information... B-1

Hardware: ... B-1

Troubleshooting Checklist ... B-3

Troubleshooting Guide ... B-5

1-1

1
Introduction

About this Manual
The purpose of this documentation is to give programmers a basic understanding of
the design and programming conventions used in building Fitrix Accounting.

This manual covers what we have done to make the Fitrix source code easy to mod-
ify and why we have done it. It explains certain aspects of our philosophy of appli-
cation design that are important to those modifying our applications and
constructing compatible applications.

This manual is written for programmers that have some familiarity with building
applications in INFORMIX-4GL, the language in which Fitrix Accounting is writ-
ten. This manual will help you understand the basic flow of the programs well
enough to make the most common types of modifications.

Fitrix Technical Reference

1-2 Introduction

This manual does not attempt to teach the Informix language. If you need to under-
stand the working of a particular INFORMIX-4GL command, refer to the INFOR-
MIX-4GL manuals.

This manual also does not attempt to document specific code. source code has the
documentation in the code.

Fitrix Technical Reference

About this Manual 1-3

The Fitrix Technical Reference Manual consists of the following sections:

1. Section 1: Introduction - covers the design of the documentation as well as the
underlying philosophy of code design.

2. Section2: Code Structure - offers basic orientation information about the source
code. This section covers the ways in which we have broken down the source
code and the physical organization of the code on the disk. The application
directory structure has been organized to facilitate the modification of code.

3. Section 3: Database Interaction - discusses the data structure of Fitrix Account-
ing. It looks at the management of the financial database. This section also cov-
ers the philosophy of database design, how to interface custom modules to the
database design, and what information is stored in the database.

4. Section 4: Program Design and Modification - covers the basic program design
used to create the INFORMIX-4GL programs provided with each Fitrix
Accounting module. The use of function libraries is discussed in detail as well
as different development environments.

5. Section 5: Report Program Structure - contains a style guide for developers
working with Fitrix Accounting. The style guide covers conventions and rules
developed for creating source code.

6. Section 6: System Administration Issues - contains information about termcaps
and setting up printers.

7. Section 7: Programming Conventions - discusses the programming conventions
that Fitrix Accounting applications follow. File and program naming conven-
tions are covered as well as rules for formatting input and output.

Fitrix Technical Reference

1-4 Introduction

8. Appendix A: Problems with [CTRL] - [Y] and [CTRL] - [Z] Keys - covers
problems that can occur with some keyboards.

9. Appendix B: Troubleshooting Fitrix Business Products - contains a trouble-
shooting checklist that can help solve problems encountered when running
Fitrix Accounting.

Fitrix Technical Reference

Modifiability by Design 1-5

Modifiability by Design
There are two kinds of source code: source code that is a by-product of application
development and source code that is developed as a product. The differences are
substantial. In the former, the application may have the required features, but the
code was not designed to be sold and maintained by anyone other than the devel-
oper. In the latter, the code was designed as a product with features beyond the fea-
tures the application creates. The sum of these features determines how easy the
code is to work with, change, and maintain.

Fitrix Accounting source code was designed so that it would be easy for others to
modify. Before we put together the source code, we developed a consistent design
and a number of conventions for supporting modifiability. To enforce that consis-
tency, a set of "CASE" (Computer Assisted Software Engineering) tools were
developed that would automatically generate the basic program for each function
we wanted to perform. All of the programs in Fitrix Accounting are developed
using these CASE tools so all resulting programs follow exactly the same structure.
This concept is called "Modifiability by Design."

What Can Make Tailoring Source Code
Difficult

Before a problem can be solved, it must be understood. Those that have modified
code know that it has not been as easy as it should be. Why? What modifications
are the most difficult and what characteristics make them more difficult?

Before Fitrix Accounting was written, we analyzed the problem of making code
easier to modify. We looked at typical accounting transaction-processing applica-
tions and we identified common types of modifications.

If these modifications are grouped by type, we see that they form a hierarchy. Some
modifications are more difficult than others. Some changes are simplified by using
the Fitrix language used to develop Fitrix Accounting. In general, however, this
order of difficulty is consistent no matter what particular development environment
you work in.

Fitrix Technical Reference

1-6 Introduction

From this list, the reader can learn about the process of tailoring code and the time
required for modification. There are common problems inherent in the process of
modifying source code. By understanding these underlying problems, it is easier to
identify which requested modifications are more expensive because they take more
time.

Modification Types by Difficulty

Below, we rank the easiest types of modifications to the most difficult. This is to
help us see what needs to be done at the source code level to make the most diffi-
cult of these common modifications more practical and less time consuming.

1. Rearrangement of Screens and Reports

This is typically the simplest type of change to any program. It does not involve the
addition of any new data or program logic. The change here is local, meaning that it
only affects one part of the code. The major code design considerations here
revolve around naming and documenting the proper program sections, variables, or
data elements involved. Proper design helps when you are trying to identify partic-
ular elements within the code.

2. Addition of Calculated Fields to Screens and Reports

The major new code consideration involves data flow, or identifying the proper
point within the program at which the calculation should be placed.

3. Change in Local Program Logic or Functionality

Since the change is only in the local program, the only new consideration is the log-
ical structure of the program. This typically involves more of the code than the data
flow. In changing program logic, it is necessary to identify the tree structure used
and the proper place within the structure to make the change.

4. Addition of New Fields to Single-Reference Databases

By a "single-reference" database, we mean a data storage structure (it may or may
not be an actual database product) that is used by only one program. A change to
this data structure can affect several parts of the program and can, theoretically,
require a change to every line. The purpose of good code design is to allow pro-

Fitrix Technical Reference

Modifiability by Design 1-7

grammers to make certain where change is required, and to minimize the number of
changes that must be made. The addition of fields, however, is not usually as com-
plicated as the change of an existing field, which is a higher order of modification.

5. Change in Non-Local Program Logic or Functionality

This order requires changes throughout an application, not just to a single program.
Behavior of different programs within the application must conform to each other
in many respects. A change in particular forms of logic and functionality must be
made consistent throughout the application in order to support this conformity.
Such issues can involve anything from consistency in user interface, to the correct
processing of data. Code design should enable you to identify related parts of dif-
ferent programs and, when possible, allow sharing of sections of code by different
programs.

6. Addition of New Fields to Multiple-Reference Databases

Multiple-reference databases are data structures that are referenced in several
places or programs within an application. The problems with maintenance here are
similar to order four problems, but with the added complexity of having to find
affected sections of code in many different programs. It is at this level of change
that the importance of a data dictionary comes into play.

7. Change in Field Size/Type in Single-Reference Databases

Changes to existing fields are even more complicated than the addition of new
fields. The use of a data dictionary helps, but to a lesser degree than with the previ-
ous level of change. The most serious aspect of this problem is identifying all of the
variables into which data from the field may be placed during program execution.
This involves identifying not only the data flow, but each element used by the
affected field in that data flow.

8. Change in Field Size/Type in Multiple-Reference Databases

The order eight problem is complicated by the need to check more lines of code and
to interrelate sections of code from different programs.

9. Change of Key Field in Single-Reference Databases

Key fields are the fields used to recall data from the database. Changes to a key
field involve not only changes of the seventh order, but additional changes related
to data entry and building the key. Most significantly, it involves an actual change
in the database itself, requiring minimal rebuilding of the indexes that maintain the

Fitrix Technical Reference

1-8 Introduction

database. The difficulty of rebuilding indexes and restructuring the data in the data-
base depends largely on the development environment in which you are working.
In the worst case, it may involve having to write one-time use maintenance pro-
grams for unloading and loading all data.

10. Change of Key Field in Multiple-Reference Databases

Level ten problems affect a larger amount of code. Generally, key fields appear
most frequently in data entry screens and reports. They are utilized in every access
of data. Changes to key fields in databases that are used in many different programs
tend to be the most complicated, because they affect many lines of code as well as
the database itself.

Three Time-Consuming Tasks Modifying
Code

In analyzing the problems that seem to be inherent in modification, certain common
types of work emerge. These are the physical tasks that the programmer must do to
make a change at any level. Typically, what makes one level of change more diffi-
cult than another is that these general tasks grow in complexity as you move up the
hierarchy. These tasks are the specific ones that we have tried to simplify in the
designing and building of our source.

These tasks are:

1. Finding the Right Parts of the Code to Modify

Before you can make any change, you must identify the affected code. The com-
plexity of this task depends largely on program design. In the worst case, a lack of
structure and naming conventions makes it virtually impossible to find the sections
of code that need changing. The only way to discover parts of the program affected
by the code is to continually test not only the application, but the integrity of the
database itself. Even serious problems may not be serious to the user. As you will
see, Fitrix Accounting includes a number of techniques used to simplify this task.

Fitrix Technical Reference

Modifiability by Design 1-9

2. Making Changes in Multiple Locations.

The more sections of code that must be modified, the more difficult the change.
This is what makes the highest order of changes so complicated. Such a change can
affect virtually every part of the code. In Fitrix Accounting, everything possible has
been done to minimize the number of places in the code that need to be modified to
accommodate a change at the application level. If a certain category of change still
requires modifications in multiple locations in the code, we document those loca-
tions in this manual.

3. Coordination or Concurrence of Functionality Among Various Parts of the
Code.

The developer must have a feel for what the code is doing on a functional level of
data flow. To accomplish this, the code must be consistent, particularly in the way
it handles data throughout the application. Programs must agree in very basic ways
in how they handle the data in order for the applications to work. Sometimes identi-
fying this coordination is very difficult because it can take on radically different
forms in different parts of the program. As you will see, we have developed a num-
ber of resources, such as the "Info" files in the code itself, to help developers with
this difficult task.

General Techniques for Creating
Modifiable Code

A number of new techniques and concepts have been implemented in the code
based on 4GL, SQL, and CASE technologies

1. Extensive Use Of Comments

Commenting your code is critical for all orders of modification. It is the most obvi-
ous and useful criteria that can be used in evaluating code. Comments are lines of
English in the code that explain how that section of code works. The more exten-
sive the comments, the easier it is for the modifier to understand the section of
code. An understanding of the code is absolutely necessary for modification. Com-
ments are especially important as part of the database schemas; that is, the parts of
the programs that define the database structure.

Fitrix Technical Reference

1-10 Introduction

Comments can also be used to create options at the code level or show examples of
various ways in which the code can be modified to implement various features.
Whole subroutines can be "commented out" so that they are not functional until the
comment indicator is removed. Many optional features are best provided at this
level, since neither the user nor developer have to deal with them until they are
required.

Comments are measured as a percentage of source. As stated above, Fitrix
Accounting is the most heavily commented code in the industry. This is possible
because our CASE development tools have created the basic comments that explain
each section of code. We have improved the quality of the automatically generated
comments by manually adding text in the source code wherever we have made a
large number of manual additions to the generated code. Currently, the ratio of
comment lines to lines of code is 3.5 to 10.

2. Modularity

We use the term "modularity" to mean building larger programs from smaller
building blocks. Modular design means creating small routines that are put together
into code sections which are themselves combined into a complete program. Each
of these small routines has a clearly defined function and that function is, to some
degree, independent and self-sufficient. Routines are discrete pieces of code like
the discrete components that are assembled into any machine. Breaking down sec-
tions of code into smaller independent subsections reflects a philosophical decision
on design. The same end can be achieved by using a few large, very complex, inte-
grated and specialized parts (the non-modular approach), or by constructing the
whole from subsections which are themselves constructed of many smaller, more
generalized components (the modular approach).

Modularity has many advantages. Modular code can be broken down into small,
easy to understand sections. By isolating individual functions, more comprehensi-
ble structures are created. You can find the sections of code that need adjustment
easily, and understand its function relative to the whole more clearly. You can also
work on one section of code with less concern about changes that affect functions
of the program.

The modularity of our programs was built in by our CASE technology. As you will
see, each section of our source code is built of small functions. Our internal goal is
to keep each function as small as possible. The maximum desired size was set at
twenty lines so that you could see each function in its entirety on a single screen.

Fitrix Technical Reference

Modifiability by Design 1-11

Because some functions required listing of data elements, this was not always pos-
sible. Yet in 95% of cases, the functions meet this basic size requirement. Some
functions consist of a single line of code.

3. Routine Libraries

One major advantage in using a modular approach is that you can make repeated
use of many of the small routines from which your code is built. By creating
smaller independent functions, you build more general purpose code modules.
Since they serve a more generalized purpose, these sections of code can be used not
once but many times. For instance, the same section of code that formats data for
display on the screen can be used in the program that prints that same data in a
report. The sections of re-usable code constitute a library shared by other larger
sections of code.

The use of routine libraries supports modifiability in two significant ways: First, it
reduces the total number of lines of code. Modularity itself tends to produce more
lines of code, but if done correctly, this approach increases the re-use of the code
dramatically. The result is a major reduction in the number of lines of code.

Second, the extensive use of libraries allows you to make changes that affect many
different programs by changing one section of code. The reason that so many
higher order modifications are so difficult is that you have to make a similar change
in many different programs. If those programs all utilize the same library routine
for a given function, changing that one routine automatically affects all programs
referencing it. This dramatically reduces the complexity of those higher order
changes.

In Fitrix Accounting we use three different libraries of code for our applications.
One library contains the general routines used by all data entry and reporting pro-
grams. This library is independent of the accounting application and consists of
data independent user interface and reporting functions. The second library consists
of basic accounting routines that are used by all accounting modules. Finally, there
is a third library of routines that is accounting module-specific (accounting "mod-
ules" are General Ledger, Accounts Receivable, Accounts Payable, and so on).
These routines may be called by the different programs within that specific module.

Later in the documentation we will discuss both the location and content of these
various code libraries.

Fitrix Technical Reference

1-12 Introduction

4. Consistent Organization of Source Code

Consistent organization means that programs are broken down in the same ways,
and that they use the same basic pattern of data flow and the same basic control
structures. It also means that the source code is physically organized in a consistent
way. The orderly, hierarchical structure of good modular code is revealed by the
breaking down of source code into different directories, files, and sections within
files. The consistent organization of the code is reflected in the consistent organiza-
tion of that directory structure.

How the code is organized is very important, especially for modular programs.
Modular design means that there are more levels of organization within the code. If
the code is physically well organized, modularity makes finding the proper section
for modification easier. However, if physical organization of the code is done
poorly, finding the right section can be extremely difficult.

If you are building something with only a few large parts, you do not have to worry
about finding them when you need them. If you are building with many small parts,
you have to take great care in organizing your storage system to be able to find
what you need.

As you will see, once you have learned the code structure for one module and one
program in Fitrix Accounting, you have basically learned it for all such programs—
it is absolutely consistent. This dramatically reduces the time it takes to learn the
code structure, both physical and otherwise, in order to work with it.

Later in the documentation, we deal with the "functional" flow of all Fitrix
Accounting programs. As you will see, all data entry programs in Fitrix Accounting
work in an almost identical manner.

5. Consistent Naming of All Program Elements

Closely related to consistency in structure is consistency in naming those struc-
tures. Directories are tagged to indicate the level and the role they play in overall
organizational structure. At a lower level, when they serve identical purposes, they
are named in an identical manner. When different code sections serve similar pur-
poses, they also are named in a similar manner. Even at the lowest level, where rou-
tines play unique roles, name tags can indicate the type of role they play. Variables
that in some way relate to the same data are named accordingly. Variables that
belong to the same level of data flow are tagged to emphasize that similarity.

Fitrix Technical Reference

Modifiability by Design 1-13

The advantages of standard naming conventions are obvious. Once learned, naming
conventions allow the developer to know immediately what function a particular
section of code plays. If you understand the rules by which variable names are com-
posed, string searches can be conducted according to the naming conventions to
find the specific variables without having to first identify them by following the
program data flow.

After we discuss the file organization of our system, we immediately discuss our
naming conventions. As you will see, once you learn a few simple patterns, you can
understand what you are seeing on the screen almost at a glance.

6. Variables and the Data Dictionary

In a program, a large number of variables play a part in the data flow of the pro-
gram. They handle information coming from or going to the storage database. Since
most of the higher order modifications involve changes to the database structure,
these variables play a critical role. Any change to the database must be reflected by
corresponding changes in the size and/or type of variables used.

A basic method used to simplify modification is to tie the definition of all variables
used for data flow to a central data dictionary. The data dictionary defines the data-
base structure. In each of our programs, the definition of variables takes place in a
specific section of code called, "globals.4gl", and the definition of all vari-
ables that are part of the data flow is done against the database.

If you want to change the size or type of a data element, it is only necessary to
change the definition in the data dictionary using Informix SQL or 4GL and then
recompile the code. You do not have to change the actual code itself.

7. Localization of Code

All the code (except library code) required to create a specific executable program
resides in the same directory. Applications are made of many discrete executable
programs. The directory structure that organizes the overall code does not divide
separate code sections between different directories if that code is used to make a
single executable. The only exception to this is library code, which resides in a
common area used by all programs.

The advantage is that when you are working on a specific program, you do not have
to move between directories to access the code that generates that program. This
simplifies the job of finding and getting to the code that needs changing.

Fitrix Technical Reference

1-14 Introduction

As you will see, utilizing the application itself moves you to the directories in
which the source code resides. In other words, the fastest way to move through the
organization of the program is to run the program. When you "escape" from the
running program to the operating system, you are automatically in the directory that
contains the source code for that particular executable. We call this the "automatic
location" of code, and it must be built into the application as "localization" is built
into the source.

8. Complete Source Availability

Finally, we have provided you with 100% of the source code used in Fitrix
Accounting. In other words, there are no pre-compiled components of the applica-
tion for which you cannot obtain the source code.

Many "source" applications only give you access to certain parts of the application.
In other words, you can change one part of an application, because you have the
source for it, but there are other parts of the application that are fixed, and cannot be
changed. They are provided, even in a source level product, only in an executable
form. This is typically done because that section of the application was written in
some different language, usually a lower level language such as "C." For practical
as well as proprietary reasons those sections of the code are not distributed.

This is not the case with Fitrix Accounting. You have access to all the source other
than that for the application runtimes.

Fitrix Technical Reference

The CASE Code Generators 1-15

The CASE Code Generators
The INFORMIX-4GL environment allows programmers to produce applications
more rapidly because it was designed expressly for creating database intensive
transaction processing applications. However, there is another level of automation
beyond simply using a higher level language. This is called CASE (Computer
Assisted Software Engineering). The purpose of CASE technology is to provide an
application module that can be used to actually generate the Fitrix language code
necessary to produce that application. CASE code generation creates code even
more quickly, easily, and efficiently.

Software development must go through three preliminary phases before it reaches
the level of practical CASE. These phases constitute the methods under which the
rules for creating applications in a Fitrix environment are developed.

The Start-Up Phase

The first such phase is called "Start-Up." This stage is programming from scratch.
Programmers create programs and applications from all new code.

During this phase, modularity in design is the key ingredient. Developers must
break down each task into subroutines and functions. They must use subroutines
and functions to provide menus, do recalculations, and so on. The extensive use of
subroutines produces code that is easier to support and allows programmers to
graduate to more advanced phases of development.

At this stage, a consistent user interface and rules of application operation need to
be established. The user interface is the way the program is viewed and controlled
by the user. Developing a consistent, intuitive, and easy to understand interface is a
high priority. Establishing these conventions within any package allows you to
extend them to future packages. Finally, this first phase is when programming stan-
dards and conventions are developed. You need to determine when comments are
required, how basic structures, such as if-then-else statements should be con-
structed, and what format will be used for variables. For example, those beginning
with p_ might be program variables, while those starting with s_ might be screen
variables. The tighter the definitions established during this first phase, the more
consistent the products developed, and the easier they will be for future developers
to work with and modify.

Fitrix Technical Reference

1-16 Introduction

The Building Block Phase

The "Building Block" stage begins when you write code to perform operations that
have been defined in previous applications. At this point, you copy parts of old pro-
grams and modify them so that they fit the new project. Existing subroutines and
functions are used as building blocks to create new applications.

During this phase, the most important thing is to track which parts of existing code
you re-use most frequently. In identifying which functions and subroutines are
most useful, you will be able to copy and change them much more quickly. You
learn during this phase the importance of keeping the data flow consistent, calling
modules the same way, and organizing your code to make the best use of pre-exist-
ing modules easier. For example, in developing a report, the first step should
always be creating the proper selection criteria; the next step is to get the correct
cursor. The following step is to move the cursor data to the actual report generation
function. Even when these steps are not completely appropriate to a given applica-
tion, organizing code consistently allows you to take maximum advantage of exist-
ing routines.

The Library Phase

Once you have a good idea which functions are used the most frequently, you can
convert those functions into a library routine. These routines are general functions
that can be used over and over. They are organized in logical ways which make
them easy to find and use.

Using the basic libraries of routines dramatically simplifies the process of creating
applications. Once an organization reaches this third phase of code generation, cod-
ing becomes a clerical task more than a programming task. All the programmer
needs to do is to copy his old program to a new work area, substitute the old vari-
ables with the new ones in mid-level and low-level routines, and most of the job is
done.

Fitrix Technical Reference

The CASE Code Generators 1-17

CASE and Code Generation

Using basic CASE techniques, you begin to define the functional flow and data
flow of your application programs. In separating functional flow from data flow,
you are able to create functions that are data independent and do not rely on global
variables. These "data independent" functions receive information from the calling
module, manipulate that information, and return information back to the calling
modules.

By diagramming the functional flow of these programs, a four-level approach
begins to take shape. On the first level is Main. Main is used to begin your program,
set initial variables, and call the upper-level routines that run the rest of your pro-
gram (i.e. a menu function), and finally to end your program. The next level is this
set of "upper-level" data independent routines. These functions are called from
generic library routines. They don’t rely on global variables or handle data flow. A
set of "mid-level" functions acts as a conduit between the data dependent and data
independent functions. They prepare the data for manipulation, setting of arrays,
fetching of cursors, clearing of variables, and so on. Finally, there is the "low-level"
code which is where most of the actual data manipulation takes place.

The four level approach operates like this. Main calls the "menu" or command
function like "add", "update", or "find." The upper-level routine fetches the func-
tions needed to do this menu level from the library. The mid-level fetches appropri-
ate data into a cursor. The low-level modifies the data in the cursor and writes data
out to the table.

Once this model has been fully developed, you are ready for code generation. Code
generation must take into account the rules by which the "mid-level" and "low-
level" code is written. Since the programs generated are created according to a
highly defined model, very little information, other than the specific data "objects"
being manipulated, is needed in order to construct working code.

In using our CASE code generation tools, information is taken from the standard
Perform screen, or report image. The data elements are identified and variables for
the data flow constructed. Those variables are placed into a "skeleton" of mid-level
and low-level routines automatically. When the information needed to generate the
code is not part of the Perform screen, the user is prompted to supply it.

Fitrix Technical Reference

1-18 Introduction

We have refined this process for the most common types of application develop-
ment work—creating data entry environments and reports—to such a degree that
we have turned them into commercial products. We offer these generation pro-
grams to our customers as CASE tools, Screen and Report.

It is not necessary to purchase these products to modify any of the code we provide,
but it will make certain types of modifications much easier. This is especially true if
you are adding completely new data entry screens or reports. In Fitrix Accounting,
we "spoil" our users by giving them a very sophisticated user interface. If you tried
to duplicate this interface manually, even using all of the library routines that are
already part of this application, it would take you days to write each new data entry
screen. That same effort can be reduced to less than five minutes using our code
generator.

All of our basic conventions deal with code that has been written to exacting speci-
fications. The only way to develop such code efficiently is to use these products.

2-1

2
Code Structure

Directory and File Organization
The first step towards understanding the design of Fitrix Accounting is to under-
stand the organization of the menus and INFORMIX-4GL programs that make up
the total application. This section of the documentation covers how all the system
files are organized in the directory hierarchy. This organization may seem initially
complicated, however, you will find that for the large number of files involved and
the complexity of their relations, such a system is required for efficiency, portabil-
ity, and simplicity of maintenance.

Fitrix Technical Reference

2-2 Code Structure

Installation of Fitrix Accounting

The installation of Fitrix Accounting will produce the directory structure outlined
in the following pages. The installation and compile time will vary due to things
like hardware variations, user demand of memory, and the order in which modules
are installed.

Disk Space Requirements

The need for file storage is growing at a tremendous rate. The amount of space con-
sidered adequate five years ago is now not enough. Not only have operating system
sizes increased as services have been added, but program sizes have increased as
the number of features and the complexity of programs have grown. The introduc-
tion of RISC (Reduced Instruction Set Computer) based systems has also multi-
plied the storage requirements. All of these factors, combined with the increasing
size of databases used for normal operation, have added to the requirements for
hard disk or rotating memory.

The following paragraphs describe factors involved in space requirements for stor-
ing Fitrix Accounting products on a hard disk.

The first factor to consider when determining size requirements is the type of hard-
ware to be used. The main difference between the RISC systems (e.g., the IBM
RS/6000, Data General AViiON, Sun SparcStation, and the Motorola 88000 based
system) and the CISC (Complex Instruction Set Computer) systems (e.g., those
based on the Intel 80386 and 80486 or the Motorola 68020 and 68030) is speed of
execution. The RISC machines can execute instructions faster than the older CISC
designs. The problem this creates for hard disk storage (rotating memory) is that the
number of instructions required to do the same task is generally larger. The practi-
cal result is that the average program is twice the size of those on CISC machines.
A program of 1 Mb for a 386-based machine requires about 2 Mb for a RISC-based
machine. An AIX UNIX operating system for the RS/6000, complete with the
development system necessary for maintaining and modifying the Fitrix Account-
ing packages, may exceed 200 Mb. As a result, a small hard drive for a RISC sys-
tem is any drive under 400 Mb.

An additional consideration for Fitrix Accounting software is the type of Informix
implementation used on the system. The source code takes up a relatively constant
amount of space. The chief distinction is whether the 4GL or the RDS version of

Fitrix Technical Reference

Directory and File Organization 2-3

Informix (used to create and maintain the Fitrix Accounting software) is used as the
primary system. The RDS system is known to be small, fairly quick, and broadly
portable, but it is designed to be used for development rather than for operation.
The 4GL system creates compiled executable code, which is quicker than the RDS
code, in the *.4ge form. The 4GL code is 2 to 5 times the size of the *.4gi RDS
code. The average is between 3 and 4 times, depending on the machine on which it
is installed. The desirability of maintaining source code on the client's machine or
handling maintenance on a separate system, to be installed later on the client's sys-
tem, should also be considered. "RDS vs. 4GL: Choosing an Informix Environ-
ment" on page 4-44

Directory Organization

Working while running the application is fine, but many times you will want to
work at the system level. In order to do that, you need to understand the organiza-
tion of the files that make Fitrix Accounting work.

When you write your first 4GL application, you notice that the application develop-
ment tool that comes with INFORMIX-4GL places all .4gl files in the same
directory. This is fine for a "rolodex" program (or maybe even a simple "stores"
application), but when the application grows to more than one .4ge program, it
becomes unmanageable if it is kept under one directory. The number of separate
files involved demands useful organization. In Fitrix Accounting, for example,
there are hundreds of different files. Putting them all in a single directory would
create an intolerable jumble.

Because INFORMIX-4GL doesn’t impose limitations on placement of source files,
consistency in file organization must be maintained by the developer. In creating
applications where many different people work with the same source code, it is
important—perhaps critical—to have a consistent method of file organization. The
Fitrix Accounting system of organization has evolved to optimize designing, pro-
gramming, testing, installing, troubleshooting, and modifying 4GL applications. It
is supported by the Menus front-end in a way that allows for easy modification of
the application.

When Fitrix Accounting is installed, files are put in only three locations:

Fitrix Technical Reference

2-4 Code Structure

1. Start-up shell scripts for running each accounting module and the accounting
package as a whole are put into /usr/bin. These files all begin with fg.

2. Files that contain functions which are application-independent are stored in the
"fourgen" library. These are the functions called by the code generator. The
path of this library is $fg/lib where $fg is a system-wide variable contain-
ing a directory on the system that contains this library. The default value for the
$fg variable is /usr/fourgen, so the default location of these routines is
/usr/fourgen/lib.

The $fg/lib directory is further broken down into two subdirectories. The
directories screen.4gs and report.4gs contain the source code for these
libraries. The directories screen.RDS and report.RDS contain the source
and object compiles for the Informix Rapid Development System (RDS).

Typically, unless you are translating to a foreign language, little or no modifi-
cation is done to the routines in these directories.

3. Files that contain functions specific to an application are stored under the appli-
cation directory.

The Fitrix Accounting Application
Directory

All applications must have a unique name. We use "accounting" as the application
name for Fitrix Accounting. This includes all the modules—General Ledger,
Accounts Receivable, Accounts Payable, etc. This name identifies the topmost
directory in the hierarchy of the directory structure used in the application.

Where you place this "base" accounting directory in your file system doesn’t mat-
ter. This allows customers to install the application wherever they have the most
hard disk space.

In modifying the Fitrix Accounting application, you may want to create a duplicate
of the entire accounting system. You can do this simply by installing the Fitrix
Accounting system under another directory on your system. This gives you two
separate versions of the source code, one that you can modify and one that is
unchanged. This procedure allows you to maintain control over changes made to

Fitrix Technical Reference

Directory and File Organization 2-5

source code and to identify differences between your modified version and the orig-
inal at any time. The system elects to run one version or another depending on
which directory the various variables are set to "point" to.

Accounting Directory Structure.

Under the "application" directory called "accounting", there are several different
types of directories

First are the "module" directories. A module is a free-standing part of the overall
application. Though a module may share data files with other modules in the
accounting package, it does not require the installation of any other module in order
to run. There is one such directory for each module in Fitrix Accounting. In other
words, there is a separate directory for the General Ledger, Accounts Receivable,
and so on. This directory is named for the module in the format

$fg

accounting codegen

gl.4gm ar.4gmap.4gm all.4gm

i_invce.4gs o_invce.4gs p_invpst.4gs

APPLICATION
LEVEL

MODULE
LEVEL

PROGRAM
LEVEL

data menu install

Fitrix Technical Reference

2-6 Code Structure

module_name.4gm. We typically use a two letter abbreviation for the module
names. Each of these module directories uses a consistent hierarchical structure
which is described later.

The next directory within the "accounting" directory is the directory called
all.4gm. This directory contains programs that are used by all modules. For
example, the program for accessing the control file is used by all modules. It is
stored in the all.4gm directory. The hierarchical structure of this directory is the
same as the other .4gm directories.

Next, under the accounting directory, we have the directory data. This directory
contains the database directory or directories (if multiple databases are used). Your
$DBPATH variable should be set to point at .../accounting/data when
using our accounting system with the standard Informix engine. This directory con-
tains the .dbs directories used by Informix.

Within the accounting directory, is a directory called all.4gm. In the all.4gm direc-
tory is another directory called lib.4gs. The lib.4gs directory holds functions com-
mon to all modules. Each .4gm has its own lib.4gs for module specific functions.

The final directory within the accounting directory is the menu directory. This is
the directory in which all the user menus are stored. Our menus have their own
directory structure which is covered in detail in the Menus User Reference Manual.
That manual deals with the menu system we use to drive Accounting.

To summarize, our application directory .../accounting contains the follow-
ing directories:

Directory Contents

all.4gm programs used by different modules

ap.4gm programs used by Accounts Payable

ar.4gm programs used by Accounts Receivable

fa.4gm programs used by Fixed Assets

gl.4gm programs used by General Ledger

ic.4gm programs used by Inventory Control

oe.4gm programs used by Order Entry

Fitrix Technical Reference

Directory and File Organization 2-7

pu.4gm programs used by Purchasing

py.4gm programs used by Payroll

mc.4gm programs used by Multicurrency

mcr.4gm programs used by Multicompany Reporting

bin ancillary programs

data the database directories

install files containing installation information

menu the menus for Accounting

Structure of the .4gm Directories

The module.4gm directories and the all.4gm directory contain the program
directories. All source code for a .4ge program is stored in its own directory.
These directories are identified by the 4gs extension (the s stands for source).

If the program is used for data input (i.e. it contains a screen form), the directory
name begins with i_. If it produces "output" such as a report or printed form, it
begins with o_. If it produces no output, but posts information from one table to
another, it begins with p_. To this prefix we add a six character program identifier
that describes the program. In General Ledger, the directory i_chart.4gs con-
tains the source for the program that allows input into the chart of accounts. The
directory o_balsht.4gs contains the source for printing a balance sheet. The
directory p_yrend.4gs contains the source for the year end posting process.

Here are some examples of program directories in the .../accounting/gl.4gm
directory:

Fitrix Technical Reference

2-8 Code Structure

Contents of a Program Directory

Under each "program" directory you will find a number of different files.

PROGRAM DIRECTORY FILES

i_invce.4gs

SPECIFICATION OTHEREXECUTABLEOBJECTSOURCE
GENERATED

CODE CODE CODE FILES

screen1.per
browse.per

screen1.trg

main.4gl

globals.4gl

midlevel.4gl

header.4gl

detail.4gl

options.4gl

browse.4gl

main.4go

globals.4go

midlevel.4go

header.4go

detail.4go

options.4go

browse.4go

 AND

main.o

globals.o

midlevel.o

header.o

detail.o

options.o

browse.o

i_invce.4gi

 OR

i_invce.4ge

Makefile

tags

filelist.RDS

FILES

screen1.frm

browse.frm

OR

Fitrix Technical Reference

Directory and File Organization 2-9

A Makefile file gives instructions on how to compile the programs in the direc-
tory. An Info file provides programmer information about how the program
works. Files ending in the extension .per are the INFORMIX-4GL forms that is,
data entry screens needed for the program. There are also several .4gl files that
contain the source code for the single .4ge program, and the file containing the
.4ge program itself.

NOTE: If you are using the RDS Informix environment instead of 4GL, the execut-
able file extensions will be .4gi instead of .4ge. "RDS vs. 4GL: Choosing an
Informix Environment" on page 4-44

The Makefile is used for compiling the several .4gl files into one .4ge file.
Our use of the UNIX make utility is documented in detail later in this manual.

The Info file contains programmers’ notes about this program. It includes special
information that may not be apparent to someone modifying the program. Info
might be considered a program specific extension of this manual.

The executable program in this directory has the same name as the directory, but
ends in the extension .4ge. For example, the path name of the program that allows
input in the chart of accounts would be .../account-
ing/gl.4gm/i_chart.4gs/i_chart.4ge. When the menu system needs
to run this program, it changes to this directory and then executes this program.

There are two basic sets of 4GL files. As an example of the system files, the follow-
ing page contains a table of files in the ...account-
ing/gl.4gm/i_chart.4gs directory. This directory is for the program used
to input chart of accounts data.

All files ending in .4gl contain various parts of the source code for the data entry
application. All of the files in the table are absolutely standard. For example, there
is a globals.4gl in every data entry and reporting program directory and it
always contains the global variables for that program. Of these files, only the
i_chart.4ge is a unique name.

Fitrix Technical Reference

2-10 Code Structure

Files of the .../accounting/gl.4gm/i_chart.4gs program directory:

The only files that are required to run the application are the .4ge files, which con-
tain the executable version of the program, and the compiled screen files, whose
names end in .frm. All the other files can be considered source code and can be
removed from run-time versions of this directory.

Table 4: Sample Program File

File File Content

Info programmer information about program operation

Makefile instructions for "making" the program

browse.4gl INFORMIX-4GL source for browse function

browse.o object code for browse function

browse.per source "browse" screen for viewing a list of documents

browse.frm compiled browse screen

detail.4gl 4GL source for the scrolling "detail" region of screen

detail.o object code for the scrolling detail region

i_chart.4ge runtime version of the total program

globals.4gl "source" definition of global variables for the program

globals.o object code for global variables

header.4gl "source" code for the "header" section of document

header.o object code for the header of document

main.4gl source code for the main calling program

main.o object for the main program

screen1.per source for the main data entry screen

screen1.frm compiled data entry screen

Fitrix Technical Reference

Directory and File Organization 2-11

Keeping Modified Program Code Separate

Though you can modify the code residing in your .4gs directories, we recommend
you not do this. It is a good idea to keep those basic sets of program code unmodi-
fied.

To simplify the process of making modifications, we have implemented a system
through our menu front-end whereby you can easily create a parallel directory to
the .4gs directory. The purpose of this parallel directory is to allow you to create
customized versions of programs and have the menu system call them without
changing the menus themselves or modifying the original code.

The parallel directory you create is the .4gc directory. The c on the end stands for
"custom", and the purpose of this directory is to hold the customized 4GL code for
your application.

When the menu system goes to find a program, it looks first for the directory with
the program name ending in the extension .4gc. In other words, it looks first for
the modified code. It runs the standard program in the .4gs directory only when it
does not find a set of modified code.

Managing Parallel Program Directories

When you are modifying source code to create a customized version of a program,
we suggest the following procedure:

1. Create a directory with the program name but with the extension .4gw. The w
stands for "working." The menu system will ignore this directory. It gives you a
place to work with the code without affecting the program in production.

2. Copy all the source files from the .4gs directory to this working directory.
This allows you to work with an unmodified version of the source.

Fitrix Technical Reference

2-12 Code Structure

3. Make the modifications, testing the executable program locally. Since the menu
system ignores this directory, users can be running the unmodified program
while you make these changes.

4. When the program is finished and ready to be installed, simply rename the
.4gw directory to .4gc. The next time the users access this program, they
will now run the modified version of the code. If problems turn up, you can
rename it back to .4gw to take it out of use again while you rework it. Users
will then automatically be using the old version.

5. If you need to store an old version of customized code, you can do so simply by
changing the "extension" to indicate the version of the program that code repre-
sents; for example, program.old or program.v12.

NOTE: Using .4gw directories only applies if you have a version of the program in
production (i.e. you are not at the customer site). If you are developing at your
office, simply create a .4gc and do all of your work there.

Functions Within Files

Each of the .4gl files is further broken down into functions within each file. As
we have said before, one of our design goals was to have each function perform a
very specific purpose. This means each function is small in terms of lines of code.

 "Local" functions, those that are concerned with data flow of the current program,
are stored in the local directory.

 Data independent functions are stored in a tool or accounting library directory
depending upon how the program uses the functions."4GL Library Functions" on
page 4-4

Menu Directory Structure

It was mentioned earlier that in the application directory—$fg/accounting—
there is a directory called "menu." It contains all menus, menu item instruction
scripts, and menu item help.

Fitrix Technical Reference

Directory and File Organization 2-13

This directory, $fg/accounting/menu, is the base directory for the account-
ing system. As such, its directory path is stored in a special system variable, "mz".
The value of this variable, indicated by $mz, must be set to "point" at this menu
directory in order for the application menus to work. This is normally done by the
start-up shell script that runs Fitrix Accounting.

Menus are grouped into "projects" for organizational purposes. A project simply
consists of a group of related menus. Menus can support any number of project
directories. You can have a project directory for each user on your system, thus pro-
viding a specific user with a particular group of menus. You can also have a project
directory for each module, thus logically organizing the menus for that module in
one directory. This is how Fitrix Accounting is organized.

Menus in one project directory can call menus in other project directories. The
UNIX directory system is used to simplify system organization since a given com-
puter may have literally hundreds of menus organized into dozens of projects.

We call these "project" directories because you may want to set up your own menus
that are unrelated to specific modules. You may, for example, want to redefine
menus by user or class of user. In that case, you could also set up those directories
as separate menu projects.

Under the $mz directory, $fg/accounting/menu, there is a separate direc-
tory for each module available on Fitrix Accounting. Each of these directories con-
tains the menus for that specific module. Below is a list of project directories and
associated modules.

apmenu - Accounts Payable

armenu - Accounts Receivable

famenu - Fixed Assets

glmenu - General Ledger

icmenu - Inventory Control

mainmenu - Main Start-up Menu

oemenu - Order Entry

pumenu - Purchasing

pymenu - Payroll

Fitrix Technical Reference

2-14 Code Structure

Internally, each project is a directory for menus. Within the project directory, each
menu is also a unique directory. In other words, each of these project directories
contains a bunch of directories, each of which represents a different menu that
comes with the package.

As an example of "menu" directories within a "project" directory, here is a list of
menu directories in the apmenu project:

aging - detail menu for printing aging report

check - general menu for processing checks

glact - detail menu for printing G/L activity

journ - general menu for entering transactions

label - detail menu for printing vendor labels

main - main menu that calls document menus

setup - general menu for setting up the system

vend - general menu for accessing vendor info

Fitrix Technical Reference

Directory and File Organization 2-15

Diagram of Menu Directories

This diagram provides a visual representation of the file organization of a sample
Menus directory:

In the example above, the path starts at .../accounting/menu. The project
within this directory is apmenu. There is a separate project for all other modules,
but these are not shown above. There are three subdirectories shown in apmenu--
main, checks, and aging. There are other menus in this directory, but they
are not shown. In the main directory you see the Image and Action files and an
example of one Item Instruction File, 1-journ. Though there is not enough room
to show this, there is an Item Instruction file such as 2-check for every menu
item on the main menu. For more information about Menus refer to the Menus
User Reference Manual.

$fg

accounting

menu

apmenu

main check aging

menu menu.act 1-journ

Project
Directory

Menu
Directories

Files in the
Menu
Directory

Fitrix Technical Reference

2-16 Code Structure

3-1

3
Interacting with the
Database

The database is separate from the application that accesses and maintains it. Fitrix
Accounting uses SQL statements to extract data from and write data to this table
structure, but the tables themselves are accessible from any SQL compatible tool.
It is important to know not only what information is stored in the tables, but also
how the tables are related.

This section of the manual discusses the organization of the financial database cre-
ated and maintained by Fitrix Accounting, how to access tables, how to post to
these tables, how to merge databases, and database administration issues. Specific
flow diagrams illustrating the relationships between accounting activities and the
database tables are contained in the module User Reference manuals.

Fitrix Technical Reference

3-2 Interacting with the Database

Database Design Criteria
The Fitrix Accounting database structure was designed with several goals:

1. It is easy to understand by both a person using SQL and a developer.

2. It utilizes relational structure to minimize duplicate data.

3. Whenever possible the number of tables used was minimized.

4. It facilitates the automatic integration of standard packages to each other and to
customer modules though database design.

5. It uses SQL whenever possible to minimize the maintenance of "summary"
information in the database.

6. It provides a complete, on-line audit trail.

7. All audit trail information is easily archivable so that it can be removed from
and added to that system as needed.

8. The data structure is designed to minimize the use of storage space.

It should be noted that in this list of priorities, minimization of data storage space
comes last, not first. Most accounting systems are not designed this way. Our prior-
ity here was to have as much information as possible accessible through the com-
puter and, within that framework, minimize wasted space as much as possible.

Fitrix Technical Reference

Fitrix Accounting Data Flow Overview 3-3

Fitrix Accounting Data Flow
Overview
Data flows through accounting as follows:

1. Reference and control tables are built.

2. Business transactions are entered into the system.

3. The edit list is printed to facilitate error-checking.

4. The corrected information is posted permanently into the system and open-item
tables are updated.

5. Reports are printed based on the recorded entries.

Posting is the process of changing information in one table with information stored
in another table. This process generally involves updating or adding rows to a
table.

The following discussion is divided into two categories: tables and programs
involved prior to posting, and those that are involved during and after posting.

Before-the-Post Tables

Control Tables contain parameters, defaults, and control numbers that determine
how a program processes information. For example in the A/R control table
(strcntrc), the disc_tax column indicates whether or not the invoice dis-
count should be applied to the sales tax. strcntrc also keeps track of the last
A/R document number, which is used for posting.

Reference Tables contain information that is frequently consulted. strcustr,
for example, is the customer reference table. It contains information about the cus-
tomer's name, address, phone number, zip code, and so on. That information is sel-
dom changed. Not all of the information in strcustr, however, is static. For
example the current account balance and last pay date (columns acct_bal and
last_pay_date) are updated as required.

Fitrix Technical Reference

3-4 Interacting with the Database

Entry Tables - Header Tables and Detail Tables store the initial entry of busi-
ness transactions. Each invoice, for example, has one entry in the invoice entry
header table (strinvce). However, for each invoice, there are one or more
related rows of detail information. Thus, if customer Jones orders nine white wid-
gets and six blue widgets, there will be one row in the invoice header table and two
rows in the invoice detail table (strinvcd).

The following example follows a business transaction through the system. By way
of example, Jones and his order of blue and white widgets is used.

Before entering his order, two control tables must be set up: the company control
table (stxcntrc), and the accounts receivable control table (strcntrc)

Several reference tables are also needed: the chart of accounts reference table
(stxchrtr), the accounting periods reference table (stxperdr), a generic
information table for codes and descriptions (stxinfor), the customer reference
table (strcustr), the customer ship-to table (strshipr), and so on.

With these tables in place, the business transaction, in this case an invoice, can be
entered.

Invoices are entered in the A/R invoice entry header table (strinvce). That's
where Jones' customer code, his payment terms, his tax account number, and so on
are stored. The quantity, number of widgets, description, etc are stored in the A/R
invoice entry detail table (strinvcd).

Note that the invoice has been entered into the accounting system but not yet
posted. Therefore allowing changes to be made the entry to be deleted.

The next step is to print the invoice and post it to A/R. The posted entry cannot now
be changed. To undo the effects of an incorrect entry, reversing entries must be
made.

Since the after-the-post information is being discussed, the transaction tables need
to be examined.

Fitrix Technical Reference

Fitrix Accounting Data Flow Overview 3-5

Data Layout After Posting

Posting Tables: At the top or 'root' of the inverted tree is stxtranr, the link that
ties the various accounting modules together. For every transaction entered into the
system there is one and only one entry in stxtranr. stxtranr contains infor-
mation that is common to all business transactions. For example, posting date, doc-
ument number, and the name of the journal that sparked the entry (for example,
O/E, A/R, etc.).

The next level down are the header-transaction tables, and below them are the
detail-transaction tables. Each module has its own header-transaction and detail-
transaction tables because each module has different requirements.

The tree-design was chosen because it reduces data redundancy while at the same
time allowing for additional 'legs' or 'branches' to be added without sacrificing the
integrity of the original structure.

stxtranr

G/L A/R

stgtranr strtranr

stgactvd stractvd

st?tranr

st?actvd

Open Items Tables

stgopend stropend

Fitrix Technical Reference

3-6 Interacting with the Database

So what happens when Jones' order for widgets is posted?

In short, the A/R leg of the structure is traversed and then (if installed) the G/L leg.
Information common to all transactions is extracted from the original entry docu-
ment (the invoice) and placed in stxtranr. Information common to A/R is
extracted and added to strtranr, and information specific to that particular A/R
document is extracted and added to stractvd.

All posted transactions, regardless of the module in which they originate, impact
the G/L tables, stgtranr and stgactvd. After traversing the A/R leg of the
tree the G/L leg is traversed. The G/L tables store information necessary to prop-
erly update the ledger accounts impacted by a transaction. stxtranr has already
had a row inserted for the transaction. Header information (general information
about the transaction) is added to stgtranr and detail information (one row for
each account that will eventually be updated by the transaction, the amount,
whether it’s a debit or credit, etc.) is stored in the stgactvd table.

This posting process is similar for all modules. If only one module is installed, then
only the leg representing that module and the G/L leg are traversed. If several mod-
ules are installed, several may have to be traversed. For example, O/E traverses
several legs (O/E, A/R, G/L, and I/C).

There are several things to note:

1. The tree structure represents the data layout after posting.

2. After posting, the original entry document is removed. (In O/E the entry docu-
ments are retained for a set time, then removed by subsequent postings.)

NOTE: With the 4.0 release of Accounting, deleting documents during posting
will be parameter driven. Documents will not necessarily have to be deleted.

3. The posted data cannot be updated (errors may be 'corrected' by posting addi-
tional error-correcting entries).

4. All posting is done using database transactions (i.e., BEGIN WORK, COM-
MIT WORK) to ensure that the entire posting is successful. If a problem
occurs with posting, then all tables are restored to their state prior to the trans-
action.

5. During posting, rows in open-item tables may be inserted or updated.

Fitrix Technical Reference

Fitrix Accounting Data Flow Overview 3-7

Open-Item Tables are in a class of their own. Rows are inserted or updated during
posting.

For example, when the invoice above for Jones' widget order was posted it inserted
a row in the A/R open items table (stropend) to reflect the outstanding balance.
The outstanding balance is also stored in the A/R table, but if Jones wants to make
payment on his order in monthly installments, the open item entry provides a con-
venient place to track the balance on the invoice. At any given moment, the open
item balance is a reflection of the original amount plus the subsequent debits and
credits applied to that invoice. It's faster to query the open items table than it is to
retrieve the original amount, and then the subsequent entries that have affected that
amount, and then tally the results.

When integrating custom applications recommends that you put information into
the entry tables and let the posting routines take it from there, rather than directly
calling the posting routines. This makes detecting problems much easier.

Fitrix Technical Reference

3-8 Interacting with the Database

Fitrix Accounting Database
Table Overview
Information flows in a consistent pattern through each Fitrix Accounting module.

Five types of tables are accessed:

1. reference tables (a control table is a type of reference table)

2. entry tables

3. transaction tables (a posting table)

4. activity tables (a posting table)

5. open item tables

First, information is entered into reference tables. Information is added exten-
sively to these tables during the setup phase for a particular module, and later to a
lesser extent, after setup is complete and transactions have been entered. For exam-
ple, before entering transactions in a module, you must set-up the chart of accounts
because these accounts are "referenced" when entering transactions. The menu
options that access these reference tables are found on the Setup Company Menu
and the setup menu for each module.

Reference tables contain information that is accessed by a variety of programs.
They are named according to the information they store. For example, strcustr
is a reference table that stores customer information.

Reference tables store default values. Many data-entry forms provide the end-user
with default values in a variety of fields. These default values are retrieved from
reference tables. A reference table may be checked during the process of data vali-
dation (checking that an end-user entered a legitimate value in a particular field).
Lookups are frequently made to reference tables in order to display descriptive
information on a form. For example, a customer code may be entered in a field, the
program looks up and displays the customer name.

Fitrix Technical Reference

Fitrix Accounting Database Table Overview 3-9

A control table is a particular type of reference table. There is a company-wide con-
trol table, stxcntrc, accessed by the Update Company Information
menu option. In addition, each module has a control table, accessed by the Update
<module> Defaults option. Control tables contain a single row and store basic
information about the company or a specific module.

Other examples of reference tables are the tables that store customer information,
vendor information, and inventory information.

Next, transactions are entered and stored in entry tables. Transactions constitute a
business’s daily activity. Examples of transactions are a purchase from a vendor,
sale to a customer, receipt of cash, and receipt of shipped merchandise.

Entry tables are named according to the type of transaction they store. For example,
the name cash is used for tables recording cash receipts or cash payments and the
name invc is used for the tables containing vendor or customer invoices. Entry
tables are maintained using an "update" option such as Update Cash
Receipts.

When documents are posted, rows are inserted or updated in transaction and activ-
ity tables, and in some cases, open item and reference tables.

Typically the documents (stored in entry tables) are deleted (if they are not recur-
ring or incomplete). Usually the original document contains much more informa-
tion about a business transaction than you want to save on the system. Therefore,
the information from these documents is condensed and stored in a new, more terse,
and directly useful form.

The first type of table updated during posting is the transaction table. Each mod-
ule has a transaction table. There is also a system-wide transaction table (stx-
tranr).

Each row in a transaction table is uniquely identified by the original journal and
document number of a posted document. Transaction tables are part of a header
detail relationship with activity tables: the transaction table is the header table.

Fitrix Technical Reference

3-10 Interacting with the Database

Transaction tables are updated by the posting process.

The first transaction table that is always updated during posting is the module trans-
action table (e.g. stptranr, strtranr, etc). This table contains header infor-
mation (information that pertains to the entire transaction) unique to a particular
module. For example, the transaction table for documents affecting the general led-
ger contains the account period and account year associated with the transaction.

The second transaction table that is always updated during posting is the system-
wide transaction table shared by all modules (stxtranr). This table contains
header information that is shared by all types of documents, including the date of
posting and its posting number.

Posting in all modules results in the insertion of a row into the G/L transaction table
(stgtranr). This table exists even if the General Ledger module is not installed.
It stores information that pertains to postings that will affect the chart of accounts.

In addition, rows may be inserted into the transaction tables of other modules
at the time of posting.

Transaction table names always contain the letters tran (which stands for "trans-
action").

The second type of table updated during posting is the activity table. Activity
tables are part of a header/detail relationship with transaction tables. The activity
table is the detail table.

At the time of posting, rows are inserted into activity tables.

Rows are always inserted into the module’s activity table. In the case of the General
Ledger, this is the stgactvd table. Non G/L modules also update the G/L activity
table. This is the case regardless of whether General Ledger is installed. In other
words, the G/L transaction (stgtranr) and activity tables (stgactvd) are pro-
vided even if General Ledger is not installed. It stores the ledger account, depart-
ment, and credit or debit amount that is to be posted to the chart of accounts.

Activity table names always contain the letters actv (which stands for activity).

The third and final type of table in which rows are created during posting is the
open item table. A/R and A/P are the only modules with open item tables. This
table is used to track information which will be updated at some future time. In the
Accounts Receivable module, for example, posted customer invoices update the
open item table. Later cash receipts may be applied to existing open items.

Fitrix Technical Reference

Fitrix Accounting Database Table Overview 3-11

Rows in open item tables may be inserted or updated by a transaction. This is in
contrast to transaction and activity tables where posting always results in rows
being inserted.

Entering Information Into Reference and
Entry Tables

Reference tables are header-only tables. Entry tables typically comprise a header
table and a detail table. In the case of entry tables, the header portion of a document
consists of general information about the document. With a customer invoice, for
example, the header comprises a customer code, description of the invoice, and so
forth. The detail section of the document consists of the individual detail lines that
make up the document. Again, in the case of a customer invoice, this would be the
individual lines that represent products ordered by the customer.

If a transaction is divided into a header and detail section, these sections are stored
in different tables. There is only one header "row" (or "record") for each transac-
tion, but there may be any number (though the usual limit is 100) of detail rows per
transaction.

The header and detail sections of a transaction typically represent a one-to-many
relationship (though there could also be a one-to-one relationship). One row in the
header database table may be associated with any number of rows in the detail
table. Header/detail relationships are maintained by all entry, listing, and posting
programs.

For entry tables, the header/detail relationship is straightforward. What you see on
the screen is generally reflected in the database table structure. The top of the
screen records information stored in the entry header table. This table is identified
by the e ending its full name (e.g., strinvce). There is only one row in this table
for each transaction.

The lower portion of a data-entry form—the scrolling "detail" area—is stored in the
entry detail table identified by the d ending its name (e.g., strinvcd). There can
be any number of rows in this table per transaction. Both tables are keyed by trans-
action number so that they always appear together when displayed on a data-entry
form or when listed on a report.

Fitrix Technical Reference

3-12 Interacting with the Database

Entering Information Into Transaction and
Activity Tables

After a transaction document is posted, the table relationship becomes more com-
plex because rows may be inserted into several tables for each transaction.

The first reason that the relationship is more complex is that the transaction header
is divided into at least two different tables. The "system" transaction table, stx-
tranr, contains the information held in common by all Fitrix Accounting transac-
tions: document type, number, post date, and so on. In turn, each module has its
own transaction table. For example, the transaction table for the general ledger is
stgtranr; the transaction table for the accounts receivable is strtranr. A
transaction may create entries in additional transaction tables, as well. Most posted
transactions in modules have a potential impact on the general ledger chart of
accounts balance; therefore at the time of posting, entries are created in the general
ledger transaction table.

The detail section of the transaction is similarly divided among several different
activity tables. Each module has its own activity table. Different modules can post
to each other’s activity. For example, most transactions post to the general ledger
activity table stgactvd, and both A/R transactions and O/E transactions post into
the account receivable activity table, stractvd.

The entry detail table and module activity table relationship is not necessarily a
one-to-one relationship. For example, one detail line of an order entry invoice is
stored as one row in an entry table, but when posted, can generate two rows in the
general ledger activity table (representing a credit to one account and a debit to
another).

A row may also be inserted in a module activity table that stores a value that was
not originally stored in the entry table detail table. For example, in the ledger activ-
ity table again, there is frequently a "balancing account" entry that represents cer-
tain totals from the transaction. These totals are not in the detail table, but a
summary of the information in them.

Each module has a unique audit trail. The header information, stored both in the
system-wide transaction table and the module transaction table, consists of general
information about this activity. Together, the activity tables and transaction tables
can be seen as the header and detail sections of a complex system-wide transaction
recording a business transaction. This transaction may be stored in multiple header

Fitrix Technical Reference

Fitrix Accounting Database Table Overview 3-13

and detail tables. Instead of one-to-many, the header/detail relationship may be
seen as one (system transaction table) to one (module transaction table) to another
one (optional module transaction table) to many (module activity table) to others
(another module activity table).

As you can see, it can be a mistake to think of the system as hierarchical in the
sense of many third generation programs. Though the entry transactions have a
fairly traditional one-to-many structure, information is stored in a truly "relational"
structure once it is posted to the system, becoming part of the financial database.

Entering Information Into Open Item
Tables

The open item tables store summary information about transactions. They are uti-
lized for fast access to information. Not all modules contain open item tables.
Though such tables can be joined to related transaction and activity tables, each
row in an open item table represents a complete transaction.

Open item tables store a transaction’s original and current balance. The Accounts
Receivable module contains an open item table. In the case of Accounts Receiv-
able, the original balance preserved in this table was an original invoice total. A
total is technically not part of a header or detail section of a transaction. Like the
header information, there is only one total for the transaction, but this total is the
sum of the detail rows. So the total is related to both the header and the detail sec-
tions of the transaction in different ways.

As more activity is posted to the system, the transaction balance stored in the open
item table changes. The current balance is a reflection both of the first transaction
that created the open item and all subsequent transactions that have had an effect on
that balance.

Fitrix Technical Reference

3-14 Interacting with the Database

Viewing Database Table
Descriptions
In order to provide you with the most current database information available, we
have developed a method by which you can quickly view this information on-line,
rather than listing it here in this documentation. Database table descriptions are
contained in a subdirectory under each module directory. The $fg/account-
ing/<module>.4ge/Doc/maps file contains descriptions of each table and
column in the accounting database. These descriptions are much more detailed than
past descriptions and are much easier to obtain.

The maps file also contains special markers (e.g. .iX strcntrc). These markers are
used with a special tagging feature which allows you to view the descriptions of a
table from any location simply by typing tag -t <table name>. Typing this
command will invoke the vi editor on the maps file and the table you typed will be
displayed on your screen. The tags feature also allows you to view function
descriptions in the same way. For more information on the tags feature see "The
Tag Utility" on page 4-18.

Fitrix Technical Reference

Using Database Transactions for Posting 3-15

Using Database Transactions
for Posting
In Fitrix Accounting, many programs post data from one (or more) table to another
(or multiple) tables. In other words, the posting process reads data stored in one or
more tables and subsequently inserts rows and/or updates rows in other tables.

Fitrix Accounting posting programs are named with a "p_" prefix. The posting
programs take advantage of "database transactions." The use of database transac-
tions ensure data integrity.

Using transactions guarantees that everything between your begin work and
commit work statements is either done 100%, or is not done at all (this is impor-
tant if a problem occurs).

Transactions provide the ability to "rollback work" (automatically un-do the
changes made to the database since the last begin work command).

They give you the ability to "rollforward database." That is the ability to take a
backup of your database, and apply ALL changes made to it since that backup to
bring it up to date.

When running the Informix standard engine, you must make sure to clean out the
logfile fairly often. If you are using the OnLine engine, the logfile is handled auto-
matically.

Posting from Custom Applications to Fitrix
Accounting General Ledger

The discussion of the financial database cannot be complete until you understand
how to get your own data into that database from your custom applications.

Modifiability is the cornerstone of all applications. The ability to tailor software to
meet your end-users’ needs is what makes you successful in the marketplace. We
assume when you buy the package that you are going to be writing completely cus-

Fitrix Technical Reference

3-16 Interacting with the Database

tom entry front-ends that capture business transactions unique to your business. It is
also assumed that many of these transactions should generate accounting informa-
tion that you want managed by Fitrix Accounting.

It may seem that you need to know a lot about the database structure in order to
capture and manage this accounting information. However, this process has been
made easy for you. You are provided with certain functions that can be used from
within your custom application to post data into the financial database on a regular
basis. These functions are the same ones that we use within Fitrix Accounting to
put data in the accounting system.

To interface a custom module with the General Ledger you must call the gl_post
function in your custom module. Refer to the function gl_post in
$fg/accounting/all.4gm/lib.4gs/gl_post.4gl

Your program must pass the proper arguments to gl_post:

function gl_post(post_or_check, orig_journal, doc_no,
post_no, post_date, doc_date, ref_code, doc_desc,
inv_chk_no, acct_no, department, amount,
debit_credit)

You can examine any of the Fitrix Accounting modules to see how they interact
with the gl_post function.

The gl_post()function posts to the G/L activity tables: stxtranr,
stgtranr, and stgactvd

Data Posting Functions

There are functions for posting to the "activity" tables of each module. There is also
a function for posting to transaction tables. All of these functions are in the
accounting function library under $fg/accounting/all.4gm/lib.4gs.
The posting functions for each module are named with the two letter identifier for
that module (gl, ar, ap, oe, etc.) followed by _post. For several modules,
there is a related function called module_last, which is called at the end of the
transaction to check and validate it. The transaction posting routine is called
trx_post.

Fitrix Technical Reference

Using Database Transactions for Posting 3-17

Take a closer look at one of these routines. Suppose you now own our General
Ledger package, but you’ve already written a data entry package for your client.
You’ve chosen Informix as your 4GL because it’s easy to modify, and now it’s
time to merge your data into G/L. A nice attribute of library functions is that once
they are written, you don’t have to know all of the details about how they work
when you need to use them. All you need to know is how to call them.

You don’t even need to know how the G/L tables are structured. Just pass the data
to the posting routines that have been written for you. If you want to know specifi-
cally how they work, just print them out. You will find that over 25% of the text
consists of comments, including different ways to use the functions.

The modules follow the philosophy that data is entered into "entry" tables, then
posted into activity tables. Before posting, an edit list is produced that allows users
to identify errors. They can then go back and correct those errors with the data
entry interface before posting. The program that produces this edit list does all data
validation done during posting, so if the edit list produces an error, the user can go
back and change the data in the entry tables.

All posting library routines are written to be used in the edit list phase as well as the
posting phase. If you indicate that you are not posting, the routine will complete the
data validation without actually posting to the activity tables. The routines used for
posting to G/L are gl_post and gl_last. The gl_post routine is called once
for each G/L entry for the transaction, and the gl_last routine is called at the end
of the transaction to validate data and report any errors that may have occurred.

The prerequisite for posting to G/L is that the total of the credit amounts that are
applied to accounts must equal the total of all debits for any one transaction. This
guarantees that your G/L is always in balance. Numbers are always posted as posi-
tive. They may be entered, for example, as negative debits to an account, but the
gl_post routine will actually post that as a positive credit to the account.

Fitrix Technical Reference

3-18 Interacting with the Database

Posting Function Description Section

Each posting routine contains extensive comments describing its operation. Here is
an example of the description section of the gl_post posting routine:

 ##
 function gl_post(post_or_check, orig_journal, doc_no,
 post_no, post_date, doc_date, ref_code, doc_desc,
 inv_chk_no, acct_no, department, amount, debit_credit)
 # returns true/false based on pass/fail of the routine
 ##
 # This routine takes the G/L transaction data as arguments,
 # and either posts to G/L or checks for an ok posting.
 # It is designed to be run in "CHECK" mode during the edit list phase,
 # and in "POST" mode during the posting phase.
 # It modifies elements in the global record post_gl defined in
 # gl_glob.4gl in this directory.
 # All routines that post into the 4gen general ledger module should
 # do so via this routine.
 # This line is called once for each G/L transaction
 #
 # Data elements passed:
 # post_or_check char(5), "POST" or "CHECK" tells gl_post to check
 # the posting (for edit lists), or post it.
 # orig_journal char(2), original journal (AR, OE, etc...)
 # doc_no integer, document number (sequential and congruent
 # for each document within a journal)
 # post_no integer, posting number (post only)
 # post_date date, posting date (post only)
 # doc_date date, document entry date
 # ref_code char(6), customer code
 # doc_desc char(30), document description
 # inv_chk_no char(12), invoice or check number
 # acct_no integer, account number
 # department char(3), sub-account (department) code
 # amount like stgactvd.amount, always a positive amount
 # debit_credit char(1) debit or credit the account by amount
 #
 # status and description variables returned in the post_gl record:
 # 0 - Successful
 # 1 - fg_error("lib_all","gl_post",1) - Cannot Read G/L Control Table.
 # - return false
 # 3 - fg_error("lib_all","gl_post",3) - Document Number out of Sequence
 # - (warning condition only) - continue
 # 4 - fg_error("lib_all","gl_post",4) - Duplicate Document Number Exists
 # - (error condition) - return false
 # 5 - fg_error("lib_all","gl_post",5) - Cannot Insert a New Document
 # - (sql insert command failed) - return false
 # 6 fg_error("lib_all","gl_post",6)Account Not Listed in Chart of Accounts
 # - return false
 #

Fitrix Technical Reference

Using Database Transactions for Posting 3-19

 # What this process does:
 #Check to see if GL is installed. If not, then all statuses are P(posted)
 # If last doc no isn’t this doc no (first in a group)
 # if last doc no isnt this doc no - 1, then set warning #4
 # call trx_post - this (possibly) posts a new document into
 # stxtranr (top level)
 # trx_post returns:
 # 0 = if "CHECK" or if "POST" and posted ok
 # 1 = insert failed (post only)
 # 2 = duplicate found
 # if "CHECK", check for duplicate stgtranr
 # if "POST", insert into stgtranr
 # if (first in group)
 # if "CHECK", then return
 # if "POST" then:
 # insert the row into stgactvd
 #
 # This process is designed to be run in conjunction with the gl_last()
 # library function that checks to make sure all credits match all debits
 # and returns false if they don’t.
 #

Note the following about this function:

It can be called during the edit list phase of posting by passing "CHECK" in the
post_or_check argument.

It relies on a post_gl record defined in your globals file (the layout of that record
is in the gl_glob.4gl file in the library).

Because it must do the lookup to validate the ledger accounts, it returns the name of
the account in the acct_desc element of the post_gl record so you don’t have
to perform that lookup to show the account on your edit/posting report.

It returns either true or false depending on data validity, and if it returns false, it sets
the description variable in the post_gl record to the text of the failure. You may
also call the standard error routine if the function fails. All errors are known and are
described to the user along with possible solutions.

If the function returns false and you are in the posting phase, then you must issue a
rollback work command to guarantee that none of the postings for this trans-
action have been committed to the database.

Fitrix Technical Reference

3-20 Interacting with the Database

Sample Program Using the Posting
Function

Again, the gl_post function is called for each credit/debit to a G/L account. Once
all lines of a transaction have been run through the gl_post function, you then
call gl_last (passing no arguments), and it returns either true or false depending
on whether or not the entire document is correct. Like for gl_post, you may use
the standard error routines for gl_last. Below is an example of how you can call
these functions and how you would trap errors:

 if gl_post(
 check_post, "GL", new_doc_no, post_no,today,
 curs.doc_date, curs.doc_src, curs.doc_desc,
 curs.acct_no, curs.department,curs.amount,
 curs.debit_credit
) = false
 then
 if check_post = "POST"
 then
 rollback work
 call fg_error("lib_all","gl_post",post_gl.status)
 call end_report(post_gl.description)
 end if
 end if

The preceding code would be run for each line of the document. Then, you would
call the gl_last function at the end of the document:

 if gl_last() = false
 then
 if check_post = "POST"
 then
 rollback work
 call fg_error("lib_all","gl_last", post_gl.status)
 end if
 call end_report(post_gl.description)
 else
 commit work
 end if

Writing posting routines from your custom front-ends to any of the Fitrix Account-
ing modules is just this easy. You don’t even need to know the layout of the activity
tables.

Fitrix Technical Reference

Using Database Transactions for Posting 3-21

If there are any problems with postings, the user will be told what went wrong and
given a chance to correct the problem. Using database transactions insures 100%
integrity of all activity tables.

All other posting routines in the Fitrix Accounting library can be used in a similarly
straightforward manner to get data from your front-end into the accounting system.

Fitrix Technical Reference

3-22 Interacting with the Database

SQL Query Optimization
In more recent releases, work has been done to speed up certain functions of the
program. Though this optimization may not have been performed in all parts of the
product, you should be aware of the methodology involved. Many of these issues
relate directly to the Informix Rapid Development System as opposed to the regular
compiled versions of INFORMIX-4GL code.

How RDSQL Constructs a Query Plan

The RDSQL optimizer (a part of sqlexec or sqlturbo) selects a processing strategy
for each RDSQL statement. This strategy, or query plan, determines the order in
which RDSQL searches tables (the table-selection order) and which indices are
needed to process the query.

The optimizer establishes an efficient table-selection order by applying a set of cri-
teria to the tables involved in the query. These table-selection criteria are derived
from general principles of query optimization. For example, an indexed search
retrieves an arbitrary value faster than a non-indexed (row-by-row) search, and pro-
cessing speed increases when the number of rows the query processor must exam-
ine decreases. If one criterion cannot order the tables, the optimizer applies another,
and so on, through the last criterion. If this criterion cannot order the tables, the
selection order becomes the order of the tables in the FROM clause.

Note: The terms "filter" and "join" are integral to a discussion of query optimiza-
tion. They are defined in the following paragraphs if you are not familiar with them.

A "filter" is a condition expressed in a WHERE clause that removes undesired rows
from a single table.

A "join" temporarily links two or more tables so that they can be queried as a single
table. You can join tables when they contain columns that store comparable data,
such as the customer_num columns in the customer and orders tables of the
stores database.

The optimizer applies the following criteria to establish the table-selection order.
The first criterion is applied to the FROM clause; subsequent criteria are applied to
the entire WHERE clause.

Fitrix Technical Reference

SQL Query Optimization 3-23

Criterion 1: Outer Joins

The optimizer gives priority to the dominant table in an outer join, i.e. selects this
table to be processed first, without applying subsequent criteria. By processing the
dominant table first, RDSQL can preserve all of its rows.

When a query outer joins the result of a nested outer join to a third table, the opti-
mizer gives priority to the outermost dominant table, followed by the innermost
dominant table. ("outermost" and "innermost" refer to the level of nesting in the
FROM list.)

Examples:

SELECT ...
FROM x, OUTER y
WHERE x.a = y.a

(table order is x, then y)

SELECT ...
FROM x, OUTER (z, OUTER y)
WHERE x.a = z.a AND

x.b = y.b

(table order is x, then z, then y)

In the preceding example, x is the outermost table, and z is dominant over y.

Another example:

SELECT...
FROM x, y, OUTER z
WHERE x.a = y.a AND

y.b = z.b

(table order is: x, then y, then z, or y, then x, then z)

In the preceding example, the optimizer gives both table y and x priority over z,
the subservient table. Since x and y are at the same level in the FROM list, the opti-
mizer must apply additional criteria to order the tables. With similar exceptions, the
first criterion is normally sufficient to order the tables (the optimizer creates a tem-
porary index as discussed later in this section). Thus the optimizer uses indices, as

Fitrix Technical Reference

3-24 Interacting with the Database

well as other criteria, to order the query joins. Having determined an efficient order
for RDSQL to perform the joins, the optimizer applies the same or similar criteria
to order the tables.

If only one of the columns involved in a join is indexed, the optimizer gives priority
to the table with the non-indexed join column. This allows RDSQL to use the
indexed column to perform the join.

Example: (assumes x.a is indexed, but y.a is not)

SELECT...
FROM x,y
WHERE x.a = y.a

(table order is y, then x)

If both columns involved in the join are indexed, but only one is uniquely indexed,
the optimizer gives priority to the table with the non-uniquely indexed join column.
This allows RDSQL to use the uniquely indexed column to perform the join.

Example: (assumes x.a is indexed [unique] and y.a is indexed [duplicates])

SELECT...
FROM x,y
WHERE x.a = y.a

(table order is y, then x)

If both tables have indexed join columns, and both are either uniquely or non-
uniquely indexed, the optimizer gives priority to the table with the columns con-
taining the index with the fewest parts. This allows RDSQL to use the column con-
taining the index with the most parts to perform the join.

If none of the columns involved in any join are indexed, the optimizer creates and
then indexes a temporary table that is a copy of the largest table, the one with the
most rows. RDSQL drops the temporary table when the query is finished.

Fitrix Technical Reference

SQL Query Optimization 3-25

Criterion 2: Filter Columns

If the optimizer cannot make a decision based on join conditions, it next examines
filter columns.

If only one of the tables involved in a join has a filter column, the optimizer gives
priority to that table. This allows RDSQL, in theory, to process the table with the
fewest rows first.

Example:

SELECT...
FROM x,y
WHERE x.a = y.a AND
 y.a = 10 (table y filter)

(table order is y, then x)

If both tables have filters, but only the filter column of one table is indexed, the
optimizer gives priority to that table.

Example: (assumes only x.b is indexed, but y.c is not)

SELECT...
FROM x,y
WHERE x.a = y.a AND

x.b = 60 AND y.c = 20

(table order is x, then y)

If both tables have indexed filter columns, but only one has a unique index, the
optimizer gives priority to that table.

Example: (assumes x.b is indexed [duplicate] and y.c is indexed [unique])

SELECT...
FROM x,y
WHERE x.a = y.a AND

x.b = 10 AND y.c = 20

(table order is y, then x)

If both tables have indexed filter columns, and both are either uniquely or non-
uniquely indexed, the optimizer gives priority to the table with the columns used in
the index with the most parts.

Fitrix Technical Reference

3-26 Interacting with the Database

Example: (assumes both x.b and y.c are indexed [duplicates], but y.c and y.d
are used in a composite index):

SELECT...
FROM x,y
WHERE x.a = y.a AND

x.b = 50 AND y.c = 20 AND y.d = 40

(table order is y, then x)

Criterion 3: Table Size

If none of the preceding criteria are sufficient to order the tables, the optimizer
gives priority to the table with the fewest rows. It knows this only by issuing the
UPDATE STATISTICS statement. This is also true in those rare instances when
the optimizer cannot apply other criteria because of query structure or complexity.

When tables have the same number of rows, table order is irrelevant, and the order
becomes the order in the FROM clause. Note: Because table size affects optimiza-
tion, you should systematically update the table information in the system catalog
so that RDSQL has current information. Use the UPDATE STATISTICS state-
ment as described in the reference manual.

Improving Performance Through Indexing

In general, indexing is a trade-off with time gained during some operations and
time lost during others. Every modification to an indexed column involves updating
the corresponding .idx file. Thus, in a very large database, an index that helps
performance during complex queries and sorting operations hurts performance dur-
ing operations that add, change, or delete data. The more rows you modify at a
time, the greater the impact. During random modifications, such as deleting a few
rows from an indexed table, the effect is negligible.

You can address this problem by taking advantage of the inherent flexibility of a C-
ISAM-based relational database. You need not commit yourself to a rigid indexing
strategy. Instead, your applications can create the indices you need and drop them
when they get in the way. You might, for example, create indices in anticipation of
batch report writing during the night and drop them in the morning before there are
huge data-entry needs. You must carefully evaluate the performance trade-offs
based on first-hand knowledge of your database application.

Fitrix Technical Reference

SQL Query Optimization 3-27

Because it takes time to create an index on a table already containing data, you
should create indices only for queries you or your applications use regularly. For
spur-of-the-moment queries (the kind you do only once), you may be able to dis-
pense with indices, relying entirely on auto-indexing to optimize processing.

You should not create indices on tables with fewer than 200 rows. The speed you
gain does not offset the time required to open and search the index file.

In general, you should not index columns that can contain only a few possible val-
ues (yes/no responses, marital status, zip codes in a small city, and so on). This kind
of data produces distorted indices, defeating the optimizing strategy of RDSQL.

It may occasionally make sense to index a column with many duplicate values, pro-
vided your anticipated queries will regularly fetch other values. For example, a
state column that holds primarily one specific value (185 WA’s versus 18 OR’s, 22
CA’s, 12 AK’s, and so on) might benefit from an index if most queries fetch values
other than WA. If, on the other hand, most queries fetch the dominant value (WA),
an index hurts performance. This is a borderline case, and you must fine-tune your
indexing strategy accordingly.

If you anticipate many queries that place conditions on a single column, you should
index that column. If you anticipate queries that place conditions on several col-
umns as a unit, you should put a composite index on all of the columns (assuming
previous recommendations do not apply).

For queries similar to:

SELECT * FROM items
WHERE order_num 1015

you should put an index on the order_num column.

Fitrix Technical Reference

3-28 Interacting with the Database

For queries similar to:

SELECT * FROM items
WHERE stock_num = 4 AND

manu_code = "HRO"

you should create a composite index on both the stock_num and manu_code
columns.

The order of the columns in a composite index can be significant. Assume that, in
addition to the preceding query, you anticipate queries such as the following:

SELECT * FROM items
WHERE stock_num = 5 AND

manu_code = "HRO"

or

SELECT * FROM items
WHERE stock_num 5

In the preceding case, stock_num must precede manu_code in the composite
index. Otherwise the index cannot be used for optimizing the second query.

If you expect many queries to join a single column in one table with a single col-
umn in another table, you should at least index the column in the largest table (i.e.
the table with the most rows).

For queries similar to

SELECT * FROM items, stock
WHERE items.stock_num = stock.stock_num

you should index the stock_num column in the items table because that table has
many more rows than the stock table.

For queries similar to

SELECT * FROM items, stock
 WHERE items.stock_num=stock.stock_num
 AND items.manu_code = stock.manu_code

you should make a composite index on the stock_num and manu_code columns
in the items table.

Fitrix Technical Reference

Merging Databases with dbmerge 3-29

The speed with which the dbload utility loads data into a database is greatly
affected by the presence of indices. You may want to drop indices before running
dbload and restore them when the program is finished.

For information on indices by table, refer to the section titled "Database Table Con-
tents."

As previously demonstrated, join columns require indices for efficient processing.
Version 2.10 of INFORMIX-SQL, INFORMIX-ESQL/C, and INFORMIX-
ESQL/COBOL, as well as Version 1.10 of INFORMIX-4GL incorporate auto-
indexing to optimize the processing of non-indexed queries. If your product fea-
tures auto-indexing, the optimizer applies its own indexing strategy when you do
not index at least one join column. To do so, the optimizer creates and then indexes
a temporary table that is a copy of the largest table (the one with the most rows).
RDSQL drops the temporary table when the query is finished.

Although it is transparent, auto-indexing still involves creating, indexing, and later,
dropping a temporary table. It is therefore not appropriate for queries you perform
often, such as those within an application. For such queries, a temporary table that
is repeatedly created and dropped is extremely inefficient. Consequently, you
should add indices according to the guidelines in this section and rely on auto-
indexing only for one-time queries.

Merging Databases with
dbmerge
Fitrix Accounting products are designed to be modified, and are frequently
upgraded. Therefore, the task of merging a new version of a database with an estab-
lished, possibly modified version is encountered regularly. The goal is to preserve
all changes made to the established database while incorporating the features of the
new version.

Our organization has automated the procedures for installing upgrades to our prod-
ucts. The code generator builds a 4GL program, dbmerge, that automatically
applies the rules required to install a new version of a product without jeopardizing

Fitrix Technical Reference

3-30 Interacting with the Database

the integrity of the installed database. That is, dbmerge checks to see if the
installed database currently on their system is the same as the new database it
knows about. The following rules are observed by the program:

• For each table, a test is made in the installed database for an existing table.
If the table does not already exist, it is created.

• For each column in a table, a test is made in the installed database for an
existing column by a given name. If it does not exist, the column is added
after the last known field matched.

• A test is made to determine whether the new and installed database col-
umns have the same basic data type. If they do not, an error message is gen-
erated for the column in question, and a resolution to the conflict will have
to be applied manually.

• If the column is of type char, the longest column length is used. If the col-
umn is integer or smallint, the column type is made integer. If the column
type is float or smallfloat, the type is made float. If the column type is deci-
mal, the column remains decimal with the highest level of precision and
length maintained.

• No column names are ever changed. No columns are ever dropped.

• Views are always rebuilt.

• Indices are only rebuilt if they have changed.

What Does dbmerge Do?

• it builds and modifies tables

• it unloads and loads tables

Unload files (<table>.unl) are created by capturing data in the existing database.
There is one unload file created for each table. There is no intermediate script cre-
ated to do this unload; dbmerge takes care of this directly. It relies on Informix's
dbload program to load the data, but it doesn't rely on anything in order to create
the .unl files.

Fitrix Technical Reference

Merging Databases with dbmerge 3-31

The dbmerge Process:

1. The process begins by providing dbmerge with a picture of all of a product's
tables (for example, dbmerge must have an exact description of each column
in each table in A/R).

2. dbmerge merges an existing database with the new release database or creates
a new database if there were no existing database.

3. Finally, dbmerge intelligently loads the data stored in the unload files into the
modified or newly created tables.

How Does dbmerge Merge Databases?

Dbmerge will add tables, but not delete existing tables. It will add columns, but
not delete columns. It will enlarge columns but not narrow.

The following chart provides an example of dbmerge's logic:

Existing Action Taken
Database New Release
Column Column

char 30 char 30 no action taken
char 20 char 30 widen existing column to 30 char dec-
imal 10 decimal 12 widen existing col to 12
decimal 12,2 decimal 12,3 alter table to 12,3 (or 10.2)
 (or 9.3) (or 10.3)

Recompiling the dbmerge program

Typing make or make.rds in the accounting directory does not cause each
dbmerge program to be remade. In order to recompile the dbmerge program you
must type make or make.rds in the directory in which dbmerge resides.

For example, to recompile the dbmerge program for A/P change directories to
$fg/accounting/data/ap and type make or make.rds.

Fitrix Technical Reference

3-32 Interacting with the Database

When is dbmerge Used?

dbmerge is designed to be an installation-level program. The first step in install-
ing a new version of our software is to tar off the files from media to hard disk.
These files consist of unload files and programs (not tables). The next step is to
invoke fg.install which calls dbmerge.

The pcdtablr Table and dbmerge

• This table contains information that defines each table in a product.

• It contains the following columns:

prodid ar, ap, gl, etc.
line_no 1-n (for ordering the tables within a product)
tabname table name

Example .unl file for pcdtablr:

ar|1|pcdtablr|
ar|2|strcntrc|
ar|3|strcustr|
ar|4|stropend|

dbmerge syntax:

dbmerge.4ge [-d database] [-dbs dbspace] [-s | -i | -I
|-l directory | -u directory] [-log logpath]

-d database specifies the database to use (default: standard)

-dbs dbspace specifies the dbspace to build the database in.

-s tells dbmerge to update the schemas

-i tells dbmerge to (possibly drop and) build all defined indexes

-I tells dbmerge to drop and build all defined indexes

-l tells dbmerge to load data from .unl files located in the specified directory
into database tables.

Fitrix Technical Reference

Moving the Database to a New Location 3-33

-u tells dbmerge to unload data from database tables into.unl files located in
the specified directory. (NOTE: the unload files are named (table-
name).unl where tablename is the name of the table that the unloaded data
represents)

-log tells dbmerge to create the database with logging. Logpath is the fullpath-
name of the directory to put the logfile. (NOTE: the logpath name cannot
be longer then 64 characters and is usually the current directory (’pwd’).

NOTE: with the "-l" and the "-u" flags you need to specify a directory in which to
find existing unload files or the directory in which to store unload files.

Merging Data

Where data tables already exist, new data may not be indiscriminately loaded over
or into the new data. These are subjective decisions which will vary between local
installations. "Trigger" files (triggers.4gl) control how dbmerge handles
these situations. These files need to be examined and modified by the person super-
vising the installation.

The dbmerge program also loads data into, or unloads data from, the data tables.
The invocation rules for the program can be viewed by typing the following com-
mand from a UNIX prompt:

fglgo $fg/accounting/data/all/dbmerge.4gi

Moving the Database to a New
Location
If it becomes necessary to move the database to a new location in the file system,
you must convert all direct UNIX pathnames of Informix tables (example:
$fg/accounting/data/standard.dbs/stxchrt128) to relative path
names (stxchrt128). If this conversion does not take place, an error similar to
the following appears:

Fitrix Technical Reference

3-34 Interacting with the Database

Cannot open database table %s.

A utility called rmdirpath is enclosed with base files to perform this tedious
chore automatically.

The syntax is:

$fg/accounting/bin/rmdirpath -d <database_name>

NOTE: rmdirpath does not work when running Informix 4.0 unless you are
logged in as Informix.

Fitrix Technical Reference

Exporting Activity Data 3-35

Exporting Activity Data
There is an option in many Fitrix Accounting modules that deletes obsolete records
from data files. Deleted activity will have already been posted, and will be older
than a user-specified date or period. Prior to purging such dated records, you may
want to export the data to a file which can then be backed up.

The records that are deleted come from particular activity files (tables). In each
case the p_delete program carries out the deletion of obsolete activity. The files
or tables affected by the p_delete program will vary from module to module,
and not all modules use p_delete.

This section of the documentation presents a sample SQL script for unloading the
obsolete data prior to deletion. In addition, a listing of modules and tables affected
by the p_delete program appears.

This sample SQL unload script backs off the activity data for the stgtranr table
into its unload file, stgtranr.unl:

unload to "stgtranr.unl"
 select stxtranr.doc_date, stgtranr.*
 from stxtranr, stgtranr
 where stxtranr.orig_journal = stgtranr.orig_journal
 and stxtranr.doc_no = stgtranr.doc_no

and stxtranr.doc_date progname.4gi # concatenates all .4go’s into a
.4gi

The next step would be to make a backup of the stgtranr.unl file.

Fitrix Technical Reference

3-36 Interacting with the Database

Passing Information Between
Databases
This section explains how you can pass information from database to database,
within the same program, and briefly describes how to use dbload.

The standard method (a better technique is described below) of exchanging infor-
mation is to unload the data from the first database to an unload file and then load it
into the second database. This is easy to do with ISQL and dbload.

In ISQL select the query option, after having selected your database. Then execute
the following command:

unload to "/usr/my/unloadfile/stxchrtr.unl" select * from stxchrtr
[optional where clause]

All rows are selected from table stxchrtr and written out to the indicated file in a
pipe delimited format. Here are the first few lines.

9998|EXPENSES|MISCELLANEOUS EXPENSES|F|8|N||
9600|EXPENSES|STATE B&O RAILROAD|F|8|N|STATE TAXES|
1370|CURRENT ASSETS|PREPAID TRAVEL|A|1|N||

Using Dbload

To load the information into a database use dbload:

1. you need an unload file, for example stxchrtr.unl

2. you need a dbload.cmd file. This command file contains the name of the
unload file, the default delimiter, the number of columns, and what to do with
the data . The pipe "|" is the default delimiter.

Here are the two lines contained in the dbload command file for stxchrtr.

file stxchrtr.unl delimiter "|" 7;
insert into stxchrtr ;

Fitrix Technical Reference

Passing Information Between Databases 3-37

3. the command to run dbload is:

dbload -d <dbname> -c <dbload.cmd> -l <err.out>

-d database name
-c name of the the command file
-l name of file to send error output

Obviously unloading the data to an intermediate file and then reloading it is a labor
intensive and error prone task. There are better ways of passing information from
database to database. The trick is to use temporary tables.

All programs—with the exception of the specialized dbmerge programs—have
"database standard" at the beginning of globals.4gl. This tells the SQL engine
(the background process that handles the read and write requests) which database
you’ll be using. Specifying the database is important for two reasons.

The first time it’s important is at compile time. Suppose you define a record as fol-
lows:

define
p_stuff record like stxchrtr.*

And suppose you have two databases, each with an stxchrtr table, but the tables
have different column names and data types. The asterisk at the end of stx-
chrtr.* is short hand notation for the column names. At compile time the com-
piler checks the database to see what columns are there so that it can expand the
asterisk.

For example, when using one.dbs, p_stuff might be expanded as follows:

p_stuff.acct_no
p_stuff.acct_type
p_stuff.acct_desc
p_stuff.acct_cat
p_stuff.processing_seq
p_stuff.incr_with_crdt
p_stuff.subtotal_group

Fitrix Technical Reference

3-38 Interacting with the Database

But when using another.dbs, the experimental database your cohorts have been
working with, the asterisk might be expanded like this:

p_stuff.sleepy
p_stuff.doc
p_stuff.happy
p_stuff.uubob
p_stuff.freddy
p_stuff.bart
p_stuff.poop

If you try to insert p_stuff.subtotal_group into p_stuff.sleepy you
will get unexpected results. The benefit of using this "define like" notation is that
you can add a new column to the database and continue to run the same programs
without making any code changes—although you do have to recompile, so that the
new column is included when the asterisk is expanded again.

NOTE: Whenever you add a new column, you must recompile.

The second reason that specifying the database is important is because you might
be doing accounting for two different companies. You cannot simply insert debits
in one database and credits in another database and expect the sleepy account to
balance with the retained earnings account.

When you specify the database in your source code and subsequently execute the
program, the SQL engine automatically opens that database for use. This is why all
accounting programs require that standard.dbs be on the system (and the
CASE tools require stores.dbs). Even if you always use one.dbs, the
standard.dbs is opened first (automatically by the engine), and then from
within the program standard is closed and one.dbs (or whatever database was
specified on the command-line) is opened for use.

All this leads us to temporary tables and to an undocumented method of exchanging
data between one.dbs and another.dbs.

Temporary tables are created at run time and exist only for the duration of the pro-
gram. That’s why they are called temporary tables. It does not, therefore, make
sense to define a record "like" a temp table:

define
p_fails record like temp freddy.*

Fitrix Technical Reference

Passing Information Between Databases 3-39

It doesn’t work because at compile time there is no temporary table freddy out there
in the database from which to expand the * into column names. It’s not there
because it hasn’t been created yet. Temp tables are built and maintained outside of
the currently selected database, and that is the key.

Using Temporary Tables

The trick, then, is to open one database, select the information into a temporary
table, close the first database, open the second database, and read the information
from the temp table. Here is a simple example.

main
define

tmpstr char(15)

open the first database
database first

create temp table freddy (mycol char(15))

read the values from the first database
in this example we simply insert a new value

insert into freddy values (’Hello, world!’)

close the first database
close database

now open the second database
database second

read the information from temp table freddy and
insert it into tables in second.dbs
in this example we simply select the value and display it

select mycol into tmpstr from freddy
display tmpstr

end main

This is obviously a simple example. If all you wanted to do was pass a 15 character
string you could use a variable, like tmpstr. But this technique can be used to
read information from several databases, without being limited, for example, by
pre-defined array sizes. In future releases of accounting, this temp table technique
will be used to allow for reporting on several databases at once.

Fitrix Technical Reference

3-40 Interacting with the Database

4-1

4
Program Design and
Modification

This section of the manual covers the general design of the application code and
discusses the basic techniques for modifying that code. Even though a large number
of separate INFORMIX-4GL programs are joined together by the menu system to
create Fitrix Accounting, each of these programs is created according
to very specific rules. Once you learn the general design of these programs, you can
apply that knowledge to every program in the package.

As discussed earlier, programs are first generated by CASE tools, the Screen and
Report code generators. Using these code generators assures that all programs have
common features and a consistent design. This section discusses the basic code as
generated by these products. There are only two program templates used in the
package. Once you have learned those, you have learned the vast majority of the
code in Fitrix Accounting.

All menu items in Fitrix Accounting, with the exception of that which
changes the company database, call INFORMIX-4GL programs. The code genera-
tors create the code for these programs and store it in a unique directory for each
program. For example, the directory i_custr.4gs contains the source code, the

Fitrix Technical Reference

4-2 Program Design and Modification

screen formats and the makefile for add/modify/query on the customer table.
The code for all functions unique to the program are stored in this directory, but this
basic code utilizes a number of program libraries stored elsewhere on the system.
One library contains the "data independent" functions used in all programs. Others
contain the functions and, in some cases, complete programs, shared by various
programs in Fitrix Accounting.

Few programs are complete after code generation. Many program specific addi-
tions to the code must be made to get the program to perform its specific functions.
The code generators create a framework for modification as well as the basic code
for entering data or printing reports. After the basic code is generated, the program
specific coding is done. These additions are fairly straightforward, usually involv-
ing the addition of application specific logic or mathematical operations.

What is explored here are the basic types of programs, the ways in which they are
organized, and the typical ways they are modified.

The most complicated programs are those for data entry. Screen automatically cre-
ates all the code necessary for a fully operational data entry front-end. It requires a
screen form specification file similar to the default screens created by FORM4GL
of INFORMIX-4GL and the "perform" files of the INFORMIX-SQL (version 3.3).
It generates the code to handle all data entry into a table from the screen or into two
different tables in a "header/detail" relationship.

The generator creates data entry programs that can:

• add new documents

• update existing documents

• find rows by column queries by example

• browse through data with a screen that shows several rows at once

• view the Next and Previous rows (in the order defined)

• scroll through the detail lines in the detail window of the screen

• run operating system commands without exiting the screen

• navigate to any function or program inside or outside of the current pro-
gram

• map a number of function keys that can perform a variety of functions

Fitrix Technical Reference

4-3

• create, modify, and use help text

• create, modify, and use error text

• define up to 50 new fields per document

• create free-form notes to supplement any document

• create and maintain a personal to-do list

• create on-line feature requests

The other types of programs are for reports and posting. Report automatically gen-
erates code needed to create an Informix report. The developer defines the report by
creating a report format file which contains shorthand commands and picture lay-
outs of a report format. The format file is named report.ifg. Report interprets
and parses the WYSIWYG (What-You-See-Is-What-You-Get) style form and
expands the shorthand commands to create source code, which may be immediately
compiled into a working report program or to be modified before or after compila-
tion.

The section discussing file organization covered in great detail the specific files
generated by these programs and the locations of the functions they use. The fol-
lowing section looks at how these different files and functions fit together to make a
working program.

Fitrix Technical Reference

4-4 Program Design and Modification

4GL Library Functions
Since Fitrix Accounting source code uses the concepts of libraries
extensively, you need to first understand our concept of a library and how it is used
by the code.

There are several different kinds of libraries, but the most basic and those that play
the biggest part in the functional flow of our programs are called "data indepen-
dent." This INFORMIX-4GL library is a collection of pre-compiled (object) mod-
ules for frequently used functions. These functions perform specific generic tasks
that usually don’t rely on global variables. The purpose of a library is to place in
one location the functions that are used in a variety of application programs.

Why Use Libraries?

There are three reasons for using libraries when working with INFORMIX-4GL.
First, libraries allow many programs to share a set of code instead of duplicating
code in different applications or parts of a single application. This makes programs
smaller and more manageable.

Second, the extensive use of libraries makes changes and debugging easier. Fixing
a bug in one library routine takes much less time than finding and fixing the bug as
it recurs through several different programs. Using proven library routines tends to
isolate program bugs to the "new" code written for that application.

Finally, once the library functions are written, they dramatically reduce develop-
ment time for new applications. Other programmers can use library routines with-
out having to know the source code. All they have to know is what a function’s
duties are and the syntax for calling it. Here is an idea of how effective the use of
libraries can be as a method of reducing the lines of code it takes to generate an
application. Currently, over 62% of the lines of code in applications consists of
library routines. Of that library code, 75% is generic, used in all applications. Only
25% is application-specific library code.

Fitrix Technical Reference

4GL Library Functions 4-5

Creating 4GL Libraries

Though most modification of the application is not done at the library level, you
need to understand how these library routines are created in case you ever do have
to modify them.

INFORMIX-4GL libraries are created in a manner similar to the creation of C lan-
guage libraries. 4GL goes through an initial phase of compiling the .4gl files,
4GL source files, into .ec and .c files, the C language source files. The C com-
piler then compiles the C source files into the .o or object files. These object files
are the files that make up the function library. Once you have created the object
files, they are then archived to create the library itself. These are the steps to build a
library of functions:

1. Compile the 4GL file to C using the command:

c4gl -e filename.4gl

Example:

c4gl -e myfunct.4gl

This creates myfunct.ec and myfunct.c files. The -e flag allows you to
request just the preprocessor steps with no compilation or linking. In other
words, this process converts the .4gl files to INFORMIX-ESQL/C and C
source files, but does not go any further.

2. Compile the C files to object files using the command:

c4gl -c filename.c

Example:

c4gl -c myfunct.c

This creates myfunct.o object files. The -c flag suppresses the link edit
phase of the compilation and creates an object file for that program/file.

3. Move the object files to the archive or library with the command:

ar -ru libraryname.a object1.o object2.o

Fitrix Technical Reference

4-6 Program Design and Modification

Example:

ar -ru ../lib.a globals.o myfunct.o input.o

This takes the object files globals.o, myfunct.o, and input.o and puts
them into the library file lib.a. The ar command is used to maintain groups
of files in a single archive file. It creates and updates library files as used by the
linker. The r flag is used to replace the named files in the archive file. When
the command is used with the u flag, only those files with modification dates
later than the archive files are replaced.

4. On some systems—usually in XENIX systems, the program ranlib needs to
be run on the archive library file to create a library index.

ranlib libraryname.a

Example:

ranlib lib.a

This creates an index for library lib.a. The program ranlib creates an
index/table of contents for a library file. In SCO XENIX the index is called
__.symdef. It is added to the beginning of the archive so the loader can
locate the object file faster. After the library is created, you can use the func-
tions simply by calling them in your .4gl programs. During the linking phase
of these program object files, you must include the libfile.a file. To link
your programs to a library, add the library file to your c4gl line using the syn-
tax:

c4gl program_object_files library_files -o executable_file

Example:

c4gl program1.o program2.o program3.o lib.a -o program.4ge

The functions in the library file are then combined with your programs. The linker
searches all specified libraries for the functions you call. It links only the functions
that you have specified in your program. If it can’t find the called function in either
the object files you specify or the libraries it was told to search, the linker returns a
fatal error message stating that an undefined symbol name or function name was

Fitrix Technical Reference

4GL Library Functions 4-7

not found. If you have a function in the "local" code that has the same name as a
library function, the linker does not override the local function with the library
function. The first function that it finds is the function that is always used.

Fitrix Technical Reference

4-8 Program Design and Modification

Function Library & Sample
Functions
In our accounting application, we organize libraries into three different types:

1. User Interface Functions: These are the functions that allow the entire appli-
cation to have the same look and feel. Functions in this library handle the flow
of data in entry forms and report forms. They include routines such as handling
SQL errors, setting system defaults, providing the data entry command line
functions (add, update, delete, find, etc.), high-level validation of data, must-fill
fields, and many other functions that are called by the local code.

2. Global Application Functions: These are functions that are called by different
modules within an integrated application. These functions are identical when
called by these different "modules." In Fitrix Accounting, these
modules include A/R, A/P, G/L, etc. These functions include printing version
numbers and logos, accessing different databases, starting transactions logs,
certain mathematical calculations, routines for displaying error and help win-
dows, posting routines, and so on.

3. Module Specific Functions: We have a library for each accounting module. If
functions are only used in a specific module, they are placed in the module
library. This library includes functions such as getting control table informa-
tion, creating customer or vendor selection criteria, zooming into various
tables, and so on.

The following pages contain examples from the Fitrix Accounting
libraries. The sample code is included to demonstrate the use of library functions.

User Interface Functions

These functions control the basic user interface. They are the "data independent"
functions that were mentioned before, which are utilized by the CASE tools in cre-
ating the basic applications. As you will see, there are sixty-six such functions that
are used or are available for data entry programs, and another thirty-one that come
as part of the report/posting function library. Here are some examples of the code
from our basic library functions:

Fitrix Technical Reference

Function Library & Sample Functions 4-9

ring_bang: This function is called from a command line or "ring menu." It
allows the users to execute a system call from the command line by typing an excla-
mation point or "bang." It is a function used by the Screen code generator for data
entry programs. This function is automatically added to all data entry programs.

 ##
 # Copyright (C) 1990
 #
 # Use, modification, duplication, and/or distribution of this
 # software is limited to the terms of the software agreement.
 # Sccsid: @(#) .../scr.4gs/r_bang.4gl 1.5 Delta: 1/3/92
 ##

 globals "globals.4gl"

 define
 arr_mesgs array[1] of record # Message text
 mssg_text char(132)
 end record,
 mssg_prep char(1) # Y/null Message cursor prepared?

 ##
 function ring_bang()
 ##
 # This function provides a shell escape
 #
 define
 x char(1)

 # Trap fatal errors
 whenever error call error_handler

 if mssg_prep is null
 then
 let mssg_prep = "Y"
 #1: "System: Enter command or [DEL] to quit"
 let arr_mesgs[1].mssg_text = fg_message("lib_scr","rbang",1)
 end if

 # intelligent bang routine
 if ok_bang() = false then return end if

 # Open the window (because we don’t want to trash the heading)
 whenever error continue
 let status = 0
 open window bangwin at 2,3 with 2 rows, 76 columns
 attribute (border, white)
 whenever error call error_handler
 if status = -1143
 then
 call scr_error("recursive","hot_win")
 return

Fitrix Technical Reference

4-10 Program Design and Modification

 end if

 if fg_prompt(arr_mesgs[1].mssg_text clipped, "")
 then call fg_os_exit(scratch, true) end if

 close window bangwin
 let int_flag = 0
 end function
 # ring_bang()

mustfill: This function is used to force a user to enter information into a data
entry field. It is part of the user interface library, but it is not used by the code gen-
erators. It is available for your use when modifying INFORMIX-4GL code.

 ##
 function mustfill(fld,mssg)
 # returning true/false based upon fld=null/not null respectively
 ##
 #
 define
 fld char(10), # field passed
 z smallint, # misc number
 mssg char(50) # message for error statement

 # Trap fatal errors
 whenever error call error_handler

 if fld is null or fld = " "
 then
 let scratch = " The ’",mssg clipped,"’ field must be filled. "
 let z = length(scratch)
 call str_error(scratch, z)
 return true
 end if
 return false # field is not null
 end function
 # mustfill()

Global Application Functions

Global application functions are used throughout the Fitrix Account-
ing package. These functions perform general kinds of tasks that are unique to the
accounting system. They may or may not be data independent. In other words,
some of these functions are "large-scale" enough to handle their own data flow, but
many are not.

Fitrix Technical Reference

Function Library & Sample Functions 4-11

autonext: This function serves the same purpose as a serial field. It uses a con-
trol field to keep the next sequential number. This function is relatively data inde-
pendent.

 ###
 function auto_next(table_name,column_name)
 # returns the next control number
 ###
 # This function increments a column in a control table by 1,
 # locks the column (fetch first) in the table, then builds the sql
 # script to increment the column based upon column_name. If it
 # cannot obtain a lock within 5 seconds, it then pulls up a window
 # with the message:
 #
 # "Waiting for table: (table_name) to become available..."
 #
 # It then goes into a try/sleep/try/sleep loop until it can get that
 # lock after which it increments the column.
 #

 define
 stat_flag smallint,
 find_num char(128),
 update_1 char(128),
 number integer,
 table_name char(8),
 column_name char(14),
 tmpstr char(512),
 count_flag smallint,
 z smallint,
 thekey char(1)

 whenever error call error_handler

 if mssg_prep is null then
 #1:" Waiting for table: "
 call fg_message("lib_std","autonext",1)
 returning arr_mesgs[1].mssg_text
 #2:"to become available.."
 call fg_message("lib_std","autonext",2)
 returning arr_mesgs[2].mssg_text
 let mssg_prep = "Y"
 end if

 let stat_flag = true

 let find_num = "select ", column_name, " from ", table_name,
 " for update"

 let update_1 = "update ", table_name, " set ",
 column_name, " = ", column_name, " + 1"

Fitrix Technical Reference

4-12 Program Design and Modification

 prepare select_1 from find_num
 prepare update_2 from update_1

 declare c_cursor cursor for select_1

 whenever error continue
 # normally we don’t mask errors, but in this case we expect the
 # SQL statement to fail when the table is locked by another user

 open c_cursor
 fetch c_cursor into number

 case
 # these are the errors we might expect
 when sqlca.sqlcode = -242
 when sqlca.sqlcode = -244
 when sqlca.sqlcode = -250
 when sqlca.sqlcode = -246
 when sqlca.sqlcode = -400
 when sqlca.sqlcode = 0
 # anything else is an unknown error in which case
 # you should check the errlog
 otherwise
 let tmpstr = "Unknown error in auto_next(): sqlca.sqlcode=",
 sqlca.sqlcode
 call errorlog(tmpstr clipped)
 call error_handler()
 end case

 whenever error call error_handler

 # if there is a problem then wait 5
 if sqlca.sqlcode != 0
 then
 let sqlca.sqlcode = 0
 let stat_flag = false
 open window wt_win at 2,4 with 1 rows, 60 columns
 attribute(white,border)
 let tmpstr = arr_mesgs[1].mssg_text clipped, table_name,
 arr_mesgs[2].mssg_text clipped
 let z = length(tmpstr)
 call str_display(tmpstr, z, 1, 1, "")
 sleep 5
 end if

 let count_flag = 0
 while stat_flag = false
 whenever error continue
 open c_cursor
 fetch c_cursor into number
 whenever error call error_handler
 if sqlca.sqlcode = 0
 then

Fitrix Technical Reference

Function Library & Sample Functions 4-13

 exit while
 else
 let sqlca.sqlcode = 0
 sleep 5
 let count_flag = count_flag + 1
 # if this has gone on for more than a minute
 # ask user if they want to continue or abort
 if count_flag 15
 then
 open window aunx_win at 4,6 with 1 rows, 60 columns
 attribute(white,border)
 prompt
 "Table still locked. Continue trying or Abort (C/A)? "
 for char thekey
 if thekey matches "[Aa]"
 then
 call errorlog("user aborted program in auto_next()")
 call error_handler()
 end if
 close window aunx_win
 let count_flag = 0
 end if
 end if
 end while

 # we got out of the while stat_flag via exit while
 # so if stat_flag was ever set, then close the window
 if stat_flag = false
 then
 close window wt_win
 end if

 execute update_2
 if number is null then let number = 0 end if
 let number = number + 1
 close c_cursor
 return number
 end function
 # auto_next()

Module Specific Functions

Module specific functions are those used only in a specific module of the Fitrix
Accounting package. These functions also perform general kinds of
tasks that are unique to that particular module. They tend to be data dependent.
Most of these functions are "large-scale" enough to handle their own data flow.

Fitrix Technical Reference

4-14 Program Design and Modification

apactvz: This function is from the accounts payable module. It is used to allow a
user to see a specific vendor’s A/P activity and "browse" through that activity,
accessing it if he desires. This function is associated with its own data display form,
which is also stored in its source and compiled in the library directory to which it
belongs.

Fitrix Technical Reference

Modifying Fitrix Accounting with Custom Functions 4-15

Modifying Fitrix
Accounting with Custom
Functions
Since the introduction of Fitrix Accounting 3.5, the concept of Modifi-
ability by Design has never had more meaning. Zooms, lookups, math and simple
custom logic are now easy to incorporate into programs, yet they are not panaceas.
Frequently customers will request special features for Fitrix Account-
ing that require custom functions. When custom functions are needed, there are
some simple rules that are still as valid today as they were before the Screen 3.0+
came out.

Rules for modifying accounting with custom functions:

1. Don't Reinvent the Wheel.

We've invented the wheel for you already. Instead of coding things yourself, try to
find examples of Fitrix Accounting features that will closely replicate
what you want to do. Think of Fitrix Accounting source code as an
"encyclopedia of capabilities".

2. Keep the Logic, Change the Names

Once you've found a function or functions that fits your needs, it’s usually a matter
of leaving the existing logic alone and just changing variable and field names.

An example best explains this concept. Let's say you are a reseller who is becoming
familiar with Fitrix Accounting. A customer of yours likes using
account groups throughout Fitrix Accounting. Account groups are
those codes that tie together ledger accounts, so that the burden of knowing what
type of transaction affects what ledger accounts is relieved from the data entry
operator. Thus the data entry operator must merely remember "ARINVC" to input
an invoice (instead of remembering to retrieve the sales and A/R ledger accounts).

Fitrix Technical Reference

4-16 Program Design and Modification

Your customer has a lot of non-A/R cash receipts to process each period. What
would be nice is if the input program Update Non-A/R Cash Receipts had an
account group field so that the data entry operator could just enter, say, CASHSL
and the ledger accounts for cash sales would automatically be retrieved. So in mak-
ing this modification, you follow rule No. 1, Don't Reinvent the Wheel.

Since you know that in the Update General Journal program there is an account
group field that would fit nicely, you can see what was done there and duplicate the
capability for your customer in the Update Non-A/R Cash Receipts program.

In the trigger file for Update General Journal, you follow the path of control for the
account group field and start copying whatever is pertinent to your work directory.
The after_field trigger for account group calls a custom function called
fill_grp_key. Copy this function and its call into your work directory.

Next, in the .per file for Update General Journal, you search for material that you
can steal from it. Copy the lookup named actgrp_look into your work direc-
tory.

Next in your work directory add the function and its call to the trigger file for
Update Non-A/R Cash Receipts. The function fill_grp_key will not work as it
is, so you must customize it to fit. In doing so, you remember Rule No. 2, Keep the
Logic, Change the Names

Go through and change the names to local names in fill_grp_key. See glo-
bals.4gl and your .per file for the local variable, field and screen record names.
In this example, you would be changing the p_ record names, the field names and
the screen record names.

Finally, enter the Form Painter and add the account group field. You may add an
account group description field if you wish. Want to add a zoom to the account
group field? Don't do it yourself. There is a zoom for account groups already there
for you called actgrpz. You can add the lookup here also, but remember back in
Update General Journal it had been done already and you stole the code to do it.
You can exit the painter and add this lookup manually to the .per file.

Now regenerate, recompile and test. In the custom function there may be calls to
functions that are not in your work directory. If so, simply comment out or delete
the calls.

Fitrix Technical Reference

Modifying Fitrix Accounting with Custom Functions 4-17

Don't forget there is a wealth of ideas for custom functions in the tool libraries
($fg/lib) and accounting libraries ($fg/accounting/all.4gm/lib.4gs
and $fg/accounting/(module).4gm/lib.4gs). You may traverse these
directories and grep for the comments for a sampling of what's there. Typical
zooms that you'll need for accounting (e.g., actgrpz.per) are in these library
directories.

Tools to help you relate special features with source code are the Edit Current 4GL
Function option on the Navigate Menu, tagging (placing the cursor on a function
call in source, pressing the left bracket and having the function appear in front of
you), and the Informix RDS debugger.

As you become more and more familiar with Fitrix Accounting, be on
the lookout for these capabilities. You'll be surprised at the wealth of opportunities
to meet customer requests right there in your source code.

Fitrix Technical Reference

4-18 Program Design and Modification

Locating Functions/Displaying
Function Descriptions
This section describes some utilities included with Fitrix Accounting
which help you to quickly locate functions.

The Tag Utility

During compilation of source code, a database of function calls is created and stored
in files named tags. The files are found in the local module directory and at the
$fg/lib level. These tags files constitute the paths for all local and library
functions called by the executable program. These tags are created by two shell
scripts:

• $fg/bin/itags creates an INFORMIX-4GL tags file in the local source
directory.

• $fg/bin/litags creates a tags file for 4GL libraries and merges it into
../tags

The idea behind the creation of tags files is to allow you to benefit from hypertext-
style mobility. If you use vi as your text editor, you can set up your system to edit a
function simply by pressing one pre-defined key. For example, if the cursor is
currently positioned on a word that is a function call, your pre-designated hypertext
key will take you to the file that defines the function. A separate key can be set up
to take you back to the departure point. You will find this to be a powerful and
convenient feature of the Screen source code. The tags feature helps you to examine
the source code in a step-by-step fashion.

In order to benefit from the tags feature, a few additions must be made to your
$HOME/.exrc file. Set tags as follows:

set tags=tags\ ../tags\ $fg/all.4gm/tags\ $fg/lib/tags

The $fg/lib/tags is intended to point to the tags file in the directory
containing the archived library functions. With the above line in your

Fitrix Technical Reference

Locating Functions/Displaying Function Descriptions 4-19

$HOME/.exrc file, you can begin to take advantage of the power of hypertext-
style mobility with source code.

To automate the process further, you will need to map keys in your $HOME/.exrc
file.

map] ^]
map [^^

NOTE: The characters ^] represent [CTRL]-[]]. The characters ^^ represent
[CTRL]-[^]. When mapping these keystroke combinations, press [CTRL]-[v]
prior to typing in the "action" characters.

Thereafter, pressing] with the cursor positioned on the name of the desired function
will allow you to instantly edit/view that function, wherever it happens to be defined
within the current application. Likewise, the [key will return you to the file from
which you began.

It is not necessary to map keys in your $HOME/.exrc file to take advantage of the
tags feature. You can use the tag command within vi to instantly edit or view any
function defined in the program source code. For example, while using vi to edit a
source code file (*.4gl), the command:

 :tag func_name

will load the source code file containing function func_name, with the cursor
positioned on the first line of code defining function func_name. To return to the
file from which the last tag command was given, simply type:

 :e#

The tags utility can also be used to start vi from the command line. The command is

vi -t func_name

NOTE: Some versions of vi do not recognize the [CTRL]-[]] shortcut. In such
cases, map the] keystroke as follows:

map] :tag

Upon editing a file with vi, the] key will begin the command:

Fitrix Technical Reference

4-20 Program Design and Modification

:tag func_name

Simply complete the command with the name of the function you wish to edit, press
[ENTER], and the tags feature will load the file containing the appropriate source
code.

Displaying Functions Within Programs

The following shell script displays a list of all of the function names and comments
found within those functions in a specified program. Thus by running this script
and specifying the name of a program, you can view a description of every function
found within that program.

##
 :
 # awk script to display function name and comments. specify filename(s)
 # on command line

 awk ’
 BEGIN {
 TRUE=1
 FALSE=0
 inflag=FALSE
 }

 {
 if (inflag == TRUE && $0 ~ /^#/) {
 # substitute space for pound sign(s)
 gsub(/#/, " ", $0)
 print $0
 }
 else
 inflag = FALSE
 }

 /^function/ {
 gsub(/^function */, "", $0)
 inflag=TRUE
 printf ("\n%s\n", $0)
 }’ $@

 ##

Fitrix Technical Reference

Locating Functions/Displaying Function Descriptions 4-21

Here is sample output.

lld_input()

returning -1 if tab pressed (next window), 0 otherwise

lld_b_field(field_name)

This function is called from the input function before every field. The
’prv_fld’ variable contains the field we came from. The ’scr_fld’ vari-
able contains the field we’re going into. Set ’nxt_fld’ if you want to
skip this field or exit input.

lld_a_field()

This function is called after every field.

lld_a_input()

This function is called whenever the input statement exits (except due to
an interrupt). If you don’t want the input session to end, set the
nxt_fld variable to contain the field to be placed back into.

lld_event()

This function is called whenever the user presses an event key. The event
is mapped to the ’scr_funct’ variable and processed here.

Fitrix Technical Reference

4-22 Program Design and Modification

Using the Make Utility
You may notice that a file called "Makefile" appears in almost every level of
directory where we store Fitrix Accounting source code. This is
because we use the UNIX make utility to simplify the job of compiling the source
code.

We have created a special set of rules for make, so that it knows what to compile
and how to compile it at every level in the program. This is a very powerful tool to
use when modifying the code.

UNIX and Make

Fitrix Accounting is developed entirely under the UNIX operating sys-
tem (even DOS applications are developed under UNIX). Through using UNIX, it
has been found that make (as opposed to using the Informix programmers environ-
ment) increases our flexibility and productivity.

In any 4GL application, you are dealing with hundreds of data files including
source code, object code, screen, library, and executable files. Whenever you mod-
ify a source file (one ending with the extension .per or .4gl), you must remem-
ber to re-compile it. The make program knows what files have changed since the
last time you compiled. It is designed to maintain a large number of files and
knows, based on modification times, what source files need re-compilation. It then
links all object files (.o) into the executable file (.4ge). This is done not only for
the source code in the local directory, but for that in the libraries as well.

Location of Makefiles

Before we discuss how to implement make, you must first understand how the data
files are organized within the directory structure. This has been covered earlier in
the manual. To review, there are three levels of directory hierarchy: The Applica-
tion directory (contains all module directories); the Module directory (contains all
program directories); and the Program directory (contains all source code for one
program, and the .4ge executable). Each directory level contains a Makefile,
so if you invoke make at the program directory, your program compiles. (The M of

Fitrix Technical Reference

Using the Make Utility 4-23

Makefile is uppercase so that it usually appears first in listings of files). If you
invoke make at the module level, all programs for that module compile, and if you
type make at the application level, all programs for all modules defined in the
entire application are compiled in addition to the module library.

The Makefiles in the application aren’t the ones that actually do the compila-
tion. They are "id" Makefiles that identify the programs in their level. These
"id" Makefiles then invoke make again using the "real" Makefile located else-
where on the system.

We’ve adopted this two-level approach for two reasons: 1) It allows the "id" files to
be very short and easy to maintain, and 2) you only have to change one Makefile
(the "real" one) in order to change compiler options and other attributes. This
allows you to port your application to different platforms and change only one file
for all programs to compile using the different compiler. This advantage becomes
more apparent when your applications contain dozens (if not hundreds) of pro-
grams.

We place the "real" Makefiles into a directory called $fg/Make ($fg is an
environment variable set to the "FourGen directory" on the specific machine. The
"real" Makefile isn’t placed within the application directory hierarchy because
all applications for a given machine call on the same Makefile.

In this directory, the "real" Makefiles do a variety of different things:

Application Level: The Makefile changes directories to each module .4gm
directory and runs a make in that directory.

Library Level: It compiles a library module to its object file and, by way of the ar
command, places it into a library archive. On XENIX systems, it runs the ranlib
program on that library archive file.

Module Level: Makefile changes directories to each program .4gs and runs a
make in that directory.

Program Level: It compiles all defined .4gl files that have a modification time
different than that of the object files. It links all defined objects to the executable
program.

Fitrix Technical Reference

4-24 Program Design and Modification

For reports, we compile all defined .4gl files that have a modification time differ-
ent than that of the object files. We then link all defined library directories,
$fg/lib/report.a and $fg/lib/standard.a. to the executable pro-
gram.

For screens, we compile all defined .4gl files that have modification time differ-
ent than the object files. We then link all defined objects, $fg/lib/scr.a,
$fg/lib/standard.a, and $fg/lib/user_ctl.a to the executable pro-
gram.

In all of these cases, there is a "local" Makefile in the program directory that
calls the correct "real" Makefile in the Make directory. In doing so, it passes a
number of variables.

The variables that get passed to the $fg/Make/program are:

NAME - name of the executable after compilation

OBJFILES - names of the local object files to be linked

FORMS - names of the compiled perform forms

GLOBAL - name of the globals file

LIBFILES - libraries to link in

NOTE: If the GLOBAL file is modified, every local file will be recompiled.

Fitrix Technical Reference

Using the Make Utility 4-25

Sample Makefiles

Below are samples of the Makefiles at various levels of the application.

1a. The Application Level "Local" Makefile:

APPL = accounting

MODULES = lib all gl ap ar ic oe py pu fa ma pt

all:

 @make -f $(fg)/Make/application APPL="$(APPL)" MODULES="all"

1b. The Application Level "Real" Makefile:

$(APPL): $(MODULES)

 @echo

 @echo APPLICATION: '$(APPL)' complete.

 .DEFAULT:

 @echo

 @echo

 @echo Making Module: $< ...

 @echo "cd $<.4gm ; $(MAKE)"

 @(test -d "$<.4gm" || exit 0;cd $<.4gm ; $(MAKE))

2a. The Module Level "Local" Makefile:

MODULE = gl.4gm

PROGS = i_chart i_contrl i_genjrn i_stdent\

 o_actdet o_actsum o_balsht o_chthst\

 o_contrl o_genjrn o_income o_stdent\

 o_stdlst o_trlbal\

 p_genjrn p_genled p_new_yr\

 p_newpr1 p_newpr2 p_recalc\

 p_stdent

all:

 @make -f $(fg)/Make/module MODULE="$(MODULE)" PROGS="$(PROGS)"

2b. The Module Level "Real" Makefile: This program changes to each directory
and makes the program in that directory:

$(MODULE): $(PROGS)

 @echo

 @echo Module: '$(MODULE)' complete.

 .DEFAULT:

 @echo

 @echo Making $< ...

Fitrix Technical Reference

4-26 Program Design and Modification

 @echo " cd $<.4gs ; $(MAKE)"

 @(test -d "$<.4gs" || exit 0;cd $<.4gs ; $(MAKE))

3a. The Program Level "Local" Makefile:

NAME = i_chart.4ge

OBJFILES = globals.o main.o midlevel.o header.o

 detail.o browse.o options.o

FORMS = screen1.frm browse.frm

GLOBAL = globals.4gl

all:

 @make -f $(fg)/Make/screen.fg

 NAME="$(NAME)"OBJFILES="$(OBJFILES)" FORMS="$(FORMS)"GLOBAL="$(GLOBAL)"

$(NAME)

3b. The Program Level "Real" Makefile: This file compiles and links all source
files for the chart of accounts input program:

CFLAGS = -O

CC = cc $(CFLAGS) $(INCLUDE)

C4GL = c4gl $(CFLAGS)

INCLUDE = -I$(INFORMIXDIR)/incl

LIBFILES = ../../lib.4gm/lib.a $(fg)/lib/scr.a

 .SUFFIXES: .4ge .o .4gl .frm .per

$(NAME): $(FORMS) $(OBJFILES)

 @echo " Linking all modules for $(NAME)"

 $(C4GL) $(OBJFILES) $(LIBFILES) -o $(NAME)

 -@(chown informix * >/dev/null 2>&1 ; true)

 -@(chgrp informix * >/dev/null 2>&1 ; true)

 .per.frm:

 @echo " Making form $*.frm"

 form4gl $* >/dev/null

 @rm -f $*.err

 .4gl.o:

 @echo " Making program $*.4gl"

 $(C4GL) -e $*.4gl

 $(CC) -c $*.c 2>Make.err

 @rm -f $*.c $*.ec $*.err Make.err

$(OBJFILES): $(GLOBAL)

Fitrix Technical Reference

Using the Make Utility 4-27

These are examples of "screen" or input program Makefiles. A different Make-
file is used for report/posting programs, although the only difference is the
libraries that are called.

Characteristics of the Makefiles

Some important characteristics of these Makefiles are:

• They rely upon all levels of libraries.

• They compile all forms and .4gl programs that have changed since the
last compile.

• You need change only the CFLAGS line for different compilers. The c4gl
is invoked with the -e flag, so the object file is left. No linking takes place
until all object files are made.

• The .c and .ec cadaver files are removed once the .o file is made.

• The owner and group of all files in the directory are changed to infor-
mix. We implement this convention to avoid permission problems for
users. If source code UNIX security is desired, these lines can be removed.

• If an error occurs during compilation, the errors are placed in appropriate
.err files.

• There is a GLOBAL declaration that should describe the file that contains
the globals statement. If this file is changed, the next compilation will
compile all OBJFILES. Seasoned INFORMIX-4GL programmers should
appreciate the need for this. As a convention, we place all globals in a file of
their own called globals.4gl.

Fitrix Technical Reference

4-28 Program Design and Modification

Data Entry Code Design &
Modification

Data Entry Code Design Levels

Fitrix Accounting code for data entry code may be categorized into
three separate levels and referred to with the terms "low level," "middle level," and
"upper level."

Upper Level Functions

Upper level code includes library functions, menu logic, and flow control logic.
Upper level code contains no local logic and does not reference specific databases,
tables, or columns. All upper level functions begin with the name
ring_function. Examples include:

ring_add() add a new row function
ring_update() update a screen
ring_delete() delete the current screen (header and detail)

The upper level ring_ functions, with the exception of ring_options, are
already compiled in the /usr/fourgen/lib/ring_lib.a directory and are
rarely if ever modified.

Middle Level Functions

If upper level functions are not modified, how do you control this function of the
"command line" or "ring menu" commands? This is one of the purposes of the mid-
dle level functions. Middle level code contains other functions that make references
to the database but are not usually modified, and local code not found in the library
functions.

All Fitrix Accounting middle level functions have names that start
with mlh_ (header functions), mld_ (detail functions), or ok_ (functions that con-
trol upper level functions).

Fitrix Technical Reference

Data Entry Code Design & Modification 4-29

Examples of middle level functions:

mlh_cursor() cursor handling package for the header screen
mld_p_clear() clears the detail array (p_[].*) of rows

mlh_lock() locks the head record while screen is being updated or delet
ed
mld_scroll() the detail line scrolling logic
ok_add() controls adding of new documents

The ok functions provide a means for controlling the pre-compiled functions of
the data entry ring menu options. An ok function may be defined in
midlevel.4gl for any of the ring menu commands. When that command is
selected, the ok function is executed. If the function returns a value of "true," the
menu command is executed. If the function returns a value of "false," the command
is not executed.

Lower Level Functions

Lower level functions pass data between the screen records and the table data, vali-
dating data input as they do so. These functions are local code which is often modi-
fied. Low level function names begin with llh_ or lld_. Examples include:

llh_input() input logic for header portion of screen

lld_add() statements required to add data to the disk

Low level functions act as a pipeline between the input to the screen and the data
stored. At one end of the pipeline is the screen array(s) defined in the INSTRUC-
TIONS of the .per form specification file. At the other end is the data stored in
the computer for the table(s) used. When data is input into the screen, it is first val-
idated and stored in records that look like the screen records. The names of these
records begin with p_. and end with the last six characters of the table name. If the
screen contains detail lines, there is a record array beginning with p_.[n] (n is the
number of detail lines on the screen).

The m_prep function transfers the data from the p_. records into records that
look like the tables. These records are named with m_. and the last six characters
of the table. Since the rows of the detail line table are transferred one-by-one, there
is only one m_. record for detail lines instead of an array.

Fitrix Technical Reference

4-30 Program Design and Modification

Similarly, the p_prep function transfers data in the opposite direction, filling the
screen-like p_. records with the contents of the table-like m_. records whenever
data is read from storage and displayed on the screen.

The flow of data input and display may be represented by the diagram below:

Special Note for Serial Columns

When serial type columns/fields are used in Fitrix Accounting,
special precautions are taken when adding new documents. Specifically, the field
value is set to 0 before the next insert command. This is done in the llh_add
function of the header.4gl file.

If the serial column’s value is then displayed, the value is retrieved and inserted
into the p_ record with the command:

let p_table.column = SQLCA.SQLERRD[2]

display

p_prep

read

p_.*
p_{}.*

m_.*

m_prep

delete
add

update

input
validate

screen
arrays

table
data

Fitrix Technical Reference

Data Entry Code Design & Modification 4-31

To illustrate, the llh_add function has the structure:

whenever error continue
insert into table values(m_table.*)
whenever error call error_handler

end function

If table.column is a serial column, two lines are added so that the function is
in the format below:

whenever error continue
let m_table.column = 0
insert into table values(m_table.*)
let p_table.column = SQLCA.SQLERRD[2]
whenever error call error_handler

end function

(For more on SQLCA.SQLERRD, refer to the INFORMIX-4GL User Guide.)

Source Code Files Created by Screen

Here is a list of source code files and content created by Screen:

1. Makefile - This file defines make variables and then calls the "true" make-
file, /usr/fourgen/bin/Make.4gl. When you type the make com-
mand, the Makefile in the current directory is used to compile any code that
has been changed since that Makefile was last compiled.

2. browse.4gl - This file contains the low-level logic for operating the Browse
screen. If no browse.per file exists at the time of compilation,
browse.4gl will not be created.

3. detail.4gl - Contains the low-level code for handling the detail lines in
header/detail screens. If no detail line section is included in the .per form
specification file, detail.4gl is not created.

4. globals.4gl - Defines all global variables. Since all .4gl files depend on
this file, changing it will cause make to compile all .4gl files regardless of
the time they were last modified.

5. header.4gl - Contains low-level code for handling header data of both flat-
file and header/detail screens.

Fitrix Technical Reference

4-32 Program Design and Modification

6. main.4gl - Initializes variables and windows, then calls the library function
ring_header if the screen is a flat file screen, or ring_detail for
header/detail screens.

7. midlevel.4gl - Contains all midlevel code. This includes cursor control
and some data validation.

8. options.4gl - Used to add functions to the screen which may be executed
after the Options command is run from the data entry ring menu.

Fitrix Technical Reference

Multi-Language Handling 4-33

Multi-Language Handling
When adding a string to the program, the following needs to be addressed:

1. Assign it a number & put it into the database: (.iX lang_unl)

 stxmssgr
 language char(3),
 mssg_module char(8),
 mssg_program char(8),
 mssg_number smallint,
 message char(132)

2. Add the string to the STR record in globals.4gl:

 # Constant strings
 STR record
 cancel1_message char(60), # 10 Some lines have been picked.
 cancel2_message char(60) # 11 Still cancel the order?
 ...
 end record,

3. Load the string into the record in str_init() (fg_funcs.4gl)

##
#function str_init()
###
This function initializes all of the constant strings from the
language tables.
#
 let STR.cancel1_message = fg_message("oe","i_order",10)
 let STR.cancel2_message = fg_message("oe","i_order",11)
...

end function
str_init()

Then, wherever program strings are displayed, the variable STR record is used
instead:

Old string usage:

prompt "Are backorders allowed ?" for char yesno

Now string usage:

prompt STR.bo_allowed for char yesno

Fitrix Technical Reference

4-34 Program Design and Modification

This makes it easy to translate the program to multiple languages. Using this tech-
nique, the translation occurs in the unload data (keyed to the global 'language' vari-
able).

For controlling strings (like stages), the DATA is always stored in english. The
SCREEN will display the localized string. This means that the p_* variable will
contain the localized string, and the m_* variable will contain the translated string.
Functions are used to translate to/from english & the local language.

Fitrix Technical Reference

Transaction Processing 4-35

Transaction Processing

A Short Discussion of Data I/O

The cursor defined by various Fitrix Accounting programs to access
table data contains only the row_id plus any columns needed by the "order by"
clause for sorting purposes. This cursor serves merely as an index to the rows in the
current "active set." When the cursor is defined, the program counts the rows in the
active set and displays this number on the screen. All subsequent fetches use the
row_id to "fetch absolute."

Upper level code decides which absolute row is needed from the cursor at any
given time. Whenever data is loaded into program variables, it is fetched directly
from the disk with the row_id rather than using the open cursor. This insures that
all data displayed on the screen is as current as possible.

Detail line rows are loaded into a program array which contains all rows associated
with the current header row. The array size (defined by the number entered into the
Screen screen) must be large enough to contain all these detail rows. When one
detail row is being updated, all rows fitting the "where" clause are loaded into the
program array. When the user presses the "record" key to store data, all rows
matching the where clause are deleted from disk and replaced by the contents of the
program array.

Locking Tables and Rows

Fitrix Accounting includes record locking techniques to prevent simul-
taneous access of data on multi-user systems. If you are making substantial modifi-
cations to the code, it is important that you know the rules that the programs follow
in locking tables and rows.

Data-Entry Programs

In the case of data-entry programs, our code implements record locking in only
two situations:

Fitrix Technical Reference

4-36 Program Design and Modification

1. From the time the user selects the Update command of the data entry ring menu
to the time that the data has been written to disk.

2. From the time the user enters a Y to confirm data deletion until the time the
data is actually deleted from the disk.

Records for data-entry programs are locked by defining an "update" cursor which
contains the row_id of the current header row. The cursor is defined, opened, and
the row_id is fetched to cause the lock. The cursor is closed to release the lock once
changes are written to disk.

Detail rows are not individually locked; the program assumes that they are locked
whenever the associated header row is locked. The following rules apply to locking
rows in Fitrix Accounting data-entry program code:

1. Lock rows; do not lock tables.

2. Rows being updated on the screen must be locked until a disk write is com-
pleted or the update is canceled.

3. When Detail Line rows are being updated on a screen, the header row should be
locked, but do not lock the detail rows.

4. Any column used for a unique index should not be filled with nulls. While it is
not illegal, nulls in columns used for ordinary indices is discouraged. It is a
good idea to check for "not null" when inputting, and to not allow a disk write
with a key column value of "null."

Posting Programs

Posting programs do not operate by the same principle of opening an update cursor.
Instead, they automatically lock every row that is being updated. The locks are
maintained until the transaction is completed (as indicated by the commit work
command). For more information on the posting process, see "Using Database
Transactions for Posting" in section 3.

Fitrix Technical Reference

Transaction Processing 4-37

The following rules apply to locking rows for posting programs in Fitrix:

1. The header row must be locked during any process that "posts" data to another
table.

2. Any column used for a unique index should not be filled with nulls. While it is
not illegal, nulls in columns used for ordinary indices is discouraged. It is a
good idea to check for "not null" when inputting, and to not allow a disk write
with a key column value of "null."

The i_lock Program - Order Entry

Programs that post a large number of records to many files may pose a "locking"
problem to your UNIX system. For some systems, the number of locks required by
one posting program may exceed 80% of normal capacity. Under such circum-
stances, it is preferable to have some of the tables locked during posting. This
avoids having to lock individual records.

In particular, the Order Entry posting program p_pstord.4ge can require a
large number of locks. To deal with this potential problem, the Order Entry module
uses a program called i_lock to control table locking. The program updates 20
pairs of fields in the stocntrc table; each pair corresponds to a table name
affected by Order Entry posting, and locking instructions for that table. The instruc-
tions can be one of the following: N (do not lock), T (try to lock), or Y (must lock).
If the posting program p_pstord.4ge cannot lock a table that must be locked, it
will terminate without posting. If it cannot lock a table that it must try to lock, it
will proceed and lock individual records as needed. For tables that are not to be
locked, the "N" instruction is the functional equivalent of a comment or note, hav-
ing no other effect. Tables are unlocked when posting is complete.

The program i_lock resides in the $fg/accounting/oe.4gm directory, and
is called up from the Setup Order Entry Menu by typing the letter o. It is not dis-
played as a menu option. In a sense, it is a "hidden" menu option.

The i_lock programs in Order Entry and Purchasing can easily be copied and used
wherever you need a table locking program.

Fitrix Technical Reference

4-38 Program Design and Modification

The following table lists the probable impact of locking tables used by Order Entry
posting:

Table 3: Effect of Locking Tables Used by p_pstord

Table Effect

stxtranr one lock per order
prevents all other posting

stitranr one lock per line
prevents Inventory Control posting

stiactvd one lock per line
prevents Inventory Control posting

stilocar one lock per line
prevents Inventory Control posting

stgtranr one lock per order
prevents all other posting

stgactvd one to six locks per order, three per line
prevents all other posting

strtranr zero or one lock per order
prevents A/R and Cash Receipts posting

stractvd zero or one lock per order
prevents A/R and Cash Receipts posting

stoordre one lock per order
prevents addition/maintenance of customer orders

stoordrd one lock per line
prevents addition/maintenance of customer orders

stropend zero or one lock per order
prevents A/R and Cash Receipts posting

Fitrix Technical Reference

Transaction Processing 4-39

strcustr zero or one lock per order
prevents A/R and Cash Receipts posting
 prevents adding/updating of customers

Table 3: Effect of Locking Tables Used by p_pstord

Table Effect

Fitrix Technical Reference

4-40 Program Design and Modification

The Data Entry Form
A data entry program is driven by the 4GL code, but it uses the "Perform" screen.
The screen form specification file is defined in the same directory as the program
or, in the case of application-wide functions, the directory that holds the functions.
For example, the program in Accounts Payable for entering cash is in the directory
.../accounting/ap.4gm/i_cashe.4gs, which contains the 4gl code for
handling the data entry function. The customer information Zoom function that
allows the user to see all of the customers has its own screen in the A/P applications
library ($fg/accounting/ap.4gm/lib.4gs).

The Informix screen form is a text file which may be created with any text editor
that creates ASCII files. These forms can also be easily created using the Screen
Form Painter CASE tool, which allows you to "paint" your screen image. Fitrix
Accounting screens are defined exactly as standard Informix screen
forms (*.per files) with the following restrictions:

• You must define a screen record array for the file.

• The screen record array must be the first one defined in the INSTRUC-
TIONS portion of the file.

• The screen record array must list the columns to include; do not use
TABLE.* or table.column THRU table.column.

• The first table listed in the TABLES section must be the one containing the
"header" columns of the screen.

• Do not include lines longer than 76 characters (the screen border graphic
consumes four characters of each line).

• Do not include more than 18 lines for the screen form.

• Do not include tabs in the screen form file.

A different sort of screen form may be created to display files in a header/detail
relationship. When defining a screen form with detail lines, the following addi-
tional restrictions apply:

• The table containing the columns for the "detail" lines must be the second
table listed in the TABLES section.

Fitrix Technical Reference

The Data Entry Form 4-41

• You must define a record array for the detail line table.

• The detail screen record array must be the second one listed in the
INSTRUCTIONS section.

• The detail record name must be followed by a subscript that defines the
number of detail lines on the screen (e.g. SCREEN RECORD ordr[6]
for a customer screen that contains six order detail lines).

• The screen record array must list the columns to include; do not use
TABLE.* or table.column THRU table.column.

The screen must contain each of the sections on the sample and they must be in the
order shown. These sections are:

• DATABASE - the name of the database.

• SCREEN - a visual picture of the screen, a layout of headings, field tags,
and delimiters.

• TABLES - a list of the tables used for the screen (the "header" table must
be listed first).

• ATTRIBUTES - field tags mapped to fields and "attributes".

• INSTRUCTIONS - must contain the screen record array and that array
must be the first one defined (other instructions may be included).

• FOURGEN- this section contains special definitions used by the Screen
Code Generator.

Details on the first five sections and the code that may be used within them are con-
tained in the INFORMIX-4GL manuals. The FOURGEN section is explained in the
"Code Generator" section of the Screen Technical Reference Manual. For descrip-
tions of the different types of perform screens, refer to the Screen Technical Refer-
ence Manual.

Fitrix Technical Reference

4-42 Program Design and Modification

Converting INFORMIX-SQL Perform
Files

For those integrating Fitrix Accounting with existing applications
written in INFORMIX-SQL you may want to convert your existing applications to
the most current version of INFORMIX-4GL by using our code generators, in order
to be more consistent with the Fitrix Accounting data entry environ-
ment. There are some minor differences between the screen forms. They can be
easily converted to INFORMIX-4GL by using Screen on the perform screens. The
code created by Screen effectively replaces the Perform screen interface with the
Screen ring menu interface. Many perform commands are not recognized by
INFORMIX-4GL, however, so if you have defined many additional instructions in
the perform form, you will have to add functions to the Screen code to achieve the
same effects.

 All statements of the Instructions section of a perform screen, with the exception of
the delimiters command, are ignored.

4GL will not accept form definitions containing more than one screen. If your per-
form file contains multiple screen definitions these must be removed.

 Joins defined in the screen form are ignored.

The LOOKUP, NOUPDATE, QUERYCLEAR, RIGHT, and ZEROFILL
attributes of perform screens have no meaning in 4GL.

INFORMIX-4GL does not use the concept of "current table." An INPUT or INPUT
ARRAY statement allows you to enter data into fields that correspond to different
tables.

Adding Fields to Data Entry Forms

One common modification is the need to add a new field to a form. Fields can be
added several ways:

Fitrix Technical Reference

The Data Entry Form 4-43

1. via the Form Painter, then regenerating with the code generator.

2. to the perform file, then regenerating with the code generator.

3. to the perform file, then modifying all necessary files.

The various methods for making this type of modification differ greatly in degrees
of complexity. If you have the Screen Form Painter, adding fields to your screens is
extremely easy. If you do not have Screen adding fields can be considerably more
complicated.

If for some reason your code is not regenerable, then you will need to use the third
option and manually add the necessary code.

Refer to your Screen documentation for examples of adding fields to your screens
with the Form Painter.

Fitrix Technical Reference

4-44 Program Design and Modification

RDS vs. 4GL: Choosing an
Informix Environment
If you are familiar with INFORMIX-4GL, you are familiar with the Informix Rapid
Development System (RDS). The product is quite similar to 4GL. The correspond-
ing books are identical except for the introduction and the sections that describe
how to compile and run 4GL and how to include C functions. RDS is interpretive;
that is, if you have written 4GL programs, RDS will run them without compiling.
Informix claims that 4GL and RDS are completely compatible.

What Are the Advantages of an
Interpreter?

The two major advantages deal with compile time and disk space. RDS actually
does have a compiler. When you have created your 4GL source file, you can com-
pile it from the programmer’s environment (rfgl), or you can compile it from the
command line using fglpc. The latter command runs in about two seconds and
creates a pseudo-code file with an extension of .4go. This pseudo-code is portable
across any machine that runs RDS and it does not require the C development sys-
tem to compile and run.

You then invoke the RDS "runner" program, fglgo, on the .4go file. If you broke
your source code into several modules, there is an extra step. You compile all your
source files and then concatenate the resulting .4go files into one .4gi file. You
can then use fglgo on the .4gi file. Here is an example:

fglpc *.4gl # creates a .4go for each .4gl
cat *.4go > progname.4gi# concatenates all .4go’s into7 a .4gi
fglgo progname.4gi# executes the RDS runner

This whole process takes a couple of seconds. The resulting .4gi file is just a frac-
tion of the size of the corresponding compiled .4ge executable. Both compile time
and disk space savings are impressive.

Testing has shown that space savings is approximately three to four times when
using RDS.

Fitrix Technical Reference

RDS vs. 4GL: Choosing an Informix Environment 4-45

Other Advantages of RDS

RDS allows users the ability to run the INFORMIX-4GL Interactive Debugger. If
you have experience with an interactive debugger with COBOL, assembler, or C,
you will probably like this one.

The debugger is run in the same fashion as RDS, except the "runner" name is
fgldb. This command looks the same as fglgo used with RDS, displaying the
same information on your screen.

At any time you can flip over to the debugger screen. This screen is split into an
upper and lower window: one for viewing your source code, and the other for enter-
ing the rich set of debugger commands.

You can set traces and break points. You can execute your code one line at a time.
You can view any or all of your local and global variables. You can set actions to
take place at break points. If your program ends with a fatal error, the debugger
screen automatically flips up and highlights the line of source code where the error
occurred. In effect, you are supplied with the corpse and the tools with which to
perform an autopsy (i.e. values of variables at time of death, list of functions that
lead up to demise, etc.).

One of the more valuable functions of a debugger is to allow someone who is new
to a language to analyze just what occurs as commands are executed. Another is to
allow you to trace through an unfamiliar program to learn how it works so you can
maintain it.

Drawbacks of RDS

One drawback is relatively minor: fglgo is slower in execution than the compiled
executable program. In trials, it could be as much as 40% slower. Of course, when
developing software, execution speed is not important. Once the program has been
written and debugged with RDS, it can be compiled with 4GL for production. How-
ever, RDS is not objectionably slow, even for production use. For complex applica-
tions with a large number of programs, the savings in disk space may be worth the
trade-off in execution speed.

Fitrix Technical Reference

4-46 Program Design and Modification

The drawback considered to be the most severe is that libraries are not supported.
This is especially a problem for a shop that develops modular products where con-
sistency of "look and feel" across products is particularly important. In our com-
pany’s development environment, the products developed are complex, and there
are frequently several people working on different programs in the same or com-
panion applications. We depend heavily on functions in libraries to keep features in
programs consistent.

All source (including functions common to more than one program) must be com-
piled into pseudo-code, and all pseudo-code must be concatenated into one file for
fglgo/fgldb to execute. In short, RDS lacks a linker. There is no linker pro-
vided with 4GL either, but it isn’t missed since UNIX provides one.

The programmer’s environment provided with 4GL (and RDS) is hopelessly inade-
quate for team development of large applications. We depend on the many utilities
in UNIX, such as make and sccs (source code control system) to control our
Informix development. All these utilities work fine with RDS except for make,
because of the lack of a linker.

For this reason, we provide an RDS linker with both our accounting system and our
code generation tools. We also offer a special "make" program (make.rds) for
using libraries.

Fitrix Technical Reference

Using the RDS Linker 4-47

Using the RDS Linker
The RDS Linker program is written in UNIX shell scripts and replicates many of
the functions of make. Although it is not quite as fast as the C compiler make,
make.rds allows you to maintain libraries and links .4go object modules from
local code with functions from the libraries into RDS .4gi p-code modules.

The make.rds program uses variables from the Makefiles created for make by
Screen. Make.rds uses standard UNIX commands to determine the modules that
have been updated since the last RDS compile. It uses UNIX sed and grep com-
mands to gather information from the .4gl files. Although this technique does not
give make.rds the full power and intelligence of make, the former may be run in
the same manner with the Screen Makefile files as long as you follow a few sim-
ple guidelines.

Rules for Using make.rds

1. All existing .4gl library files must be converted to RDS libraries. The librar-
ies are converted by changing to the directory containing the library source files
and typing make.rds. The instructions for doing this for the standard libraries
of Fitrix Accounting modules are included with the RDS-Linker
installation instructions, and are usually performed at the time of installation.

2. Type make.rds rather than make in the program source directory.

Syntax for make.rds

The make.rds utility replaces the functionality of make for use with Informix-
RDS (Rapid Development System). It also calls the trigger merge utility in
$fg/codegen/scr.4gm/trigger.4ge if it is present on the system. The
default is for the merge utility to be run.

It reads a Makefile in the format of a Makefile (one that calls other makes
within the $fg/Make directory).

It reacts differently based upon which make is called in the $fg/Make directory.

Fitrix Technical Reference

4-48 Program Design and Modification

Syntax:

make.rds [-l] [-f] [-m] [-mo] [-mf] [application_name]
[module_name] [library_name] [program_name]

Five options can be used:

link_only: The -l flag causes link_only to be set to "Y". Alternatively,
link_only can be set to "Y" and exported in the user's environment. When
link_only is set to "Y", make.rds skips the fglpc and form4gl parts (i.e.,
compilation of 4gl files and form files is skipped) and only runs the link part of the
make.rds suite of shell scripts. make.rds run in link_only mode always rebuilds
the filelist.RDS in the local program directory. also, if a library has been
compiled, make.rds run in link_only mode in the local program directory will
rebuild depend.RDS, func_map.RDS, and unresolved.RDS in the library.
If this option is used the merge utility is not run.

fast_link: The -f flag causes fast_link to be set to "Y". Alternatively,
fast_link can be set to "Y" and exported in the user's environment. When
fast_link is set to "Y", make.rds does not call link.rds to search the 4gl
files for function names. It assumes the that a file called "filelist.RDS" in the
source directory exists; this is a current list of the files containing all the external
library functions. filelist.RDS is created by link.rds. make.rds run in
fast_link mode simply cats all the required ~.4go files from libraries as well
as the local program directory into the ~.4gi executable. The fast_link will
run the merge utility.

merge: The -m flag allows control over how the merge utility is run. If the user
desires that the make.rds be run without merging of trigger files into 4gl source
the -mn can be specified. The environment variable no_merge can be set to "Y"
and exported. This will cause the merge utility to never be run. If a merge without
compilation is desired the -mo flag may be used. If the variable merge_only is
set to "Y" and exported to the environment no compilation or linking will ever
occur. The time stamping in the merge utility will cause no merge to occur if any
4gl file is newer than its associated trigger file. The -mf option can be used to force
a merge and override the time stamp comparison logic. The force_merge vari-
able can be set to "Y" to make a "forced merge" the default.

make.rds can be run on several levels: application, module, library, and pro-
gram.

Fitrix Technical Reference

Using the RDS Linker 4-49

You can pass make.rds arguments. On the application level, you can pass a list
of ~.4gm directories. On the module level you can pass a list of ~.4gs directo-
ries. On the library level, you can pass a list of library functions. On the program
level, you can pass a list of .4gl files to compile. On the program level, you can
pass a list of .pers to compile

How to Avoid Recompiling the Entire RDS
Library

If you are modifying a library function in RDS, you can avoid the lengthy process
of recompiling the entire library provided your modification did not add or delete a
function. The procedure is as follows:

1. Modify your function (for this example, we will call the function
"logo.4gl") with your text editor.

2. Compile it to p_code by using $INFORMIXDIR/bin/fglpc.

Example: fglpc logo.4gl

3. Move the logo.4go file (created by step number 2) to the RDS library.

Example: mv logo.4go ../lib.RDS

4. Copy the function’s source code file to the RDS library.

Example: cp logo.4gl ../lib.RDS

5. Change directories so that you are in a program directory that calls the function
you have just modified.

Example: cd $fg/accounting/ap.4gm/i_vendr.4gs

6. Update the last modification time of the globals.4gl file so that the com-
piler program will know to recompile all.

Example: touch globals.4gl

7. Finally, recompile this program so as to relink it to the RDS library functions.

Example: make.rds

Fitrix Technical Reference

4-50 Program Design and Modification

Converting Libraries to make.rds

You may convert any C compiler library to a make.rds library simply by typing
the make.rds command in directory containing the library source files. The
instructions for converting the standard libraries used by INFORMIX-4GL prod-
ucts are included with the installation instructions and are usually performed during
the installation process. The Screen library files are converted by changing to the
$fg/lib/scr.4gs directory and typing make.rds [ENTER].

The make.rds library conversion process acquires the name of the library.a
archive file from the LIB variable set in the Makefile of the current directory. It
uses this name and creates a directory of the same name with the extension .RDS
replacing the .a extension. The library directory for Screen, for example, is
$fg/lib/scr.RDS. The .RDS directory is the functional equivalent of the .a
archive file.

Next the make.rds process then copies library .4gl files into the
library.RDS directory. Copying the source files to the .RDS directory allows
make.rds to construct paths of functions called by other functions. It also allows
you to use the INFORMIX-4GL Interactive Debugger with only one directory path-
name in the USE statement, rather than a list of all library source directory path-
names.

The make.rds process was created with the idea that libraries are largely static.
Whenever new library functions are compiled, the system must search functions
recursively for nested function calls and construct a path of functions called by
other functions. Since this path is determined and constructed by shell scripts, this
process can take some time. However, once completed, the path-building process
for a function library does not need to be repeated for subsequent program com-
piles.

If you change the directory paths to any library, you must re-make all libraries. To
re-make the libraries:

Fitrix Technical Reference

Using the RDS Linker 4-51

1. remove the $fg/Make/*.RDS file(s)

2. remove all library.RDS directories (and their contents)

3. run make.rds in each library source directory again

Code Conventions for make.rds

The make.rds system expects INFORMIX-4GL code to follow two conventions
that are not required by INFORMIX-4GL itself:

1. The function_name of whenever error call function_name
lines must be the last word on the line.

2. The report_name of start report report_name lines must be the
last word on the line.

For example, the lines below correctly follow conventions and can be properly
linked by make.rds:

whenever error call error_handler
start report my_report

The following lines do not follow conventions and cannot be properly linked by
make.rds:

whenever error call error_handler let a=3
(name of the function is not the last word of the line)

 start report my_report output to screen
(name of report is not the last word of the line)

Understanding Program Linkers

This section is intended to address the background behind the program linking
phase, and why you might be getting the following informix RDS error:

The function "such_and_such" has not been defined in any module in the pro-
gram.

Fitrix Technical Reference

4-52 Program Design and Modification

The error will have a different disguise under compiled 4GL. It might look some-
thing like:

Undefined symbols: such_and_such in file this_and_that

The reason you would get the above error is because the program calls on a func-
tion such_and_such(), but that function isn't in the executable (.4ge) or p-code
program (.4gi).

There are two reasons the such_and_such() function may not have been
"linked" into your program:

The less common reason is that you spelled it incorrectly: call initt(). This
is easy to identify and fix.

The more common reason (and the one that requires an understanding of the linking
phase to fix) is that the program "linker" couldn't find the function to link into the
program. You might say: Well it's right here in this library. It could find other files
in that library, why couldn't it find that one?

In order to answer that question, you have to understand how "C" linkers work, and
understand the fact that there are different linkers for different unix flavors. The
end result of this exercise is to understand the 'least common denominator' so you
will write programs that are portable to other machines.

First, a C executable is little more than just a bunch of .o files concatenated together
into one executable. A .o file is just a machine representation of the source .c file.

RDS works very similar to C in that a p-code program (.4gi) is nothing more than a
concatenation of several p-code modules (.4go), and p-code modules are simply
compilations of .4gl source code.

The program linker (ld for C, make.rds for RDS) is given the following pieces
of information:

1. A list of object files in the local directory.

2. A list of library files to obtain functions that are called from the object files (#1
above).

Fitrix Technical Reference

Using the RDS Linker 4-53

Example:

main.o midlevel.o header.o ../lib.a /usr/four-
gen/lib/scr.a

In the above example, a function located in midlevel.o may call upon a func-
tion called absolute() that isn't in midlevel.o.

The linker will first determine if it's in main.o, midlevel.o, or header.o. If
it doesn't find the absolute() function in either of these files, it looks first into
the library ../lib.a. (a library is just a group of object (.o) files). If it's not in
../lib.a, it will then look into the library /usr/fourgen/lib/scr.a.

If it doesn't find it in any of the local files, or any of the library files listed, it will
give you the error that we are talking about.

That's pretty straightforward.

The saga continues however, when the absolute() function requires another
function that isn't in the absolute.o object file. That other function may require
yet another function. You can see that this procedure is recursive in nature—it can
get very deep. By simply calling the absolute() function, now your linker must
know to load in several other object files from potentially several different librar-
ies. Now multiply that by the number of calls to library functions in any given pro-
gram.

You can see how much work is involved in linking a program together. The linker
must, on the fly, build this function dependency information.

Now back to the problem of the linker not being able to find your function.

Let's take the same example:

List of object files and libraries: main.o midlevel.o header.o
../lib.a /usr/fourgen/lib/scr.a

A function in midlevel.o calls absolute() which is located in the
/usr/fourgen/lib/scr.a library. Lets say also that absolute() calls on
a compare() function. If the first request for compare() is from abso-
lute(), and if compare() is located in a library that has already been processed
(../lib.a in this example(), then the linker will not find the compare()
function.

Fitrix Technical Reference

4-54 Program Design and Modification

Some linkers are smarter than others. This becomes a portability problem. The IBM
RS6000 linker, for example, is very smart. It will find the compare() function
and link it into the program.

When building the link.rds program (called from make.rds), we had to
mimic the most brain dead linkers in UNIX. This isn't the most desirable, but it is
what we had to do. This is so we will design our libraries to be portable to all ver-
sions of UNIX.

There are two ways of fixing the above problem. First, if you are using RDS and the
make.rds family of programs, you can go into the $fg/bin/link.rds pro-
gram and remove the 'break' at (around) line 172. This will un-lobotomize the RDS
linker so it will act like the smartest linkers in unix (like the RS/6000). This will
work, but the result will be a library layout that may not be portable to other ver-
sions of unix (by convention, our developers may not use this method).

The second (and most portable) method to fix the problem is to either move the
absolute() function up to the ../lib.a library, or move the compare()
function down to the /usr/fourgen/lib/scr.a library (i.e.: rearrange the
files in your libraries).

An example of a real-life scenario:

The error message when running the program under RDS is:

The function "logo" has not been defined in any module in the program.

The following is the list of files and libraries used to create the program:

main.o report.o midlevel.o lowlevel.o ../../lib.4gm/lib.a $fg/lib/report.a

The problem was that the logo function was called from a function that was in
report.a, but the logo file was located in ../../all.4gm/lib.a (a library
above $fg/lib/report.a).

The solution would be to move the logo function into the local directory (so it is
assured to be loaded), or to move it down to the $fg/lib/report.a library.

Since neither of these methods was very satisfactory in this case, (we wanted logo
to remain in ../../lib.4gm/lib.a) we decided to call it from another func-
tion that we're using in ../../lib.4gm/lib.a.

Fitrix Technical Reference

Using the RDS Linker 4-55

The following logic is in the st_init() function:

if false
 then call logo()
end if

This will never be run, but it is enough to fool the linker into knowing that logo()
is needed. Since st_init() is in ../../lib.4gm/lib.a, the linker found
the logo.a file because it also resided in the ../../lib.4gm/lib.a library.

Fitrix Technical Reference

4-56 Program Design and Modification

Shell Escapes While Running
Fitrix Accounting
Applications
When you run any program in Fitrix Accounting, the directory that
contains the source code for that program becomes the current directory. This
assumes, of course, that you are running it on a system that contains source code.
To place yourself in the directory with that program source code, you need only
"escape" from the program command line or document command line—this is the
command line at the top of the screen that contains the commands for adding,
updating, and similar document level functions.

When you are at the "command line" level, simply type:

!sh[ENTER]

This would run the shell program in the current directory containing the source
code for that particular program. The exclamation mark tells Fitrix
Accounting that you want to run a system program rather than perform any docu-
ment access functions. The sh tells it that you want to run the shell program.

You can also load, edit, and recompile programs without escaping to the shell. For
example, if you wanted to edit the menu that is currently on the screen, you would
type:

!vi menu[ENTER]

If you are in a data entry program, you could edit a screen that is part of that data
entry application by typing at the command line:

!vi screen1.per

Fitrix Technical Reference

Shell Escapes While Running Fitrix Accounting Applications 4-57

Both of these commands load the source for current menu or specified data entry
screen into the "vi" editor. There are many files called "menu" and screen1.per
on the system, but the program knows which one you want by where you are in the
application. This is an extremely useful feature, virtually eliminating the need to
climb up and down menu trees every time you want to find the appropriate file.

If you have the User Control Library installed on your system then you can also
access a shell while running an application by pressing [CTRL]-[o]. The
[CTRL]-[o] sequence has been mapped to a system level prompt and operates
similar to the exclamation mark.

Another utility that is helpful when developing or debugging applications is $ifx.
If you call up a shell after running a program and returning to the menu level, typ-
ing:

cd $ifx

will automatically change directories to the local directory containing the last pro-
gram run.

Preventing Shell Escapes

You may prevent users from access to the shell by setting the $SHELL variable to
false.

If the following variable is set before loading the Screen program, system com-
mands can not be executed.

SHELL=false; export SHELL

Fitrix Technical Reference

4-58 Program Design and Modification

5-1

5
System
Administration Issues

Setting Up Your Printers
Selecting the "redirect" option from the ring menu when printing a report gives you
a menu of printers to select from. This menu is generated in the following way.
First, Menus looks for the system variable $printerlist which if it exists,
points to a file that lists the available printers. For example, $printerlist
could be set to /u/account1/printers for users A, B, and C. When those
users select "redirect" while printing they will be given a choice of printers taken
from the file /u/account/printers. In addition, the first printer listed in the
file is used as the default printer for those users. The format of the printerlist
file is one printer per line. The first printer listed is the default destination.

If Menus cannot find a value for $printerlist, it next looks in the directory
$mzcontrol ($fg/menueze/control) for a file called printerlist. If
this file exists it will be used as described above. If not, Menus will try to automati-
cally generate a temporary printerlist file in the /tmp directory. To auto-
matically generate a temporary printerlist file, Menus searches

Fitrix Technical Reference

5-2 System Administration Issues

/usr/spool/lp/default for the default printer (first line of the temporary
printerlist file) and /usr/spool/lp/request for a list of other spool directo-
ries, one for each printer defined to lp. If no /usr/spool/lp/default file
exists Menus will try using /etc/qconfig to generate the temporary print-
erlist (IBM AIX spooler definition file). If Menus cannot successfully create
the temporary printerlist file from either of the two sources (lp spooler or
AIX spooler) it just creates a default temporary printerlist with one line,
"printer." The temporary printerlist is used just like the printerlist described
above.

Menus tells the spooler what printer to use by setting the system variable $LPDEST
to the name of the printer. The lp spooler uses the value of $LPDEST to determine
the destination. The invocation used by other spoolers must explicitly include
$LPDEST in order to correctly recognize the destination requested by the user. For
example, the $spooler variable with AIX is set to print $LPDEST -cp so
that when the spooler is called by Menus it includes the printer name requested by
the user.

Finally, the system variable $lpflag is used to flag the number of copies to print.
For example, with "lp" the way to print 3 copies of a file is to use the flag -n3 on
the command line. When using lp, the $lpflag should be set to -n. With the
AIX spooler, you use -nc=3 which means that the $lpflag must be set to -nc=.
The default values for $spooler and $lpflag are compiled into Menus when it
is ported to a particular platform so they should be set correctly by default. For
more information about setting up printers refer to the -Menus User Reference
Manual.

Fitrix Technical Reference

System Performance Issues - RDS Profiler 5-3

System Performance Issues -
RDS Profiler
This section explains how to build an RDS Profiler using the Informix RDS debug-
ger. A profiler tells you how much time your program is spending in each function.
This allows you to locate problem areas which might be running too slowly.

A Typical Problem

Our in-house users were complaining that the order entry program was too slow.
Upon inspection we discovered that it occasionally took more than a minute to save
an order. This was on the in-house system where the application was actually being
used. On the development machine it took only 5 seconds.

Even though the in-house system had more users and fewer resources, the one
minute performance time was an indication that something was not right.

Our first step in finding a solution to this problem was to duplicate the in-house
database on the development machine (the dev box). We quickly proved that the
problem did not stem from the size of the database. Testing the transaction on the
dev machine with the same large database yielded the same results. It still only took
5 seconds to save an order.

The natural tendency is to suspect inadequate or mis-managed system resources.
However we looked deeper into the problem. Was the problem due to insufficient
memory, inadequate disk performance, or what exactly? We needed to know
where, specifically, the programs were bogging down.

Our first approach was to count the number of times that each function was exe-
cuted. We determined this by filtering the "trace functions" output from the RDS
debugger through an AWK program.

 trace functions >> trace.out
 tracecount.awk trace.out > output

Fitrix Technical Reference

5-4 System Administration Issues

The trace functions command tells what function was called, where it was called
from, the arguments passed, and the results (if any) returned. Here is part of
trace.out

 Enter startlog("errlog") from main line 23
 Return
 from startlog
 Enter put_scrlib(var = "version ",
 value = " 3.70.03 ") from main line 25
 Return
 from put_scrlib at line 72
 Enter put_scrlib(var = "dbname ", value = "
 standard ") from main line 26
 Return
 from put_scrlib at line 72

If my_func() is called ten times then there will be ten lines with "Enter
my_func" in trace.out. Thus the design of the awk program was straightfor-
ward: count the number of times each function is entered and print the results.

 ##
 # Copyright (C) 1991
 # <Your Company Name>
Use, modification, duplication, and/or distribution of this
 # software is limited to the terms of the software agreement.
 ##
 # This script reads a file produced by fgldb when trace
 # functions was turned on. For example:
 # trace functions >> /tmp/trace.out
 # it then produces a list as follows, indicating how many times a
 # given function was called:
 #
 # 1 ask_yn
 # 1 ok_next
 # 2 str_init
 # 7 llh_display
 # 7 set_count
 # 9 window_size
 # 74 ring_fetch
 # 110 brw_display
 # 365 get_scrlib

 awk ’
 /^Enter / { # read only lines with Enter at start
 sub(/Enter /, "", $0) # remove Enter
 sub(/(.*$/, "", $0) # remove left paren and everything after
 string[$0]++ # count the remaining function name
 }

 END { for (w in string) # print out count

Fitrix Technical Reference

System Performance Issues - RDS Profiler 5-5

 printf("%4d %s
", string[w], w)
 }’ $1 | sort # and sort it

The results of tracecount.awk are interesting but not very informative. We
should probably have added the heading: Wild Goose Chase. We have more infor-
mation, but not the information we need. If function Fast executes in one-thou-
sandth of a second and function Slow takes 12 seconds then it doesn’t matter that
function Fast is called more often; clearly the place to optimize the code is in func-
tion Slow.

Indeed this is the idea behind Reduced Instruction Set Computing (RISC). It might
take 50 lines of RISC code to do function X, and only 5 lines of non-RISC code to
perform the same function, but the RISC code is executed so much faster that the
net result is improved performance.

So the output from tracecount was in this case virtually useless. What we need
to know is how long it takes to execute each function, not how often a given func-
tion is called.

Tracing Function with FIFO Pipes

UNIX supports FIFOs, or name pipes. FIFO is an acronym for first-in, first-out.
The name of the FIFO resides in the UNIX file system like any other file. What this
means is that we have an entity that has the attributes of a file as well as a pipe.
Print spoolers frequently employ named pipes to do their work. We’ll use a named
pipe for our purposes.

Use the mknod command to create a named pipe. (On some systems you must be
root to execute this command.)

mknod FIDO p

That creates a named pipe call FIDO. Let’s look at how it behaves (we sent it to
obedience school).

Fitrix Technical Reference

5-6 System Administration Issues

If we write something to FIDO, for example,

echo "dogs chase cats" > FIDO

nothing will appear to happen. The cursor will just sit there and your terminal will
be locked-up until you break out with the interrupt key.

If, however, you go to another terminal (or open another X-window, or run the
command in the background by appending an ampersand to the command) you can
see some action.

cat FIDO

cat-ing FIDO opens the read end of the pipe and pulls the information on through.

dogs chase cats

Thus your original terminal (or process) wasn’t really locked up. It was simply
waiting for someone to pick up the other end of the pipe. This happens at the com-
mand-line as well.

 cat /etc/password |
 >
 >

As long as you hit Enter you will see the secondary prompt. The shell is waiting for
you to complete the command, to attach another program to the other end of the
pipe.

 >
 > more

So FIDO is a pipe that looks like a file. It’s this ability to look like a file that we’ll
exploit with the Informix .03 RDS debugger to see where our programs are spend-
ing too much time (later we’ll see another technique that works with both Informix
4.0 and .03).

After starting the debugger again to run our program we can trace functions as fol-
lows:

trace functions >> FIDO

Fitrix Technical Reference

System Performance Issues - RDS Profiler 5-7

Again, this will appear to lock up your terminal unless you already have another
process reading from FIDO. (From now on the discussion will assume that you
have two terminals.)

Go to your second terminal and cat FIDO. That opens the reading end of the pipe
and allows the debugger to continue on at the writing end.

Now run the program.

As it runs you’ll see, in real time, a list of functions as they are entered and exited.
This list is the same list you would get if you redirected the output from Trace
Functions to a normal file, but now we see them as they are written to the file, to
our pipe.

Timing Function Execution

The next step is to also record the times at which the functions are entered. We do
this by simply writing out the current time as we read in each line. Originally this
was done with a shell script and the date command, but a C program was subse-
quently used because it’s faster and thus reduces the granularity of the time sam-
pling. That is, you don’t use a sun dial to time a foot race.

The algorithm is straightforward.

 while there is a line to read
 get the current time
 get the line
 and print them

The code below also checks to see if the line read in contains "En" so that we only
see the lines in which functions are being entered.

 /*
 profile.c

 read in lines and write the time before sending it out. but
 only if the lines start with ’En’
 */

 #include <stdio.h>
 #include <ctype.h>
 #include <sys/types.h>
 #include <time.h>

Fitrix Technical Reference

5-8 System Administration Issues

 #define BUFSIZE 1000

 /* === */
 main(argc, argv)
 int argc;
 char *argv[];
 {
 FILE *fp;
 char *pfn;
 char buf[BUFSIZE];
 time_t now, start;

 if (time(&now) == 1|| time(&start) == 1)
 syserr("What time is it?!");

 if (argc < 2) /* read from stdin */
 fp=stdin;
 else {
 pfn=argv[1];
 if ((fp = fopen (pfn, "r")) == NULL) {
 fprintf (stderr, "*** could not open: %s
", pfn);
 exit (2);
 }
 }

 while (fgets(buf, BUFSIZE, fp) != NULL) {

 if (time(&now) == 1)
 syserr("What time is it now?!");

 if (buf[0]== ’E’&& buf[1] == ’n’)
 printf("%4d %s ", now - start, buf);
 }

 fclose (fp);
 exit(0);
 }

 /* === */
 int syserr(ps)
 char *ps;
 {
 fprintf(stderr, "%s
", ps);
 exit(1);
 }
 /* === */

 We ran the program again, hit the Save key, and watched.

 20 Enter lld_high() from lib_screen line 35
 24 Enter lld_a_field() from lld_input line 114

Fitrix Technical Reference

System Performance Issues - RDS Profiler 5-9

 24 Enter llh_display() from new_doc_no line 512
 25 Enter note_newkey(filename = "stoordre

 25 Enter note_newkey(filename = "stoordre
 32 Enter note_newkey(filename = "stoordrd

 32 Enter note_newkey(filename = "stoordrd
 40 Enter note_newkey(filename = "stoordre

Indeed the system was slow. We noticed however, that it was slow in a particular
function; furthermore that this function was called 5 times for each document
saved. One function was taking on the average 25-45 seconds to complete! Clearly
this was the place to look.

We discovered that the function was checking a table in the database and that the
table was missing an index. Thus every time the function was called the SQL
engine would have to flip through the data one page at a time, rather than using the
index to turn directly to the needed information.

Adding the correct indexes brought the save-time down from 60 seconds to about 5.
Quite unexpectedly we received reports from users of other programs as well
because that same table was used by several programs.

Running the RDS Profiler with Informix
4.0

Trying to use the same techniques on our development machine, which is running
Informix 4.0, was a different story. The debugger refused to write to a named pipe.

Instead we used a little known option of the "tail" program: tail -f, as in for-
ever.

tail -f trace.out

Fitrix Technical Reference

5-10 System Administration Issues

If a new line is written to trace.out, tail will print it; if not, tail waits.

In the debugger we redirected the trace functions output to trace.out, and use
tail to send the information to profile.c

tail -f trace.out | profile

Further additions to profile.c (we don’t need tail) and a new awk program
allow us to generate outline-like output. Every time a function is called, the name is
indented. Also when the function returns the total time spent in the function is
printed. And at the end of the output the total time spent in each function is printed.
Below is part of the output. Note that since these functions all took less than a sec-
ond to execute the times are all 0.

line# time function call

 1 0 startlog
 3 0 startlog: 0
 4 0 put_scrlib
 8 0 put_scrlib: 0
 9 0 put_scrlib
 13 0 put_scrlib: 0
 14 0 init
 15 0 logo
 17 0 logo: 0
 18 0 num_args
 20 0 num_args: 0

 ...

 1122 4 switchbox
 1123 4 lib_screen
 1124 4 llh_setdata
 1125 4 set_data
 1126 4 length
 1128 4 length: 0
 1130 4 set_data: 0
 1132 4 llh_setdata: 0
 1134 4 lib_screen: 0
 1136 4 switchbox: 0
 1137 4 switchbox
 1138 4 lib_screen
 1139 4 llh_display
 1141 4 llh_display: 0
 1143 4 lib_screen: 0
 1145 4 switchbox: 0
 1146 4 switchbox
 1147 4 lib_screen
 1148 4 llh_high

Fitrix Technical Reference

System Performance Issues - RDS Profiler 5-11

 1150 4 llh_high: 0
 1152 4 lib_screen: 0
 1154 4 switchbox: 0
 1156 4 lib_before: 0
 1158 4 llh_b_field: 0
 1159 5 llh_a_field
 1160 5 auto_zoom
 1169 5 switchbox
 1170 5 lib_screen
 1171 5 llh_setdata
 1172 5 set_data
 1173 5 length
 1175 5 length: 0
 1177 5 set_data: 0
 1179 5 llh_setdata: 0
 1181 5 lib_screen: 0
 1183 5 switchbox: 0
 1184 5 length
 1186 5 length: 0
 1188 5 auto_zoom: 0

 Totals for all functions

 0 startlog
 0 logo
 0 window_size
 1 lib_message
 1 ring_border
 3 lib_chkkey
 3 ring_lladd
 3 udf_check
 3 udf_edit
 4 llh_input
 20 lld_a_field
 27 lld_input

The granularity if this type of profiler is fairly coarse. Don’t plan to use it to shave
micro-seconds off of your execution times. However if there are glaring problems
with execution time, these tools can help point you in the right direction. Also the
graphic output of the function calls helps you to see what’s going on.

Below are the C and awk programs used to produce the above output.

For further information (or if you would like an email copy of this article, and the
code) contact the author at: uunet!4gen!stevei.

 /* profile.c
 ##
 # Copyright (C) 1991

Fitrix Technical Reference

5-12 System Administration Issues

 # <Your Company Name>
 # Use, modification, duplication, and/or distribution of this
 # software is limited to the terms of the software agreement.
 ##

 parse the output from fgldb trace functions. The Enter functions
 and Return from functions are parsed out with the line number from
 the trace.out file and the time in seconds that profile.c got to
 it.
 */

 #include <stdio.h>
 #include <fcntl.h>
 #include <string.h>
 #include <sys/types.h>
 #include <termio.h>
 #include <signal.h>
 #include <ctype.h>
 #include <time.h>
 #include <errno.h>

 #define BUFSIZE 1000
 #define TRUE 1
 #define FALSE 0

 FILE *gfp;

 /* == */
 main(argc, argv)
 int argc;
 char *argv[];
 {
 char *pfn, buf[BUFSIZE], *newbuf, *ps;
 time_t now, start = 0;
 int from_found = FALSE, int_handler();
 long lineno = 0L;

 signal(SIGINT, int_handler);
 signal(SIGTERM, int_handler);

 if (argc < 2) /* read input from stdin */
 gfp=stdin;
 else {
 pfn=argv[1];
 if ((gfp = fopen (pfn, "r")) == NULL) {
 fprintf (stderr, "*** could not open: %s
", pfn);
 exit (2);
 }
 }

 while (TRUE) {
 if (fgets(buf, BUFSIZE, gfp) != NULL) {

Fitrix Technical Reference

System Performance Issues - RDS Profiler 5-13

 if (start == 0) /* did we start yet? */
 if (time(&start) == 1)
 syserr("What time is it?!");

 if (time(&now) == 1)
 syserr("What time is it now?!");
 lineno++;

 if (strncmp(buf, "Enter ", 6) == 0) {
 /* chop off left paren and rest of line */
 *(strchr(buf, ’(’)) = ’0’;
 fprintf(stdout, "%5ld %4d %s
",
 lineno, now - start, buf);
 }
 else if (strncmp (buf, "Return", 6) == 0)
 from_found = TRUE;
 else if (from_found) {
 if ((newbuf=strstr(buf, "from ")) != NULL) {
 from_found = FALSE;
 /* chop off ’at line’ */
 if ((ps=strstr(newbuf, "at line")) != NULL)
 strcpy(ps, "
");
 fprintf(stdout, "%5ld %4d Return %s",
 lineno, now - start, newbuf);
 }
 }
 }
 }

 /* never gets here */
 }

 /* == */
 int syserr(ps)
 char *ps;
 {
 fprintf(stderr, "%s
", ps);
 exit(1);
 }
 /* == */
 /* the only way to break out of the program is from a termination */
 /* request or interactive attention, e.g., interrupt */

 int_handler()
 {
 signal(SIGINT, SIG_IGN);
 fflush(gfp); /* fclose() should flush it but let’s make sure */
 fclose(gfp);
 exit(1);

Fitrix Technical Reference

5-14 System Administration Issues

 }
 /* == */

 :
 ##
 # Copyright (C) 1991
 # <Your Company Name>
 # Use, modification, duplication, and/or distribution of this
 # software is limited to the terms of the software agreement.
 ##
 # This program takes its input from a file generated by profile.c
 # and fgldb with "trace functions" turned on.
 #
 # the file might look like this. the first column is the fgldb
 # trace.out line number; the second column is the time in seconds;
 # and the third column tells what function was entered or exited
 #
 # 1 0 Enter startlog
 # 3 0 Return from startlog
 # 15 1 Enter logo
 # 20 1 Return from num_args
 #
 # the output is an outline-like display of the entered and exited
 # functions. the time spent in each function is displayed when the
 # function exits, and the total time spent in a given function is
 # given at the end.
 #
 # author: stevei.

 awk ’
 BEGIN {
 printf ("line# time function call

")
 }
 $3 == "Enter" {
 stack++
 lineno = $1
 time = $2
 funcname = $4
 buf[stack funcname] = time
 printf("%4d %4d", lineno, time)
 indent()
 print funcname
 }
 /Return .*from / {
 lineno = $1
 time = $2
 sub(/^.*from/, "", $0) # note: this resets $variables
 funcname = $1
 elapsed = time - buf[stack funcname]
 global[funcname] = global[funcname] + elapsed
 printf("%4d %4d", lineno, time)

Fitrix Technical Reference

System Performance Issues - RDS Profiler 5-15

 indent()
 printf ("%s: %d
", funcname, elapsed)
 stack--
 }
 function indent() {
 # indent four spaces for every stack depth
 for (i = 0; i < stack; i++)
 printf(" ")
 }
 END {
 for (w in global)
 printf("%4d %s
", global[w], w)
 }
 ’ $1

Fitrix Technical Reference

5-16 System Administration Issues

Writing Termcap Entries
Termcap is short for "terminal capabilities," which are descriptions of the various
features of a terminal, and instructions on how to use these features, all written in a
rather cryptic language in a termcap file. The language which describes the terminal
capabilities is interpreted by programs that use terminal I/O in order for the program
to correctly control the terminal and interpret input from the keyboard.

The Termcap File

The termcap file, /etc/termcap, usually consists of several termcap entries,
each one corresponding to a particular terminal or to a particular emulation mode on
some terminal, or to a terminal being used in some special fashion. The rest of the
termcap file, about 20%, consists of lines beginning with a #. These are comment
lines and are generally less intelligible than the rest of the termcap file. These lines
are to be mostly ignored. One termcap entry can be separated from another once you
understand what an entry itself looks like.

The Termcap Entry

Each entry has the form label[|label][:capability]:. This means there
are a string of labels by which the entry can be referred to, each separated from the
next by a "|" symbol followed by a string of terminal capability codes each separated
from the next by a ":". If the termcap entry is longer than a single line (almost all of
the time it is) then the symbol "\" is used on the end of a line to indicate that the entry
continues to the next line. An easy example of what two termcap entries might look
like follows (easy because whoever edited them tried to make them easy to
distinguish as entries):

n2|7901|NCR 7901:co#80:li#24:bs:am:cl=^L:\
ti=\E0P^X^L:\te=^O^X\E0@:cm=\EY%+%+:ce=\
EK:cd=\Ek:kh=^A:kl=^U:bc=^U:kr=^F:nd=^F:\
ku=^Z:up=^Z:\kd=^J:do=^J:kb=^H:kc=^M:so=^N:\
se=^O:sg#0:ul:us=\E0‘^N:ue=\E0@^O:ug#0:\
NM=^O^X\E0@:NB=\E0B^N:NR=\E0P^N:\
NS=\E0R^N:AL=\E0A^N:AB=\E0C^N:\
AR=\E0Q^N:

Fitrix Technical Reference

Writing Termcap Entries 5-17

Fitrix Technical Reference

5-18 System Administration Issues

n3|vwpt|viewpoint|ADDS Viewpoint:co#80:li#24:\
bs:am:cl=^L:ti=\E0P^X^L:\te=^O^X\E0@:\
cm=\EY%+ %:ce=\EK:cd=\Ek:kh=^A:kl=^U:\
bc=^U:kr=^F:nd=^F:\ku=^Z:up=^Z:kd=^J:do=^J:\
kb=^H:kc=^M:so=^N:se=^O:sg#0:ul:us=\E0‘^N:\
ue=\E0@^O:ug#0:NM=^O^X\E0@:NB=\E0B^N:\
NR=\E0P^N:NS=\E0R^N:AL=\E0A^N:\
NR=\E0P^N:NS=\E0R^N:AL=\E0A^N:\
AB=\E0C^N:AR=\E0Q^N:AS=\E0S^N:OV#0:\
k1=\E1:k2=\E2:k3=\E3:k4=\E4:k5=\E5:\
k6=\E6:k7=\E7:k8=\E8:k9=\E9:MP=\E0P^X^L:\
MR=\E0@^X:NU=^N:EN=^V:CN=^X:CF=^W:

Not all termcap entries appear like the examples above. Sometimes they might look
like the following:

n2|7901|NCR 7901:co#80:li#24:bs:am:cl=^L:ti=\
E0P^X^L:te=^O^X\E0@:\cm=\EY%+ %+:ce=\
EK:cd=\Ek:kh=^A:kl=^U:bc=^U:kr=^F:nd=^F:\
ku=^Z:up=^Z:\kd=^J:do=^J:kb=^H:kc=^M:so=^N:\
se=^O:sg#0:ul:us=\E0‘^N:ue=\E0@^O:ug#0:\
NM=^O^X\E0@:NB=\E0B^N:NR=\E0P^N:NS=\
E0R^N:AL=\E0A^N:AB=\E0C^N:AR=\E0Q^N:

n3|vwpt|viewpoint|ADDS Viewpoint:co#80:li#24:\
bs:am:cl=^L:ti=\E0P^X^L:\ te=^O^X\E0@:cm=\
EY%+ %+ :ce=\EK:cd=\Ek:kh=^A:kl=^U:bc=^U:\
kr=^F:nd=^F:\ku=^Z:up=^Z:kd=^J:do=^J:kb=^H:\
kc=^M:so=^N:se=^O:sg#0:ul:us=\E0‘^N:\ue=\
E0@^O:ug#0:NM=^O^X\E0@:NB=\E0B^N:NR=\
E0P^N:NS=\E0R^N:AL=\E0A^N:\AB=\E0C^N:\
AR=\E0Q^N:AS=\E0S^N:OV#0:k1=\E1:k2=\E2:\
k3=\E3:k4=\E4:k5=\E5:\k6=\E6:k7=\E7:k8=\E8:\
k9=\E9:MP=\E0P^X^L:MR=\E0@^X:NU=^N:\
EN=^V:CN=^X:CF=^W:

Obviously, it is harder to distinguish one entry from the next in the second example
especially when you consider that there may be hundreds of entries formatted
together like this.

Notice that the last line of the entry for n2 does not end with a "\" but that every other
line of the entry does end with "\". If the last line of the entry ended in "\" like the
others then the entry for n2 would continue into the entry for n3. Correct
interpretation of the termcap entries relies heavily upon these very important "\"
characters.

Fitrix Technical Reference

Writing Termcap Entries 5-19

The Labels

The label part of the termcap entry is the mechanism by which a program can find
the entry in the termcap file. Usually it consists of a two letter code, a short name or
two, and a brief description of the terminal. The termcap entry can be identified by
any of the labels in the label section of the entry and the identification is usually
based upon the value of the system variable TERM (use echo $TERM to see its current
value). It is highly advisable to use one of the short names rather than the two
character code for the value of $TERM since the two character code may not be
unique and programs find the first occurrence of the label whether or not there is
another—yours—further down in the file.

The Capability Codes

The terminal capabilities directly follow the labels in each termcap entry and each
code is separated from the next by a ":" and has a two letter "name." There are three
different sorts of codes used to identify a capability; a boolean type either the code
is there or not with no specific value associated with it; a numeric type an integer
value is assigned to the code; a string type a string of characters is assigned to the
code.

The boolean type codes are used to identify the existence or lack of a certain
terminal characteristic such as whether the cursor automatically wraps around the
margins of the terminal. In the termcap entry they can be identified because they
consist solely of the capability name ("am" for automatic margins).

The numeric type code is used to identify countable parameters associated with the
terminal such as number of columns and number of rows on the screen. These codes
have the form codename#value (i.e. number of columns would be co#80 for an
eighty column screen).

The string type is used to identify strings of characters sent by certain keys on the
keyboard and strings needed by the terminal to perform certain actions such as
positioning the cursor in a particular location on the screen. For example, to identify
the character string sent from the keyboard by the up arrow key the code might read
ku=\E[1 and would indicate that the keyboard sends the character sequence: ESC
(octal 33) [1 when you press the up arrow key.

Fitrix Technical Reference

5-20 System Administration Issues

Special Characters

The character strings for a terminal capability often use such characters as \E, ^R,
or ^A which represent ascii [ESC], [CTRL]-[R], and [CTRL]-[A]
respectively. In the termcap file however, these characters are never given in their
literal form because they are generally non-printing characters. Therefore, in order
to represent them in text they have a special form.

ASCII [ESC] is represented with \ and E (looks like "\E").

ASCII [CTRL] characters are represented with a ^ followed by the character in
upper case, hence ^R and ^A.

Characters can also be represented by their octal (base eight) value in cases such as
the ":" which is used to interpret the termcap file by separating arguments and can’t
be included directly as part of a string (it would be interpreted as the end of the
string). The octal code for a colon is \072.

The Codes

There are too many terminal capability codes to list all of them here and many
programs use special sets of codes in addition to the more or less "standard" set.
Therefore, you should look in the system documentation for a thorough list of the
various termcap codes and their functions. You must refer to your program
documentation to find the codes for any special functions used by the program. Here
is a list of some of the more common codes:

Table 3: Common Terminal Capability Codes

Code Function

cm control code for cursor positioning by row and column

ku character sequence sent by the cursor up key

kd character sequence sent by the cursor down key

kr character sequence sent by the cursor right key

Fitrix Technical Reference

Writing Termcap Entries 5-21

The biggest problem with terminal capabilities is not how to read them but what the
various codes mean for the various programs that use them. Unfortunately, the
answer to that question often remains in the head of the author of that program and
doesn’t reach the users of the program nearly often enough, or in an intelligible form.
The other complication is that terminal manufacturers seldom produce readable

kl character sequence sent by the cursor left key

kh character sequence sent by the home key

k0-k9 character sequences sent by the function keys

ho control sequence used to position the cursor at 0,0

do control sequence used to move the cursor down a row

cr character sequence sent by the enter/return key

nd control sequence used to move the cursor back a column

up control sequence used to move the cursor up a row

bt control sequence used to back tab

bs boolean code which indicates that backspace is ^H

am boolean code which indicates margins are handled automatically

co number of columns on the display

li number of lines on the display

so control sequence used to turn standout mode on

se control sequence used to turn standout mode off

sg number of characters of display required by the ’so’ string

cl control sequence used to clear the display

ce control sequence used to clear to the end of the line

Table 3: Common Terminal Capability Codes

Code Function

Fitrix Technical Reference

5-22 System Administration Issues

reference material for their own terminal’s characteristics.

Ideally, with a combination of knowing how the program uses termcap and how the
terminal behaves, one should always be able to fix or write a termcap entry for any
program and terminal (or discover that the program cannot run at all on the terminal).
The implementation of the capabilities on various terminals is anything but standard,
but the interpretation and use of the codes by a program usually follows certain
guidelines.

If a program does any full screen display and entry, if it highlights anything, ever, or
if it just clears the screen, then it almost certainly uses termcap to decide how to do
its various terminal-oriented tasks. other uses for the termcap entries are: to generate
graphics, position the cursor on the screen, and to identify special input from the
keyboard (keys with special meaning).

Interpretation and Action

Of the three types of terminal capabilities, the most heavily used and the most
complicated are the string type. These, in turn, can be grouped into two classes of
applications. The first class, which includes codes for cursor movement (ku, kd, kr,
kl, kh, etc.) and many special program codes, is used only to identify keystrokes
from the keyboard. For example, when you enter an "a" from the keyboard, you
press the "a" key and only one character is sent to the computer; but other keys, such
as the cursor keys often will send a sequence of characters to the computer. In order
for programs that use special keys to correctly recognize keyboard entry, the
program needs to know how to interpret the characters it is receiving from the
keyboard. With the aid of the termcap file, a program can recognize complex input
and behave accordingly. The group of codes that is used for identifying input is one
of the two classes of string type terminal capability codes.

The other class of string type codes is used for directly controlling the terminal
screen. These codes include character sequences that invoke a graphics character set,
or start a block of highlighted screen, or turn off the highlight or graphics, just to list
a few. Others indicate the correct codes to send to the terminal, to move the cursor
about the screen, or to enable and disable the terminal’s auxiliary port. With a
combination of these two classes of codes, a program can both interpret input from
the keyboard and perform actions with the terminal such as complex graphics
display.

Fitrix Technical Reference

Writing Termcap Entries 5-23

Now you know why programs need termcap files and how they use them, as well as
how to read them. The only steps left are testing, modifying, and writing these files.
Testing a termcap is not simple because the termcap is only part of the terminal I/O
system, any element of which can be to blame for weird or incorrect displays.
However, once your terminal is working on the most primitive level (you get a login
and can run most system commands without any problem) then specific program
misbehavior usually can be attributed to problems with the termcap.

Most of the time, termcap difficulties are related to only a couple of errors in an
existing termcap entry for the terminal. It is unusual to not be able to find a termcap
entry that provides most of the features for your terminal simply by trying various
values for the variable TERM and using the different emulation modes available with
many terminals. Even when you cannot find such a termcap entry, you can get a
substantial head start on developing a new termcap entry by using an existing
termcap entry for a similar terminal type.

When you are testing and modifying a termcap entry, it is usually best to make a
temporary file that contains only that entry so that there is no danger of corrupting
the other termcap entries. Then, in order to direct the system to use that file you can
set the system variable TERMCAP equal to the full path name of the temporary file
and then export TERMCAP. Once you have this special file setup you need the
proper documentation in order to identify and correct problems within the termcap
entry.

You will need the system documentation on the various termcap codes and program
documentation if the programs you will be running require any special termcap
entries. Also you must have technical documentation for the terminal and be sitting
at the terminal ready to go. It helps to have a second terminal available which
already has a functioning termcap so that you can edit files without having to rely on
the terminal for which you are writing the termcap.

Finally, you must have the UNIX editor "vi" and/or the program "od" on your system
in order to read the various character codes sent by the keyboard. With these tools
(and some time) at hand you are ready to go.

Fitrix Technical Reference

5-24 System Administration Issues

Testing the Keys

The most reliable way to find what characters are being sent by the special keys on
your keyboard is to directly collect and view the output of those keys in an
uninterpreted form. "vi" and "od" both provide excellent ways to see what a key is
sending from the keyboard ("vi" is better if your termcap is already good enough to
support it).

To use "od" (od stands for octal dump) you simply type od -bc [RETURN] at the
command line. At this point the program ’od’ is waiting for input from the keyboard.
Now when you press a key followed by a [RETURN] and [CTRL]-[d] the
character and octal representation of the characters sent by the key will be displayed
in two rows. The first row is the character representation (if any) for each character
and the second row is the octal value for each character (ignore the first string of
digits on the first row).

By comparing the octal values with a table of ascii characters, you can determine
exactly which characters are being issued by the key. ("od" will be waiting for your
next input followed by [RETURN] and [CTRL]-[d] but can be terminated by an
additional [CTRL]-[d].)

To use "vi" instead of "od", you can invoke "vi" without a file name, type i to get
into insert mode, then type [CTRL]-[v] followed by the key you want to test
followed by a return. The characters displayed on the screen are the ascii
representation for the characters sent by the key - ^[is [ESC], ^A is [CTRL]-
[a], etc. To exit "vi" type [ESC] [:] [q] [!].

Action Codes

Certain terminal functions require a control code sent by the program to the terminal
which causes the terminal to perform the function desired. An example of this type
of function is highlighting. In order for the terminal to begin highlighting a certain
block of text, first the cursor must be positioned at the beginning of the block and
then a code needs to be sent to the terminal to begin highlighting. Then a code needs
to be sent after all the characters to be highlighted have been sent in order to stop
highlighting. The program looks in the termcap for the string code cm to use for
positioning the cursor on the screen at a certain row and column. Then it gets the
string code so to turn highlighting (standout) on. Then it looks for the code se to

Fitrix Technical Reference

Writing Termcap Entries 5-25

turn highlighting off. If any of these codes are incorrect, the highlighting action will
fail and may also wipe out the rest of the display.

There are many other control codes that are sent to the terminal which can disturb
the display seriously if they are incorrect. These codes can only be found in the
technical manual for the terminal. For example, so must be set to the manual entry
for "start standout mode" and cm must be set to the manual entry for "direct cursor
addressing (cursor movement)." (for cm only, there are additional characters
explained in the system documentation that refer to the format for cursor and row
numbers required as a variable part of the cm string.)

By using the terminal manual for the control strings and the system documentation
for the termcap codes, you should be able to fix and add needed controls (not all
terminals will have all of the possible capabilities). Often, but not always, there will
be an appendix in the technical documentation for the terminal which gives the
control codes for the available emulation modes for each terminal function. This is
often the only place in the documentation where the codes are explicitly given in an
understandable form.

The Other Codes

The two classes of string type codes have been discussed so far. By comparison the
other codes are simple to understand and work with. The boolean type are either in
the termcap or not and indicate the existence of a particular terminal characteristic.
There are only two common numeric type entries, li for number of rows and co for
number of columns.

Fitrix Technical Reference

5-26 System Administration Issues

Observations

Things to keep in mind when working with termcaps:

1. It takes time to eliminate all of the possible bugs from a termcap but often the
solutions are simple. The only way to effectively work with termcaps is with
a substantial dose of patience.

2. Usually the best way to start solving a termcap problem is not with the termcap.
Make sure that TERM is set to a label in the label string and that the label is
unique.

3. Always double check your terminal setup and emulation mode before working
on a termcap for that terminal.

4. Before changing a termcap make a copy, and then use a fine tooth comb for
syntax errors. All labels should be separated by "|", all entries separated by ":",
all but the last line ends in "\".

5. A lot of work can be saved by using at least part of an existing termcap.

No termcap entry (all of the labels and codes combined) can be over 1024 charac-
ters long. Usually the entries after the 1024th character will be ignored.

6-1

6
Programming
Conventions

This style guide describes standards and conventions for designing an application.
In programming, the developer makes a number of decisions about how things are
presented. The relative merits of a certain "look" are less important than a rigorous
consistency in maintaining that look.

Over the last few years there has been an increased interest in consistency of graph-
ical user interfaces. But the fact remains that most people working in or developing
a financial package do their work on character-based terminals. Standards for these
users are critical.

The following rules have been developed to present input and output to the user in
the most consistent way possible.

Note: These rules are intended for programs and system files. Several of the rules
vary for typeset documentation.

Fitrix Technical Reference

6-2 Programming Conventions

Naming Conventions
In creating Fitrix Accounting, a number of naming conventions have
been developed. These conventions determine how various types of names used in
the system are constructed.

Once you understand the naming conventions, you should be able to identify the
role of particular element you are looking at by its name alone. These elements may
be system file names, tables (database files), rows (database fields), function
names, screen variables, and program variables. All of these element names are
constructed according to a set of rules.

System File Naming Conventions

We have a number of conventions for naming system files; that is, files at the oper-
ating system level rather than those in the database (which we refer to as "tables").
In Fitrix Accounting, you can usually tell the type of file and the role it
plays in the application simply by looking at its name. In this section of the docu-
mentation we explain the method behind the naming conventions.

On the file system level, these conventions help us manage our files more effi-
ciently. Consistent names for files allow users to identify the purpose of each file
by reading its name. If a directory contains many files and directories, having and
using the file-naming conventions allows us to list only the files/directories that we
want to see when working with that directory.

Using MenuShell

The consistent use of file names helps even more when using the MenuShell pro-
gram while developing 4GL software. MenuShell is a character-based user inter-
face for UNIX that makes movements between directories easier and displays file
names and types on a menu screen.

One of MenuShell’s many advantages is that you can "teach" it to recognize vari-
ous types of files if they are named according to a convention. MenuShell can then
display the files sorted by their various types, grouping files in an orderly manner
or filtering out unwanted file types from the directory display.

Fitrix Technical Reference

Naming Conventions 6-3

MenuShell can also be taught how to automatically handle any of these file types
when they are selected. For example, MenuShell can be told that when a Perform
form in a file name ending in .per is selected, first load that form into the editor
and, after editing, run the form compilation program in the background to produce
the .frm file. Teaching MenuShell to do these repetitive tasks allows the devel-
oper to concentrate on other things. We strongly recommend MenuShell for all
developers because of this kind of automation. By recognizing different file types,
MenuShell also serves to enforce your internal naming conventions.

Standard File Names Construction

By convention, the file name is divided into two parts: the name and the extension.
The name may be divided into a prefix and a basename. The prefix and the exten-
sion are used to convey certain information about the type of file. Prefixes and
extensions are selected from a predefined set of names. The name and especially
the basename are simply descriptive strings.

Names are formulated according to certain rules. The base portion of the filename,
including the prefix, contains eight characters or less. It contains only alphanumeric
characters [a-z][0-9] or an underscore. The name is in lowercase letters. This is
done to eliminate keystrokes, since most of the work in UNIX/XENIX must be
done with the CAPs key off.

Names are, as much as possible, descriptive. Once the prefix and extension are
removed, the remaining characters describe in some direct way the content of the
file.

There are some special filenames that are used consistently everywhere in the sys-
tem. The following are examples:

The use of menu in any directory name indicates a menu directory.

The file name menu by itself indicates a menu "image" file.

The name sccs indicates a "source code control program."

A file named Info contains information for the programmer.

A file named Makefile contains the instructions for "making" the program using
the UNIX "make" utility.

Fitrix Technical Reference

6-4 Programming Conventions

A file named README is a note for users to read.

There is also a number of standard names for the files that contain generated source
code, these are explained in detail in the previous section.

Fitrix Technical Reference

Naming Conventions 6-5

Module Naming Conventions

At the "module" level of either application or menu directories, the following pre-
fixes are used:

ar - Accounts Receivable

ap - Accounts Payable

gl - General Ledger

oe - Order Entry

ic - Inventory Control

py - Payroll

pu - Purchasing

fa - Fixed Assets

all - Base Files

Menu Item Naming Conventions

In the menu system, there is a separate file for each menu item. This file contains
the instructions that tell the system what to do when that item is selected from the
menu. The Item Instruction files are named in a very specific way.

The first character(s) of the filename make up the item "key." Any alphabetic char-
acter(s) must be lowercase, and the combination of characters must correspond to
the keystrokes that a user types at the Menu Selection Prompt to select the item. On
the displayed menu, the user may see some combination of the digits 0-9 or alpha-
betic characters (a-z, A-Z) representing the item key. Though the menu system sup-
ports any number of characters as the key for selecting a menu item, in Fitrix
Accounting we use only a single character to select any menu item.

Fitrix Accounting uses numeric items to call up main and general
menus. Since main menus are used only to call general menus, all items on them are
numeric.

Fitrix Technical Reference

6-6 Programming Conventions

Alphabetic characters are used on a general menu to call up "detail" menus, Infor-
mix programs, or shell scripts. Hence, you can tell when you look at a menu direc-
tory that the item 1-journ loads a general menu, since it begins with a number.
You can tell that the item a-upinv calls an item on a general menu because it
begins with a letter.

When naming the file, use only single numbers 1, 2, 3 etc. for naming menus and
sub-menus, and use single alphabetic characters, such as a, b, c etc. when naming
the actual menu selections. Use the numbers or letters that correspond to the actual
menus and/or selections of the program.

When the menu selection a is made by the user, under UNIX (or XENIX) the
Menus program looks for an Item Instruction file named a or a file beginning
with the characters a-. Each Item Instruction file must begin with a unique key-
stroke sequence. If there is more than one file that begins with this character
sequence, Menus executes only one.

Database Table Naming Conventions

Database tables (also called database "files") are entities which store a company’s
financial data. In Fitrix Accounting, table names are constructed
according to specific conventions. Once these conventions are understood, examin-
ing a table name should clarify that table’s purpose.

The name of a database table always contains eight characters. These characters are
all lowercase alphabetic letters [a-z]. No numbers or special characters (underscore,
underline, period, etc.) are used. As previously mentioned, lowercase letters are
used to eliminate keystrokes in UNIX/XENIX.

This eight character name is comprised of four discrete parts. For example, the
table stxtranr can be broken down as follows:

st x tran r

Each of these parts tells you something about the purpose of the table.

The first two characters represent the name of the application system associated
with the table. In Fitrix Accounting, these two characters are always
st. This name corresponds to the "application" directory. Any tables that are uti-
lized entirely by a different application should start with a different two characters.

Fitrix Technical Reference

Naming Conventions 6-7

The third character indicates the "module" of the application to which the table
belongs. The following page contains a table of characters used in the third position
of Fitrix Accounting names.

Characters used in the third character position of Fitrix Accounting
table names:

g - General Ledger

r - Accounts Receivable

p - Accounts Payable

o - Order Entry

i - Inventory Control

y - Payroll

f - Fixed Assets

u - Purchasing

x - several different modules

The next four characters of the table name are descriptive of the type of information
the table stores. Most tables can be classified as one of five types. This part of the
name can be used to identify these types.

The first type of table is referred to as a reference table. Reference tables store
information that is "referenced" throughout a Fitrix Accounting mod-
ule. When the end-user first sets up a module, these tables are used extensively.
Reference tables are named according to the type of information that they store;
characters 4-7 in the name describe the information stored. For example, str-
custr is a reference file that stores customer information. Control tables are a
specific type of reference table. These tables store a single record. Values that are
used to provide default values throughout a module are stored in the module’s con-
trol table. They may store additional information as well and may have one or more
fields that are updated by a posting process. Control tables are easily identified by
their names: characters 4-7 are always cntr. There is a multipurpose reference
table that stores information accessible to all of the Fitrix Accounting
modules. This is the stxinfor table.

Fitrix Technical Reference

6-8 Programming Conventions

The term, "document," is used to refer to a particular type of business transaction.
Sales orders, invoices, and cash receipts are all examples of documents. Entry
tables, the second major type of table, are those that store the initial entry of such
documents. Documents are stored in header and detail entry tables. Entry header
tables have an eighth letter of "e". Entry detail tables have an eighth letter of "d".
The entry header table stores the general information about the document; the entry
detail table stores the detail lines that make up the document. Characters 4-7 of an
entry table name describe the type of document that is stored. Examples are invc
for invoices and cash for cash receipts.

The next major type of table is the transaction table. These tables are used to
record documents when they are posted, storing information such as the document
number and posting date. This part of the name is always tran. An example of
this type of table is stxtranr.

The fourth type of table is the activity table that records document detail informa-
tion such as the debit/credit amounts for each ledger number, the inventory item,
amount, and price. These are always named actv. Rows are inserted into activity
tables at the time of posting.

The final type of table is the open item table which stores document information
that is updated by subsequent documents. These tables are used by accounts pay-
able and receivable to track what invoices are due and when. These tables are
always named open.

(varies) - Reference tables containing reference information

(varies) - Entry tables containing initial entry of information

tran - Transaction table containing document information

actv - Activity table containing transaction detail

open - Open table item containing invoices with balances

The last character in the table name provides additional information on the nature
of the table. In other words, it indicates the role of the table in the database struc-
ture. We will be covering database structure and the terminology used in much
greater detail in the next section. The characters used to indicate type of tables are
as follows:

c - Control table containing module or system defaults

Fitrix Technical Reference

Naming Conventions 6-9

r - Reference table such as a customer or vendor table

v - View an Informix “View Table”, columns are actually selected from other
tables

e - Entry table which is the “header” information for a document such as a gen-
eral journal entry or an invoice

h - Header file for system reference files such as help and error tables

d - Detail table which contains all the “detail” information for a document or
header table

Using these conventions, you can generally identify the role of a given database
table simply by knowing its name. For example, when you see the table str-
custr, you know that this is a table used by the Accounts Receivable module
which contains reference information. The descriptive section, cust, would indi-
cate that it is the customer table. The table stractvd would also be used by the
receivable package, but it would contain transaction activity.

Program Naming Conventions

We have already discussed this convention in some detail under the section cover-
ing directory structure. In summary:

The prefix of the program name indicates the type of program:

i - data entry program (input program)

o - output or printing program

p - posting program

The basename is descriptive and usually describes the type of reference information
or document managed by the program.

The suffix indicates whether the name refers to the directory in which the source
code is stored or the actual program itself.

Fitrix Technical Reference

6-10 Programming Conventions

Standard File Name Extensions

The extension is a maximum of four characters long, including the initial period
(e.g. .per).

Following the period are three characters which define the file type. Like the name,
these three characters are always alphanumeric and lowercase. There is one excep-
tion to the "lowercase" rule: The compress program that we use adds .Z to the end
of the compressed file.

Suffixes within the module directory:

.4gs - INFORMIX-4GL source directory

.4gc - customized INFORMIX-4GL source code directory

.xxx - Any version of customized source code (can be any 3 character com-
bination)

Suffixes within the "source" directory:

.4gl - INFORMIX-4GL code

.4ge - INFORMIX-4GL executable

.4go - INFORMIX-4GL RDS (Rapid Development System) object

.4gi - INFORMIX-4GL RDS executable

.per - INFORMIX perform screen

.frm - INFORMIX compiled screen

.c - C source code

.o - object code

.ec - embedded C source code

.ifg - Report file

.sql SQL script

In Menu directories, the following extensions are used:

Fitrix Technical Reference

Naming Conventions 6-11

.act - Indicates a menu “action” file

.hlp - Menu item help file.

The following extensions are typiclly used within various special directories:

.sh - shell script programs

.doc - document files

.txt - text files

.tmp temporary files

.spl - spool file

.dbs - Informix database

.unl - unloaded database file

.a - archive file

.out - output format

.Z - compress format

.tar - tarfile format

.lck - lock file

Function Naming Conventions

There are four types of functions: upper level, middle level, lower level, and appli-
cation library functions. Upper level functions are data independent. Lower level
functions control the data flow. Middle Level functions control the flow between
them. Application library functions are those specific to the accounting application
or to modules within it.

Since functions are stored within a file (not at the system file level), they, like row
or field names, are not limited in name length by the possible limitations of the file
system. Therefore functions can have names of any length.

Fitrix Technical Reference

6-12 Programming Conventions

The full names of the upper, middle, and lower level functions contain a prefix,
indicating the type of function, followed by an underscore (_), and then by a name
describing the function. The following tables contain the standard prefixes.

Upper level functions:

ring_ - all upper level data entry directories

Middle level functions:

mlh_ - middle level “header” control functions

mld_ - middle level “detail” control functions

ok_ - middle level functions that control upper level functions

Lower level functions:

llh_ - lower level “header” control functions

lld_ - lower level “detail” control functions

Application Library Functions

Most functions that are called from the upper, lower, and middle level functions
and are written specifically for the Fitrix Accounting packages, have a
slightly different naming scheme. These function names contain a two-character
prefix which indicates the accounting module using the function, followed by an
underscore, then by a four-character name which is usually related to the principal
table with which the function works, followed by a one-character suffix indicating
the basic type or purpose of the function. One exception to this rule occurs when
naming functions that do not relate to generic table access, in which case the four-
character name may not relate to a table name.

Function name prefixes:

al_ - functions used by all modules

ap_ - functions used by Accounts Payable

ar_ - functions used by Accounts Receivable

fa_ - functions used by Fixed Assets

Fitrix Technical Reference

Naming Conventions 6-13

gl_ - functions used by General Ledger

ic_ - functions used by Inventory Control

oe_ - functions used by Order Entry

pu_ - functions used by Purchasing

py_ - functions used by Payroll

Function name suffixes:

c - “Check” - checks existence of data and returns true or false

d - “Detail” - provides extended data for Zoom form lines

n - “Name” - validates a code and returns a description

z - “Zooms” into another set of data, fills a screen array

Functions ending with c always return a true or false. Generally, these check
for the existence of data referenced by a code entered by the user.

The functions ending in n take a code and return a name or description, and often
some related data. For example, the al_chrtn function takes an account number
and returns the description of the account, as well as a DB or CR indicating whether
the account is increased with a credit or a debit. Most n functions return NOT
FOUND if the search for the code fails, and thus may also provide data validation.

When a function ends with a z it is used to fill a screen array. "Zoom" functions
allow the user to access a different, more detailed set of data than is normally dis-
played on the form.

The functions ending in d are "Detail" functions. These are often called from
"Zoom" functions, providing more detail about the data displayed on one line of the
zoom form. Detail functions sometimes call a sub-zoom function, which would also
end with a z.

There are a few additional standard names used to indicate certain function types:
The word post is used for functions that post data from location or state to
another. Also, there is a set of "control" functions that return all values from the
control table of a certain accounting module. The control functions and the tables
they access are listed below:

Fitrix Technical Reference

6-14 Programming Conventions

Function - Table

fcontrol - stfcntrc

gcontrol - stgcntrc

icontrol - sticntrc

ocontrol - stocntrc

pcontrol - stpcntrc

rcontrol - strcntrc

ucontrol - stucntrc

xcontrol - stxcntrc

ycontrol - stycntrc

4GL Program Variable Naming
Conventions

Variables in a 4GL program are also constructed according to a strict set of rules.

If the variable is part of the data flow, it contains a prefix indicating whether it
belongs to the array that contains the screen record or the array that contains the
database record. Such variable prefixes are named as follows:

p_ - contains data from the screen record

m_ - contains data from the database record

s_ - the screen record

t_ - also the screen record

The rest of the name is divided into two parts, the screen record name and the row
name are represented in the database. Both of these names are highly descriptive.
Thus, p_pinvcd.acct_num is the variable that contains data from the screen
record on the payables invoice account number.

Fitrix Technical Reference

Naming Conventions 6-15

There are also some standard variables that are in all data entry programs. The table
below displays these types of variables:

progid - program identification number unique to program

menu_item - can indicate whether in add or update mode

scr1_max - number of elements in screen array 1

rec1_max - number of elements in record array 1

rec1_cnt - number of active elements in record array 1

There are also some standard variables that are used in all report and posting pro-
grams. They are:

prcname - “process name” that appears when report prints

rtmargn - starting position of upper right margin

prc_only - output is produced if set to N. If set to Y, no report.

allow_int - allow interrupts during process. Y or N.

quiet - increment at which items count is displayed

destin - report destination:screen, printer, pipe, or filename

sel_join - join portion of select statement

sel_filter - filter portion of select statement

sel_order - order by clause for select statement

Fitrix Technical Reference

6-16 Programming Conventions

User Interface Style
It is important to maintain consistency when presenting data. Consistency allows the
user to more readily understand the operation of the application. This is especially
true when what the user sees refers to parts of the application software itself, in either
the documentation, the on-screen help prompts, or the help text files.

Product Names

Informix

INFORMIX-4GL (all caps)

INFORMIX-OnLine

INFORMIX-SQL

PostScript (note uppercase "S")

UNIX (all caps)

XENIX (all caps)

Menus ("Menus" oblique)

Screen ("Screen" oblique)

Report ("Report" oblique)

MenuShell

database (not "data-base" or "data base")

Demonstration (headings, titles and the first reference to demonstrations in text
should use the long form of the word rather than "demo")

OK (both characters in uppercase, i.e. don't use "ok" or "Ok")

Fitrix Technical Reference

User Interface Style 6-17

payor (although this spelling is not found in the dictionary, convention maintains
that "payer" sounds a bit awkward; the "o" spelling is preferred)

Setup (noun, adj.) (not "Set-up") e.g. Setup Menu, system setup

sub-directory (not "sub directory" or "subdirectory")

submenu (not "sub-menu" or "sub menu")

-to-date Year-to-date, period-to-date, etc., (not "Year to date")

Zoom feature (not "ZOOM") e.g. Use [CTRL]-[z] to Zoom into the reference file.

Specific Terms

Code: Use the term "Code" when non-numeric codes may be used (even if we don't),
instead of the terms Key or Number.

Example: Customer Code, Dept. Code.

Number: Use the term "Number" when the key must be a number.

Example: Account Number.

Capitalize the second of two words joined with a hyphen.

Example: Ship-To (not Ship-to), Bill-To Address.

Command: Use "command" to describe an action on a ring menu of a screen or
menu. Do not refer to ring menu commands as "menu options".

Menu Option: Use this term to describe the items of individual menus.

Example: the a-z menu options.

Function: In data entry, this refers to a control-key or special key action.

Example: [CTRL]-[z] is the Zoom function.

Fitrix Technical Reference

6-18 Programming Conventions

Use "Name" or another term when this is preferable to "Description."

Example:

 ---- Business Name ---

 --- Shipping Instructions ----

Debits and Credits: Whenever debits and credits are listed together, put "debits" first
(i.e. to the left).

Fitrix Technical Reference

Describing Keystrokes 6-19

Describing Keystrokes
Single keys should appear with square brackets around them, e.g.

[e] [TAB] [ENTER] [CTRL]-[w]

If more than three consecutive keys are referenced, they should be enclosed in quo-
tation marks, rather than square brackets, to set them off from other text.

Examples:

Type: [s] [h] [ENTER]

Type: "kill -9 $$ [ENTER]"

(The kill command does not surround characters with brackets, with the exception
of the [ENTER] key since this key is represented by more than one character).

Keystrokes that are represented by more than one character should have characters
in uppercase, e.g.

[ENTER] [RETURN] [CTRL]

Keys should be named the way they appear on the most common keyboard.

The IBM PC is the standard, with the exception of the [ENTER] key.

This means that it is [CTRL] rather than [CONTROL], and [ESC] rather than
[ESCAPE].

The following keys should be shown in their most general form, as shown:

[ENTER] - (not [RETURN] or [RTRN])

[ESC] - (not "store" or "escape sequence")

[DEL] - (not [BREAK], [CTRL]-[c], or [CTRL]-[BREAK])

[CTRL] - (not [CONTROL])

Fitrix Technical Reference

6-20 Programming Conventions

[SPACEBAR] - (not [SPACE])

Representing User Input
User input that may be in either uppercase or lowercase should be shown in lower-
case, e.g.

Type [r] [d] [ENTER] to run the "Run Data" option.

When the program requires caps, caps should be shown,e.g.

[A] [B] [ENTER].

Keys pressed simultaneously should be separated by a dash, e.g.

[CTRL]-[w]

Keys pressed consecutively should be separated by a space, e.g.

[ESC] [1]

All alphanumeric data should be converted to all uppercase by the program unless
there is an application-specific reason for not doing so. One such exception would
be in the text of a letter or in a mailing list where the names are going to appear in
the text of a letter.

Fitrix Technical Reference

Adding or Modifying Tables 6-21

Adding or Modifying Tables

Table Naming

• 1st 2 chars: identify authors of modifications

• 3rd char: identifies application (ex: "g" for g/l)

• characters 4-7: type of file (ex: cntrc for control)

• last character (e: entry, d: detail, c: control, r: reference)

Provide fully annotated schema files for all tables. Describe the structure and usage
of the table and each column within the table.

Fitrix Technical Reference

6-22 Programming Conventions

Example of the desired documentation:

 (from the stoordre table)

 pay_method char(6)

This code is defaulted from the customer table. If it
is not present in the customer table then it is
defaulted from the stocntrc table and validated from
the stxinfor table. If the customer is the one-time
customer (see cust_code), then the pay_method defaults
to "CASH". CASH/VISA/AMEX/MC/ONACCT/3RDPTY are
pay_method examples.

It is also helpful if the column descriptions can be grouped by function. In the
stoordre table, for example, we group columns in the following categories:

 Order numbers:
 Order Control:
 Master Order Information:
 Date Stamps:
 Line Default Information:
 Customer Information:
 Order Terms:
 Order Total Amounts:
 System Maintained columns:

Some concepts or constructs will need more detailed explanation, or will logically
be referenced from many places in the documentation. Please provide these expla-
nations in separate files, or a single "expanded info" file. These expansions will then
be referenced in the schema documentation. In the example above we have refer-
enced additional information regarding one_time_customers.

This information is stored in the expanded info file:

One time customers: If stocntrc.one_time_cust matches
the customer on the order, the customer is identified
as a one time customer. Sample data comes with the
one_time_cust = "CASH". If no one-time customers are
allowed, the column is left null. If the customer on
the order matches the one-time customer code, a window
will be provided to allow for the entry of
name/address. One-time customers will not be allowed
payment types of ONACCT. The payment type will be
required at the time the one-time customer is identi-
fied.

Fitrix Technical Reference

Testing Modifications to Tables 6-23

Testing Modifications to Tables

Adding a Column

If a column is added to a table the results need to be carefully considered. Installing
on an existing database with rows in this table may create problems.

If null cannot be stored in this column, it is preferable to run a script at installation
time that fills the column and informs the installer what is happening. Addendums
instructing the installer to fill the column may be lost.

Are there any joins based on this column? If so, the installer will not be able to fill
this "non-null" column because the join (based on one or more null columns) will
fail.

Modifications to Tables

Do an install over an existing database to test changes to dbmerge. Test every pro-
gram that accesses newly added columns. Test it from the end-user's perspective. If
they have an existing database with the old version of the table, now their table has
been modified. Does the program work as the developer expected it to work?

Fitrix Technical Reference

6-24 Programming Conventions

Input Program Conventions

Primary Screens

The release of the 3.6 version of Fitrix Accounting, marked a major
change in how the input programs are displayed and how they run. The new style
can be found in oe/ic. The look reflects the new concept that the main screen
should contain the common information, while the more infrequent information is to
be entered via Entry-By-Exception screens to the main header/detail screens. These
contain the rest of the various pieces of data entry (document) information.

Starting with oe/ic, and any new system, the entry tables should contain all the
information required to do the posting routines. All the data need not be on the main
screen, but may be distributed among the Entry-by-Exception screens as well.

Use generated Zooms on discrete fields, and Picker Zooms on entry fields where
more than one piece of information may be found. It should be noted that Zooms
need not be regenerable, but that obvious single table Zooms should be. The Entry-
By-Exception screens are derived from header input screens which have been con-
structed as "custom" screens. This is due to the record-locking limitations of the
"add-on" header screens.

The first set of conventions will cover the basic input screen, using an example
screen.per in ic.4gm/i_invtr.4gs.

Fitrix Technical Reference

Input Program Conventions 6-25

Example screen.per in i_invtr.4gm:

{###
Copyright (C) 1991

Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: @(#) .../ic.4gm/i_nvtr.4gs/screen.per 1.9 Delta: 10/24/91

Screen Generator version: 3.51.00 }
DATABASE standard

SCREEN
{
------------------------- Maintain Inventory Item --------------------------

Item Code:[A1]
Description:[A2]

:[A3]
Item Class:[A4][A5]
Serialized:[A] Price Group:[A6] Market Price:[B]

Stocking Unit:[A7] Weight:[A8][A9] Volume:[B1]
Selling Unit:[B2] Conversion Factor:[B3]

Purchasing Unit:[B4] Conversion Factor:[B5]
Inventory Acct.:[B6][B7]

Cost of Goods Acct.:[B8][B9]
Sales Acct.:[C1][C2]

-- Warehouse --Location --- Vendor - Qty. on Hand ---- Cost ------ Price --
[C][C3][C4][C5][C6][C7][C8]
[C][C3][C4][C5][C6][C7][C8]
[C][C3][C4][C5][C6][C7][C8]
[C][C3][C4][C5][C6][C7][C8]
[C][C3][C4][C5][C6][C7][C8]
}
TABLES

stiinvtr
stilocar

ATTRIBUTES
A1 = stiinvtr.item_code, upshift,

comments = " Enter the code for this inventory item.";
A2 = stiinvtr.desc1, upshift,

comments = " Enter the description for this inventory item.";
A3 = stiinvtr.desc2, upshift,

comments = " Enter the description for this inventory item.";
A4 = stiinvtr.item_class, upshift,

comments = " Enter the class for this inventory item.";
A5 = formonly.class_desc type char, noentry, comments = "";
A = stiinvtr.serialized, include = ("",S,B,L), upshift,

comments = " Enter [S]erial number, [L]ot number, or [B]oth if this item is
serialized";

A6 = stiinvtr.price_group, upshift,
comments = "Enter price group code.";

B = stiinvtr.market_price, include =(Y, N), upshift,
comments = "Is the price for this item subject to change base on the market
value?";

A7 = stiinvtr.stock_unit, upshift,
comments = " Enter the unit type this item will be stocked by."; A8 =
stiinvtr.weight,
comments = " Enter the weight of this inventory item.";

A9 = stiinvtr.weight_unit, upshift,
comments = " Enter the weight unit for this inventory item.";

B1 = stiinvtr.volume,
comments = " Enter the volume of this inventory item.";

B2 = stiinvtr.sell_unit, upshift,
comments = " Enter the unit type this item will be sold by.";

B3 = stiinvtr.sell_factor, format = "------.######",
comments = " Enter the selling conversion factor (negative for

reciprocal).";

Fitrix Technical Reference

6-26 Programming Conventions

B4 = stiinvtr.purch_unit, upshift,
comments = " Enter the unit type this item will be purchased by.";

B5 = stiinvtr.purch_factor, format = "------.######",
comments = " Enter the purchase conversion factor (negative for

reciprocal).";
B6 = stiinvtr.inv_acct_no,

comments = " Enter the Inventory Account Number for this item.";
B7 = formonly.inv_desc type char, noentry, comments = "";
B8 = stiinvtr.cog_acct_no,

comments = " Enter the Cost of Goods Account Number for this item.";
B9 = formonly.cog_desc type char, noentry, comments = "";
C1 = stiinvtr.sales_acct_no,

comments = " Enter the Sales Account Number for this item.";
C2 = formonly.sales_desc type char, noentry, comments = "";
C = formonly.cmd_line type char, upshift,

comments = " [CTRL]-[Z] to Zoom into warehouse.";
C3 = stilocar.warehouse_code, noentry, comments = "";
C4 = stilocar.stock_location, noentry, comments = "";
C5 = stilocar.vend_code, noentry, comments = "";
C6 = stilocar.qty_on_hand, format = "------&.&&&", noentry,comments = "";
C7 = stilocar.purch_unit_cost, format = "------&.&&&", noentry, comments = "";
C8 = stilocar.price, format = "------&.&&&", noentry, comments = "";

INSTRUCTIONS
screen record s_iinvtr (stiinvtr.item_code, stiinvtr.desc1,

stiinvtr.desc2, stiinvtr.item_class, formonly.class_desc,
stiinvtr.serialized, stiinvtr.price_group, stiinvtr.market_price,
stiinvtr.stock_unit, stiinvtr.weight, stiinvtr.weight_unit,
stiinvtr.volume, stiinvtr.sell_unit, stiinvtr.sell_factor,
stiinvtr.purch_unit, stiinvtr.purch_factor, stiinvtr.inv_acct_no,
formonly.inv_desc, stiinvtr.cog_acct_no, formonly.cog_desc,
stiinvtr.sales_acct_no, formonly.sales_desc)

screen record s_ilocar[5] (formonly.cmd_line, stilocar.warehouse_code,
stilocar.stock_location, stilocar.vend_code, stilocar.qty_on_hand,
stilocar.purch_unit_cost, stilocar.price)

delimiters " "
{

FOURGEN

defaults
module = ic
type = header/detail
attributes = white
location = 2, 3

input 1
table = stiinvtr
key = item_code
order = item_code
lookup = name=stxchrtr1, key=inv_acct_no, table=stxchrtr,
from_into=acct_desc inv_desc, filter=acct_no = $inv_acct_no
lookup = name=stxchrtr2, key=cog_acct_no, table=stxchrtr,
from_into=acct_desc cog_desc, filter=acct_no = $cog_acct_no
lookup = name=stxchrtr3, key=sales_acct_no, table=stxchrtr,
from_into=acct_desc sales_desc, filter=acct_no = $sales_acct_no
lookup = name=stxinfor1, key=item_class, table=stxinfor,
from_into=src_desc class_desc,
filter=src_type = "P" and src_key = $item_class
zoom = key=inv_acct_no, screen=chrtz, table=stxchrtr, noautozoom
zoom = key=cog_acct_no, screen=chrtz, table=stxchrtr, noautozoom
zoom = key=sales_acct_no, screen=chrtz, table=stxchrtr,
noautozoom
zoom = key=item_class, screen=clssz, table=stxinfor, noautozoom,
filter=stxinfor.src_type = "P"
req’d = item_class

Fitrix Technical Reference

Input Program Conventions 6-27

input 2
table = stilocar
order = warehouse_code
join = stiinvtr.item_code = stilocar.item_code
arr_max = 100 }

 Input Screen Conventions

 Title

• Dashed line extends all the way to the edge of window borders.

• Space before & after title.

• Centered.

• Don't use the word "screen" or "document".

 Field Titles

• Capitalized.

• Terminated with ":".

• Evenly spaced across screen.

 Screen Divider Lines

• Indent one column in from main title, or 3 blank columns separated dashed
line from window borders.

 Columns

• Character & fixed length columns, left justify the heading.

• Numeric (non-fixed length fields), right justify the heading.

 Bottom of Screen

• Extends all the way to edge of window.

 Attributes of Screen, Upshift, and Comments

• Upshift all alphanumeric fields.

• Comments on all input fields should begin with a Capital letter.

Fitrix Technical Reference

6-28 Programming Conventions

• Comment should describe the operation needed.

 Attributes of Screen, Format

• Amounts, and quantities need to be formatted.

• Usually either "--------&.&&", or "-------&.&&&".

 Attributes of Screen, Delimiters

• Delimiters clause is always " "

 FourGen Section, Defaults

• Attributes = white is the color of the background

• On header and header/detail, and add-on header screens

 FourGen Section, Input1 Lookups

• Lookups always have unique names when used against the same table,
using different fields.

• Use "from-into" clause.

 FourGen Section, Input1 Zooms

• Discrete Zooms should be generated.

 FourGen Section, Input1 Req'd

• Required fields when possible should be generated.

 FourGen Section, Input2 Array Size

• Should be 100.

Fitrix Technical Reference

Input Program Conventions 6-29

This is how the screen appears:

Data Entry Screen Design

The Screen or form title should appear in the center of the first line of the screen. It
should start with a cap, but should not be all caps. It should not contain the words
"Screen" or "Form." It should be a noun describing the document or the contents of
the file.

It should not contain a verb unless the menu item that calls the screen only allows
one possible action and other menu items allow different actions on the same file.

Screens and menu items are named for the contents of the file or table they access,
not a report or the file itself. For example, the screen should say, "Ledger Accounts"
not "Chart of Accounts."

When a file contains documents, they should be called by the most widely recog-
nized name. For example: invoices, orders, checks, etc...

If there is one document in a file, the name appearing on the screen should be singu-
lar. If there is more than one, the name should be plural. For example, Company

Fitrix Technical Reference

6-30 Programming Conventions

Information, Account Groups, and Customers (not Customer).

If an identifying document number is assigned by the system and cannot be changed
by the user, it should appear on the same line as the heading in the right hand corner.

If the screen contains rows of detail, the detail should appear in the middle of the
screen. Separate this detail from the "header" information by a line.

If the screen contains totals from the detail, that information should appear below the
detail, separated by a line in a special footer section.

If a form has no detail section and has room for another line, there should be a solid
line of dashes from one side to the other just above the comment line at the bottom
of the form.

Whenever possible, fields on a document header should appear on the form one to a
screen row.

Fields read in from a detail table should appear in rows and columns.

A "field descriptor" is used to indicate or "label" the contents of a field whenever
possible. Descriptors for fields in a heading should appear before the field. Descrip-
tors for fields arranged in columns and rows should appear at the top of the column.

Descriptors should be Capitalized, NOT ALL CAPS.

Descriptors for data entry fields in which the field follows to theright of the descrip-
tor should be followed by a colon.

Descriptors and headings should not be abbreviated unless this is required for spac-
ing.

Abbreviations should be followed by a period, such as Ref. or Salesprsn.

Do not use the symbol # to indicate numbers if No. will fit.

Do not use No. if Number will fit.

Data entry fields should be stacked, each starting in the same column. Their head-
ings should be placed so that their ending colon is one character to the left of the
beginning of the field.

Fitrix Technical Reference

Input Program Conventions 6-31

Display-only fields should not start in the same column as data entry fields. Display-
only fields should form their own column, preferably to the right of the data entry
fields.

Row descriptors start, if an area is large enough, over the first character of the value
in a text field. In a numeric column, they end over the last character of data (right
justified).

If a column is narrower than the heading, the heading is centered.

Headings are not followed by colons or other punctuation.

Screens should not include technical information or terms such as program names or
filenames, which is of no interest to the users.

Zoom Screens

Example itemz.per from ic.4gm/lib.4gs
{###
Copyright (C) 1991

Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: @(#) .../ic.4gm/lib.4gs/itemz.per 1.2 Delta: 5/10/91

Screen Generator version: 3.60.00 }
DATABASE standard
SCREEN
{ - Item Code ---------- Class -- Description ---------------- Control - [A1
][A2][A3] [A]
[A1][A2][A3] [A]
[A1][A2][A3] [A]
[A1][A2][A3] [A]
[A1][A2][A3] [A]
[A1][A2][A3] [A]
[A1][A2][A3] [A]
[A1][A2][A3] [A]
[A1][A2][A3] [A]
[A1][A2][A3] [A]

Control: "L" = Lot Control "S" = Serial Control
"B" = Lot and Serial Control " " = Not Controlled }

TABLES
stiinvtr

ATTRIBUTES A1 = stiinvtr.item_code, upshift,
comments = " Enter item code or wildcard.";

A2 = stiinvtr.item_class, upshift,
comments = " Enter product class or wildcard.";

A3 = stiinvtr.desc1, upshift,
comments = " Enter first description line or wildcard.";

A = stiinvtr.serialized, upshift,
comments = " Enter serial control type.";

INSTRUCTIONS
screen record s_itemz[10] (stiinvtr.item_code, stiinvtr.item_class,

stiinvtr.desc1, stiinvtr.serialized)

Fitrix Technical Reference

6-32 Programming Conventions

delimiters " "
{

FOURGEN

defaults
module = ic

type = zoom
attributes = white, border
location = 5, 6
returning = item_code

input 1
table = stiinvtr
key = item_code
order = item_code
arr_max = 100

}

The itemz.per file looks like this on the screen:

Zoom Conventions

 Zoom Screen Title Line

• Dash followed by space and column descriptions.

• Don't use the word "screen" or "document".

Fitrix Technical Reference

Input Program Conventions 6-33

 Zoom Screen Array

• Ten lines if possible.

• Character & fixed length columns, left justify the heading.

• Numeric (non-fixed length fields), right justify the heading.

 Zoom Screen Information Lines

• May contain operator prompting information.

 FourGen Section, Defaults

• Header Zooms usually start at 5,6 since 2,3 is the top of the Zoom message
block.

Entry-By-Exception(EBE) Custom Input
Screens

The typical Entry-By-Exception screen is hand-coded, after generation as a header
screen. Access to Entry-By-Exception and Zoom screens are now done by pickers.
When the user presses [CTRL]-[z], a picker pops up allowing the ability to access
other input/Zoom screens.

The EBE programs as found in Order Entry are to be used as templates for program-
ming EBE screens. They are chiefly found in oe.4gm/i_order.4gs directory.
There are several used such as shipd.4gl.

Example locau.per from ic.4gm/i_invtr.4gs:

{###
Copyright (C) 1990
FourGen Software Technologies, Inc. Edmonds, Washington USA
Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: @(#) .../ic.4gm/i_invtr.4gs/locau.per 1.6 Delta: 10/24/91

non_source_form
}
DATABASE standard
SCREEN
{
-------------------------- Item Warehouse Detail ---------------------------

Item:[A1][A2]

Fitrix Technical Reference

6-34 Programming Conventions

Warehouse:[A3][A4]
---------------------- Cost and Price Information ----------------------
Purchase Cost:[A6] Last Cost:[A7] Qty.:[A8]
Average Cost:[A9] Last Date:[B1]

Price:[B3] Sold Date:[B2]
-------------------- Location and Count Information --------------------

Location Aisle:[B4] Row:[B5] Bin:[B6]
Count Cycle Code:[A] Last Count:[B7] On Hand:[B8]

------------------------- Vendor Information ---------------------------
Vendor:[B9][C1]

Vendor Item:[C2]
------------------------- Selling Information --------------------------

Minimum Sell Qty.:[C3] Allow Backorder:[B] Taxable:[C]
Subject To Terms Disc.:[D] Subject To Trade Disc.:[E]

Commission Code:[C4][C5] }
TABLES

stilocar
stiinvtr

ATTRIBUTES
A1 = stiinvtr.item_code, noentry, comments = "";
A2 = stiinvtr.desc1, noentry, comments = "";
A3 = stilocar.warehouse_code, upshift,

comments = " Enter the code for this warehouse.";
A4 = formonly.wh_desc type char, noentry, comments = "";
A6 = stilocar.purch_unit_cost, format = "-------&.&&&",

comments = " Enter the cost for the purchase of one stock unit.";
A7 = stilocar.last_cost, format = "-------&.&&&", noentry,comments = "";
A8 = stilocar.last_qty, format = "-------&.&&&", noentry,

comments = ""; A9 = stilocar.avg_unit_cost, format = "-------&.&&&",
comments = " Enter the average unit cost for one stock unit.";

B1 = stilocar.purchase_date, format = "mm/dd/yy", noentry, comments = "";
B2 = stilocar.sold_date, format = "mm/dd/yy", noentry, comments = "";
B3 = stilocar.price, format = "-------&.&&&",

comments = " Enter the sale price for this item.";
B4 = stilocar.loc_aisle, upshift,

comments = " Enter the location aisle.";
B5 = stilocar.loc_row, upshift,

comments = " Enter the location row.";
B6 = stilocar.loc_bin, upshift,

comments = " Enter the location bin.";
A = stilocar.count_cycle, upshift,

comments = " Enter the code for this item’s count cycle [A-Z, 0-9].";
B7 = stilocar.count_date, format = "mm/dd/yy", noentry, comments = "";
B8 = stilocar.qty_on_hand, format = "-------&.&&&",

comments = " Enter the quantity on hand for this item.";
B9 = stilocar.vend_code, upshift,

comments = " Enter the vendor code.";
C1 = formonly.vend_desc type char, noentry, comments = "";
C2 = stilocar.vend_prod_no, upshift,

comments = " Enter the vendor product number.";
C3 = stilocar.min_sell_qty, upshift,

comments = " Enter minimum sell quantity.";
B = stilocar.allow_bo, upshift,

comments = " Enter [Y] to allow for this item to go on backorder.";
C = stilocar.taxable, upshift,

comments = " Enter [Y] if this is a taxable item.";
D = stilocar.terms_disc, upshift,

comments = " Enter [Y] if this item should be subject to terms discount.";
E = stilocar.trade_disc, upshift,

comments = " Enter [Y] if this item should be subject to trade discount.";
C4 = stilocar.comm_code, upshift,

comments = " Enter the commission code for this item.";
C5 = formonly.comm_desc type char, noentry, comments = "";
INSTRUCTIONS
screen record s_ilocar (stiinvtr.item_code, stiinvtr.desc1,

stilocar.warehouse_code, formonly.wh_desc,
stilocar.purch_unit_cost, stilocar.last_cost, stilocar.last_qty,
stilocar.avg_unit_cost, stilocar.purchase_date, stilocar.sold_date,

Fitrix Technical Reference

Input Program Conventions 6-35

stilocar.price, stilocar.loc_aisle, stilocar.loc_row,
stilocar.loc_bin, stilocar.count_cycle, stilocar.count_date,
stilocar.qty_on_hand, stilocar.vend_code, formonly.vend_desc,
stilocar.vend_prod_no, stilocar.min_sell_qty, stilocar.allow_bo,
stilocar.taxable, stilocar.terms_disc, stilocar.trade_disc,
stilocar.comm_code, formonly.comm_desc)

delimiters " "
{

FOURGEN

defaults

module = ic
type = header
attributes = white
location = 2, 3

input 1
table = stilocar
key = item_code, warehouse_code
order = warehouse_code
lookup = name=stxinfor, key=warehouse_code, table=stxinfor,
lookup = name=whse_description, key=wh_desc, table=stiwhser,
from_into=description wh_desc, filter=whse_code = $warehouse_code
lookup = name=stxinfor1, key=comm_code, table=stxinfor,
from_into=src_desc comm_desc, filter=src_type = "C" and src_key = $comm_code
lookup = name=stpvendr, key=vend_code, table=stpvendr,
from_into=bus_name vend_desc, filter=stpvendr.vend_code = $vend_code
zoom = key=vend_code, screen=vendz, table=stpvendr
zoom = key=comm_code, screen=commz, table=stxinfor,
filter=src_type = "C"

zoom = key=warehouse_code, screen=whser, table=stiwhser,
from=whse_code, noautozoom }

Input Screen Conventions (Entry By Exeption Screen)

 Zoom Screen Copyright Line

• Non_source_form added so Entry-By-Exception code will not be
destroyed by re-generation.

 FourGen Section

• This was used to generate the original code and can be reused if
non_source_form is removed, and generator run.

Fitrix Technical Reference

6-36 Programming Conventions

Standard Report Design
Like screens, reports should not include technical information or terms such as pro-
gram names or file names, which are not of interest to the users.

Report headings should not be all uppercase.

Report headings should not contain the word "Report".

Text elements on printouts should not be all uppercase.

Only data should show in all caps.

The heading should be separated from the body of a report by a double line (formed
by equals symbols).

All information that repeats on every page is part of the page heading and should
appear above the double line.

Date and Time of Report should appear one above the other in upper left corner.
Page number should appear in the upper right corner. These words should appear as
Date:and Page:

The first line should be the report name. Nothing else should appear on that line.

If a trailer is used, it should contain only the name of the report and the page number
in the lower right-hand corner, in the format:

Report Name Page:

Double lines should be used to separate additional information from the body of the
report.

Reports that contain codes such as "order status" or "document source" should have
a legend explaining the codes at the bottom of the form.

Fitrix Technical Reference

Output Program Modifications 6-37

Output Program Modifications

 .ifg Files

The following discussion pertains to this example report:

Fitrix Technical Reference

6-38 Programming Conventions

Below is the report.ifg file from oe.4gm/o_ordsum.4gs used to generate
the above report.

Copyright (C) 1990
FourGen Software Technologies, Inc. Edmonds, Washington USA
Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: @(#) .../oe.4gm/o_ordsum.4gs/report.ifg 1.4 Delta: 4/1/91

database standard

output
top margin 3
bottom margin 3
left margin 0
right margin 80
page length 66

page header
{
Date: [h1 +h2 >h3
Time: [h4 +h5 >h6
+h7 Stage
Order Document Date Customer Slspsn Type To Ship Stat High Low Open
===
==}
on every row
{
[e1 [e2 [e3 [e4 [e5 [e6 [e7 [e8 [e9 [e [e11 }
page trailer
{
===
==[h2 >h6
}
before group of stoordre.like_type
page
{
}
after group of stoordre.like_type
{
Totals for order types like [g1 - [g2 Open:[g3

-
Items Freight Discount Tax Total

-
Ordered:[g4 [g5 [g6 [g7 [g8
Posted:[g9 [g10 [g11 [g12 [g13 [*

On Invc.:[g14 [g15 [g16 [g17 [g18 [* }
note to programmer: put the following comments and code in report.4gl
immediately after the line "after group of stoordre.like_type

This code handles the "wrong header" problem (when the
exact number of lines on the page is met, the wrong header
is placed on the next page)
The 53 was calculated using the following formula:
lines per page: 66 -
bottom margin: 3 -
page trailer: 2 -
after group need: 8
--
53
if lineno = 53
then
need 7 lines

Fitrix Technical Reference

Output Program Modifications 6-39

else
need 8 lines
print

end if
attributes

h1 = date, using "mm/dd/yy"
h2 = constant "Order Status Summary"
h3 = formonly.select_msg type char(30)
h4 = time
h5 = formonly.co_name type like stxcntrc.co_name
h6 = pageno using "Page: <<<<<"
h7 = formonly.hdr_type type char(60)

e1 = stoordre.order_no
e2 = stoordre.doc_no using "<<<<<<"
e3 = stoordre.order_date using "mm/dd/yy"
e4 = stoordre.cust_code
e5 = stoordre.sls_psn_code
e6 = stoordre.order_type
e7 = stoordre.to_ship_date
e8 = stoordre.order_status
e9 = stoordre.hi_stage
e = stoordre.lo_stage
e11 = formonly.open_amount type like stoordre.total_amount using "------&"

the following 13 fields are dummy fields intended to produce the
corresponding rpt record variables.

d1 = formonly.pst_item_amount type like stoinvce.item_amount
d2 = formonly.pst_frght_amount type like stoinvce.frght_amount
d3 = formonly.pst_trd_ds_amount type like stoinvce.trd_ds_amount
d4 = formonly.pst_tax_amount type like stoinvce.st_tx_amount
d5 = formonly.pst_total_amount type like stoinvce.total_amount
d6 = formonly.inv_item_amount type like stoinvce.item_amount
d7 = formonly.inv_frght_amount type like stoinvce.frght_amount
d8 = formonly.inv_trd_ds_amount type like stoinvce.trd_ds_amount
d9 = formonly.inv_tax_amount type like stoinvce.st_tx_amount
d10 = formonly.inv_total_amount type like stoinvce.total_amount

g1 = stoordre.like_type
g2 = formonly.type_desc type like stootypr.description
g3 = sum(formonly.open_amount) using "--------&"
g4 = sum(stoordre.item_amount) using "---,---,--&.&&"
g5 = sum(stoordre.frght_amount) using "---,---,--&.&&"
g6 = sum(stoordre.trd_ds_amount) using "---,---,--&.&&"
g7 = sum(stoordre.tax_amount) using "---,---,--&.&&"
g8 = sum(stoordre.total_amount) using "---,---,--&.&&"
g9 = sum(formonly.pst_item_amount) using "---,---,--&.&&"
g10 = sum(formonly.pst_frght_amount) using "---,---,--&.&&"
g11 = sum(formonly.pst_trd_ds_amount) using "---,---,--&.&&"
g12 = sum(formonly.pst_tax_amount) using "---,---,--&.&&"
g13 = sum(formonly.pst_total_amount) using "---,---,--&.&&"
g14 = sum(formonly.inv_item_amount) using "---,---,--&.&&"
g15 = sum(formonly.inv_frght_amount) using "---,---,--&.&&"
g16 = sum(formonly.inv_trd_ds_amount) using "---,---,--&.&&"
g17 = sum(formonly.inv_tax_amount) using "---,---,--&.&&"
g18 = sum(formonly.inv_total_amount) using "---,---,--&.&&"

select
more = stoordre.item_amount
more = stoordre.frght_amount
more = stoordre.trd_ds_amount
more = stoordre.tax_amount
more = stoordre.total_amount
tables = stoordre
order = stoordre.like_type, stoordre.order_no, stoordre.doc_no

defaults
progname = o_ordsum

Fitrix Technical Reference

6-40 Programming Conventions

prcname = Order Status Summary
rtmargn = FourGen Modifiable Accounting
destin = report.out
quiet = 10

Report Conventions:

 Heading Date, Time, Page Number and Field Tags

Date and Time of Report should appear one above the other in upper left corner.

Page number should appear in the upper right corner.

Use field tags beginning with 'h'.

First line should be the report name.

 Heading Separation

Separated from body of report by double line (equals symbols).

 Field Tags From a Entry Header Table

Use field tags beginning with 'e'.

 Page Trailers

Contains, as last line, the name of the report and the page number in the lower right
hand corner.

 Text Elements on Printouts

Should not be all caps, only DATA should show in all caps.

 Field Tags Appearing in the Before or After Group

Use field tags beginning with 'g'.

 Data From Company Table (like company name)

Use the function in all.4gm/lib.4gs called al_compn, which returns the
company name.

Called from ml_defaults, like let rpt.co_name = al_compn().

 Field Tags From an Entry Detail Table

Fitrix Technical Reference

Output Program Modifications 6-41

Use field tags beginning with 'd'.

NOT shown:

Field Tags Appearing in the Subtotals Section.

Use field tags beginning with 's'.

Field Tags Appearing in the Totals Section.

Use field tags beginning with 't'.

Report Width

Reports may be either 256, 132 or 80 columns wide depending upon the data to be
printed.

Fitrix Technical Reference

6-42 Programming Conventions

Posting Program Modifications

Basic Requirements

Error checking in edit list and posting must be IDENTICAL. If the edit list runs
without problem, the posting should take place.

An edit list must be printed before the posting of the document.

Any SQL statements which delete rows from header and/or detail table(s) should be
done in the after_group section.

Never use extra outer joins as lookups (i.e., select business name from stpvendr
based on vendor code), instead use lookup.

Function calls in on_every_row.

OnLine compatible

Rowid for temp tables are not guaranteed to be sequential.

Begin work and commit work will close cursors, therefore use temp tables instead.

Select rowid of the tables involved into the temp table, and in ml_fetch do the
actual selection of the data by rowid. This allows the program to get the most recent
record.

Use oe.4gm/p_pstord.4gs for a reference on how to code a posting program
using the latest FourGen techniques.

Commit/Rollback Logic

If the document has an error, do not post that document (rollback work) but instead
continue posting the rest of the documents.

Fitrix Technical Reference

Menu Design Conventions 6-43

Menu Design Conventions
Example:

Menu Options

Menu option descriptions should be no more than 30 characters. Menu options
should be written with the first letter of important words capitalized, as you would
the title of a book. Do not capitalize articles (e.g. a, the, an), conjunctions (and, or,
but), prepositions, or infinitives.

Example:

Post Ledger Data to Chart

Titles of menu items should match the title on any screen or report that they call and
should also match the description field of the FourGen Menus script :item: line. For
example, if the menu item is Update Ledger Accounts, the screen should say, Ledger
Accounts not General Ledger Accounts. If it is a general document, it should be

Fitrix Technical Reference

6-44 Programming Conventions

called just document.

The most commonly used options should appear first on the menu, lesser used selec-
tions, such as setup options, should appear last.

The report option that is associated with an update option should be directly below
the update option.

All submenus of a package should be of identical width (standard width 41 charac-
ters, including the borders and one character margins on either side). The margins
should contain tildes (in the "menu" file).
For example:
 ~|% a - Update Warehouse Definitions %|~

Menu titles align with the menu option text within the box (not centered).
Menu option descriptions should be no more than 30 characters.
Menu options names: first letter of important words is capitalized.
Menu options names should match screen and report titles.
Menus items should begin with a standard verb that defines the activity
For example:
 Create - create something new.
 Update - change information in a file manually.
 Print - send a list, report or form to the printer.
 Post - automatically update info in one file using info from another.
 Copy - duplicate records in one file into another.
 Delete - purge or erase information from a file
 Select - identify records for processing.

Numbered submenus should (if size allows) move from upper left corner toward the
lower right corner as numbers increase.

Data in simple reference files should be called "Definitions" (i.e., "Update Ware-
house Definitions" not "Update Warehouse Codes").

Never use "FILE" or "TABLE" as the title for a screen, menu, or report.

Screens and menu items are named for the contents of the file or table (i.e., "Update
Journal Documents" not "Update General Journal").

Fitrix Technical Reference

Menu Design Conventions 6-45

If the file contains multiple items, but a description of its contents cannot be made
plural, add the word Items (i.e., "Inventory Items" not "Inventory" and not "Inven-
tories").

Menu Item Files

Item instruction files store the FourGen Menus commands. These are the files that
are executed when a menu option is selected. They are located in menu directories
(one directory for each menu).

Options that print reports should always include an item line and a pause that allows
the user to exit without printing.

Options that require user input should inform the user of the required input (from the
:item:, :needs:, or :show: lines).

The :item: line should always contain a description of the action the script performs.

The descriptions in :item: lines should be in lowercase, including the starting char-
acters of lines. Single sentences or phrases that extend over more than one line
should be indented four characters on all but the top line.

For example:

:item:Print Over/Short Report:prints a listing of all counted items that: are
over or short of the amount in the system:

(This is all one line in the file.)

FourGen Menus displays the preceding command as:

You have selected 'Print Over/Short Report'.

This menu selection does the following:

Prints a listing of all counted items that are over or short of the amount in the
system.

Fitrix Technical Reference

6-46 Programming Conventions

Do not write :item: description lines that simply repeat the option name. That is, do
not write item descriptions such as:

:item:Print Over/Short Report:prints the over/short report:

Do not put the :x: exit flag on the end of report or screen lines unless it is absolutely
required to prevent subsequent pc lines from executing after failure of the report or
screen command.

Main Menu Design

Application or full-screen menus should be as few in number as possible. This
means that larger or more general menus with many options are preferable to smaller
menus with fewer items. This puts more options on the screen and requires less of
the user in determining where a certain function is accessed. Small menus mean
complicated menu "trees" that can be confusing for the user.

Menus are always displayed within boxes. The menu box has three sides (left, right,
and bottom) drawn with box graphics characters. The top, containing the menu head-
ing, is drawn with reverse video.

Menus with many items should be separated by graphics characters into smaller
boxes, grouping options by type of function or file accessed.Each menu box contains
a single column of elements. Additional related options are displayed through sub-
menus.

A maximum of 22 options are displayed at one time within a single menu.

Selection keys are always lowercase letters, starting with the first element as "a," the
second as "b," and so on.

The option lines of the menu should have the two spaces between the left border of
the box and the identifying selection key, then a space, a dash, another space, and
the option description.

For example:

|% a - Update Warehouse Definitions %|

Fitrix Technical Reference

Menu Design Conventions 6-47

All menus, with the exception of control/main menus, should highlight the entire
menu item. The ending highlights should be aligned two spaces from the right border
of the box.

For example:

|% a - Update Warehouse Definitions %|
|% b - Update Tax Definitions %|

rather than:

|% a - Update Warehouse Definitions %|
|% b - Update Tax Definitions % |

A "Control" or "Main" Menu calls up other menus on the screen.

Control Menus have a box of graphics characters around the highlighted heading
line containing the title.

The heading line of a control menu should be highlighted with the @ character, so
that the highlight remains when you load a submenu (unless another menu can be
loaded directly over the control menu).

Menu items on a Control Menu are identified by numbers rather than letters.

All other design rules apply.

An option that returns you to a "higher" level should be identified as a "0" item and
appear as the last item of a "control" box.

On control menus, the highlight characters (%) should surround the option keys, (not
the entire item as other menus do).

For example:

|% 0 %- Return to Main Menu |

Fitrix Technical Reference

6-48 Programming Conventions

Sample Control Menu:

A "control" or "main" menu is typically displayed on the left side of the screen and
calls up submenus menus displayed on the right side of the screen.

Submenu Design

The first submenu of any module should contain the options for the most frequently
used transaction processing options. For example, submenu 1 of an Accounts Pay-
able product should contain the option for entering A/P invoices.

The transaction menu(s) of a main menu should be followed by the reference file
maintenance menu(s). For example, the transaction processing submenus of A/P
should be followed by the menu containing the option for entering vendor informa-
tion.

Setup menus and other menus containing options that are run infrequently should be
put at the bottom of the list of submenus on the Control Menu.

If there is a clear chronological order for running the options of a submenu, the menu
items should follow that order (i.e. the first option run should be the top item on the
menu, etc.).

Fitrix Technical Reference

Menu Design Conventions 6-49

The preferred menu organization of data entry and report options, when the reports
are basically a list of data entered, is to place the report option directly below the
option(s) for entering the data included on the report.

This convention is violated in the new oe, where one detail menu contains all sorts
of definition options and a "sister menu" contains all of the print options for those
definitions. Placing data entry options on one portion of the menu and report options
on another is not acceptable when there is a clear relationship between data entry
options and list reports.

Example of good submenu structure:
%%- 4 - Setup Payroll ----------------%%
~| |~
~|% a - Update Payroll Defaults %|~
~|% b - Print Payroll Defaults %|~
~+-------------------------------------+~
~|% c - Update Income Codes %|~
~|% d - Update Deduction Codes %|~
~|% e - Update Obligation Codes %|~
~|% f - Print Payroll Codes %|~
~+-------------------------------------+~
~|% g - Update Employee Types %|~
~|% h - Print Employee Types %|~
~+-------------------------------------+~
~|% i - Update Tax Tables %|~
~|% j - Print Tax Tables %|~
~+-------------------------------------+~
~|% k - Update Ledger Accounts %|~
~|% l - Print Ledger Account List %|~
~+-------------------------------------+~

As stated earlier, all submenus of a package should be of identical width. The stan-
dard width for submenus is 41 characters, including the borders and one character
margins on either side. If one submenu needs to be larger, all other submenus for the
product should have this same, larger width. Menu titles should align with the menu
option text within the box. They should not be centered. The margins should contain
tildes (in the "menu" file).

For example:

~|% a - Update Warehouse Definitions %|~

Fitrix Technical Reference

6-50 Programming Conventions

Rather than surprise the user with "detail menus" that are selected from the submenu,
use two greater-than symbols (>>) to indicate menu options that load detail menus.

For example:
~|% b - Print Order Entry Defaults %|~
~+-------------------------------------+~
~|% c - Update Order Definitions >> %|~
~|% d - Print Order Definitions >> %|~
~+-------------------------------------+~

In this example, both option Update Order Definitions and option Print Order Defi-
nitions load detail menus.

Window Menus

Submenu is distinguished from Window menu.

Submenus display on the right side of the screen and are the basic menus that make
up a product.

Window menus are small menus that list a few options when a menu option from a
submenu is selected.

Submenus are loaded by a :submenu: command in the item instruction file that is
executed when a menu option is selected. addmenu is used to display another sub-
menu (sibling menu). Use the existing FourGen product as a guide for when to use
:addmenu: and :submenu:

The heading of a window menu should be identically named and displayed in the
same place as the menu option on the parent menu.

Window menus should extend one character further, on each side, than the calling
submenu.

Window menu options should use the key characters a, b, c, etc.

Menu options should be begin in the same column of the screen as the options of the
calling submenu.

Each submenu or window menu directory should contain hidden options (not dis-
played on the menu) that allow you to move directly to other submenus. Pay atten-
tion to the use of :pc:x: (this simply closes the window menu and displays the
submenu).

Fitrix Technical Reference

Menu Design Conventions 6-51

Menu items that are bring up window menus should be listed with two greater than
signs ">>". For example, Print Multilevel Tax Analysis provides a detail and sum-
mary report.

Window menus should have the ability to change to a submenu simply by pressing
the number of that submenu (as you can from other submenus).

Some versions of the Screen code generation program automatically center Browse
forms and other windows both vertically and horizontally on the screen.

This is the standard location, and should be changed only when it is necessary to
avoid covering other information on the screen.

Windows should be as large as required by spacing lines with one space in between
fields and one space at the beginning and end of each line, or larger if required for
complete headings.

Do not use the first or last character of window lines, except for dashed lines.

Windows stacked on other windows should be centered unless it is necessary to see
information from two windows at once.

Browse Windows

The first line of a browse form should contain a heading for each column (not
embedded in a line) and the second line should be a line of dashes. The form should
contain 10 rows of data. For example:

------------------------ Customer Codes ---------------------------
 Code Business Name Contact
 [] [] []
 [] [] []
 [] [] []
 [] [] []
 [] [] []
 [] [] []
 [] [] []
 [] [] []
 [] [] []
 [] [] []

Fitrix Technical Reference

6-52 Programming Conventions

Detail Menus

Detail Menus are menus that are loaded by a :submenu: command in the menu script
of a submenu option (the submenu is called from a control menu with an :addmenu:
command).

Detail menus contain various methods of running a basic option, such as printing
customer labels in different sort orders or on different size labels.

The heading of the detail menu is identical to the submenu item description that
called the menu, including the key character used to execute the option.

Whenever possible, the window heading should appear in the exact position of the
menu option used to load the window menu; the option description should not
appear to change with the exception of the highlight.

Detail menus should extend one character further, on each side, than the calling sub-
menu.

Detail menu options should use the key characters a, b, c, etc.

Detail menu options should begin in the same column of the screen as the options of
the calling submenu.

Help/Error Messages

Run spell checker after completing.

Menu help should explain why you would chose the menu option.

Screen help should explain the specifics about using a screen.

Rows should be filled on the 1st page of menu help

This is important for the next screen of menu help to display properly.

If your help extends to the 2nd page, you should fill 18 rows (use blank rows at the
end of your help to fill up the 18 rows if necessary).

Columns in width are available.

Fitrix Technical Reference

Menu Design Conventions 6-53

The title should extend to 56 columns as follows:

 12345678901234567890123456789012345678901234567890123456

 10 20 30 40 50

 --------------- Print Company Information -----------------

Help for print options should be tied to the related update option if there is one. For
example:

This option prints the information entered through the
Update Company Information menu option.

User Prompts and Messages

All "commands" that appear in a command prompt should be shown with the first
letter in uppercase. References to command names in help files, documentation files,
and so on should also print the command name with the first character in uppercase
and should not use quotation marks.

For example: Use the Find command to select all current documents.

Any prompt requiring the user to wait should be followed by ellipses.

For example: Loading Program to Update Journal Documents...

When referencing a column, field, menu option, record, document, row, command,
mode, or similar objects (other than screens, forms or menus), the name of the field
is shown exactly as it is shown elsewhere on the screen. If it is in all caps on the
screen, show it in all caps in the description.

Do not capitalize words such as "column," "field," "option," or "mode" that follow
the name.

Examples:
Description field
Browse mode

Fitrix Technical Reference

6-54 Programming Conventions

Print command
the Update Ledger Accounts option
the CASH IN BANK document

When referencing a column, field, menu option, record, document, row, command,
mode, or similar words, if the name describing it does not begin with a capital letter,
then use quotation marks around it.

For example: the Browse mode, the Update Ledger Accounts option, the Description
field, the "account name" column, the CASH IN BANK document, the ACCOUNTS
PAYABLE record.

If a single-character code field is used to identify types, use mnemonic characters
(usually the first character of each option), rather than sequential characters.

That is, use something like:

[W] Weekly [B] Bi-weekly [S] Semi-monthly [M] Monthly

Rather than:

[A] Weekly [B] Bi-weekly [C] Semi-monthly [D] Monthly

If you do not have italic characters, use uppercase to stress very important text; For
example:

You MUST post BEFORE you go home.

Automatic Data Entry Help from Form
Comments
Messages printed on an entry form (such as the comment/help lines that appear on
the bottom of Informix forms) should be complete sentences, should end with a
period, and should be in lowercase with the exception of the first letter.

Messages should begin with an action (i.e. a verb) and be as explicit as possible in
the given space. For example, write:

Change to screen for entering warehouse item detail.

Rather than:

Fitrix Technical Reference

Menu Design Conventions 6-55

Warehouse Information.

For fields that accept a defined set of valid entries, unless the screen lists all possible
entries, the comment line must include them.

Example:
 Apply rate to:[G]Gross [T]Taxable [H]Hours [N]None (flatrate).

Error Messages

The message should be short and to the point. In addition, the message should not
suggest a failure on the part of the operator (as a phrase like Invalid Entry does), but
should suggest a mismatch between the expected entry and the given one (e.g. Ref-
erence Information Not Found.)

Capitalize the beginning of each word in the error message with the exception of
conjunctions, versions of the verb "to-be", and articles.

For example:

Code Number Not Found.

Examples of incorrect form:

Code number not found.

CODE NUMBER NOT FOUND.

Error messages should end with a period.

References to screen names, field names, and menu items must be totally consistent
with the use of those names in the application itself.

Whenever possible, limit messages to lines that appear on the screen in the Happens
section and Correction section.

Whenever possible, each sentence of the error message should begin on its own line,
especially when each sentence is a separate problem or solution.

In the text section, if a sentence wraps around to a new line, indent one character to
show continuation from previous line.

Fitrix Technical Reference

6-56 Programming Conventions

For error text, the Happens when section should begin with, "You have...", explain-
ing what the user has done if that has caused the error, or "This document has..." if
the problem is with the document.

For error text in the Correction section, begin each sentence with a verb and with the
term "you" understood.

Example:

Select valid number with [CTRL]-[z].

Standard Error Messages

Not Found: Whenever an invalid reference code is entered by the user, the message
is: Field Name Not Found.

Example:

Customer Code Not Found.

Duplicate: When entering a code that should be unique and the system finds a dupli-
cate, the message is: Duplicate Field_Name.

Example:

Duplicate Customer Code.

Too Many: When there are too many rows to read into a form, the message is: Too
Many Line Name in Record Name.

Examples:

Too Many Accounts in Account Group.

Too Many History Lines for Account.

There are many error conditions that are identical in different programs. They should
have identical error messages.

Examples:

Fitrix Technical Reference

Menu Design Conventions 6-57

Account Number Not Found.

Department Code Not Found.

Fitrix Technical Reference

6-58 Programming Conventions

General Conventions-
Programming

Programming Style

Our code generators already enforce several standards in terms of code style. We do
not consider modularity, a wealth of comments, and similar necessities of code
design to be issues of style.

Must-Fill Fields: Any field that must be filled and accepts only certain codes should
always be checked for a valid entry. Validation checks are not necessary for non-
mustfill fields.

Temporary Files: All programs should allow the user or developer to easily control
the storage location used for temporary files. The standard method is to check the
$tmpdir variable to see if it has been set to a directory that currently exists on the
system. If there is a variable for temporary file locations (such as Informix's
$DBTMP), this should be checked also, but $tmpdir should take priority. If no
temporary location variable is set to an existing directory, the program(s) should use
the /tmp directory.

Backslashed Quotes: The use of backslashed quotes is obsolete. For instance:

this use of backslashed quotes is obsolete:

 when tbl_name = "stxerorh"

 let where_stmt = " where err_module in ",

 "(\"all\",\"lib_all\",\"lib_scr\",\"security\",\"r_menu\") ",

 "and userdef is null and language = \"ENG\""

 let insert_stmt = " insert into stxerorh"

please use single quotes:

 when tbl_name = "stxerorh"

Fitrix Technical Reference

General Conventions-Programming 6-59

 let where_stmt = " where err_module in ",

 "('all','lib_all','lib_scr','security','r_menu') ",

 "and userdef is null and language = 'ENG'"

 let insert_stmt = " insert into stxerorh"

Code Indentation: Coding style issues are simply arbitrary choices.

The idea is to make the code look a certain way so that people reading it have a
clearer idea what is happening. These conventions are simply a method of indenting
the code properly.

Lines of single structures, such as "menu" and "input" structures, should be indented,
with the exception of the beginning and concluding lines of the structure. The indent
should be 4 characters (blanks), with the exception of certain key words that are part
of the structure (e.g. "when" and "otherwise" lines in a "case" structure). In the case
of keywords, the keyword line should be indented 2 characters, and the subsequent
lines contained in the keyword section should be indented 2 more characters.

NOTE: See exceptions in examples (“if then” statements).

"Action" lines of conditional structures (case, if-then) should always begin on a new
(indented) line, even if the code allows the first action to be on the condition line,
unless 1) every condition has just one action, and 2) every action can fit on the con-
dition line within 80 characters.

Additional exception for SQL lines: Put the "from" clause on one line if it's just one
table, even if other clauses are on multiple lines.

Conventions on indentation are shown with the following examples:

NOTE: "no-wrap actions": when the "action" part of the statement does not wrap to
the next line.

case: (single, no-wrap actions)
 case
 when action
 when action
 when action
 otherwise action
 end case

Fitrix Technical Reference

6-60 Programming Conventions

case: (multiple or long actions on one or more "whens")
case
 when
 action
 action
 when
 action
 action
 otherwise
 action
end case

Menu:
menu "...."
 command "...." "....."
 action
 action
 command "...." "....."
 action
 command key(w,x,y,z)
 "...." "..."
 action
end menu

Input:
input from
 on key
 action
 before row
 action
 after field
 action
end input

If: (single, no-wrap actions)
if
 then action
 else action
end if

If: (multiple or long actions on either the "then" or the "else")
if
then
 action
 action
 action
else
 action
end if

If: (very short actions, no wrap allowed)
if then action else action end if
if then action end if

In the case where the following is not feasible:
 if then action action end if

the following is acceptable:
 if condition
 then action end if

Fitrix Technical Reference

General Conventions-Programming 6-61

SQL Indentation:

SQL columns: in general, keep each field/column on a separate line.

For example:
 select
 tab1.field_1,
 tab1.field_2,
 tab2.field_3,
 tab2.field_4
 into
 rec.field_1,
 rec.field_2,
 rec.field_3,
 rec.field_4
 from
 tab1,
 tab2
 where
 condition and
 (condition or
 condition)

Same exception as before: when everything fits on one line, that is acceptable. Addi-
tional exception: put the "from" clause on one lineif it is just one table, even if other
clauses are on multiple lines.

Unrelated standard: always put the table name as the column prefix in the select
clause, even if there is no chance of confusion.

The other SQL statements, such as insert and update need similar attention.

For very simple selects, the following is acceptable:

 select colA, colB

 into varA, varB

 from table

General Rules
Program and library file names must be 8 characters.

Program module names start with "i_"(input), "o_"(report) or
"p_"(posting)

Library functions names are descriptive of the function example: itemz.4gl
(Zoom logic), sel_cust.4gl (selection criteria logic)

Fitrix Technical Reference

6-62 Programming Conventions

Functions Referenced in Input Programs

If used by more than one program in the module, the function must reside in the
module library.

If used by more than one program in any module, the function must reside in the all
module library.

If called from the "triggers" (.trg) file, the function should reside in
fg_funcs.4gl

If called from the Entry-By-Exception screen, the function should reside in fg_
screen name.

Enclose the function statement in a "flowerbox" (that is, lines of #'s) and specify
what if anything the function returns to the calling program.

Design functions so they do not return strings. Numbers are okay, and string info can
be passed back via scratch or vararg functions. Passing strings back to calling pro-
grams risks the problem of running out of string space.

Other Considerations

Avoid changing anything in upper level libraries; if you must, then create your own
upper level lib (example: $fg/lib/custom.4gs) and add it to the Makefile
(this can be done in the .trg file).

Comment your code to the extent that a person reviewing the code will not have to
contact you for an explanation of why the coding was done in a particular way.
Attempt to explain your coding decisions with comments.

Unless there is a good reason to do otherwise, define your decimal columns as dec-
imal(12).

Case statements work correctly if written in the following manner:

Good Form:
 case
 when boolean1 call do_stuff1()
 when boolean2 call do_stuff2()
 otherwise call do_stuff3()
 end case

Example:

Fitrix Technical Reference

General Conventions-Programming 6-63

 case
 when p_oordre.trd_ds_type = "A" call do_type_a()
 when p_oordre.trd_ds_type = "B" call do_type_b()
 end case

Bad Form:
 case expression
 when expression1 call do_stuff1()
 when expression2 call do_stuff2()
 otherwise call do_stuff3()
 end case

Example:
 case p_oordre.trd_ds_type
 when "A" call do_type_a()
 when "B" call do_type_b()
 end case

NEVER UNDER ANY CIRCUMSTANCES USE THE BAD FORM.

Not only can it lead to stuffed up code, it can also lead to at least three other bugs
that are extremely difficult to track down, (two in rds and one in 4gl).

Select Statement, and Rowid Handling

Do not use rowid = 1 in where clauses any more. To get info from control tables, use
call ?control() returning m_??????.* if possible.

For example: call pcontrol() returning m_pcntrc.* would be used
to get the ap control table.

Do not put control tables in the cursor definition in report/posting programs (unless
the program is reporting explicitly on the control table, of course).

Fitrix Technical Reference

6-64 Programming Conventions

String handling should be written in the following manner:

Putting a function call into a string concatenation causes the informix stack to stop
up. (Remember, the comma is the concatenation operator.)

Here are some examples of the good and bad form:

good: let phil = david, "a real nice string", chauncey

good: let mytemp = round("a", chauncey)

good: let phil = david, mytemp

good: let phil = chauncey using "<<<<<&.&&"

good: let mytemp = chauncey using "<<<<<&.&&"

good: let phil = david, mytemp

bad: let phil = david, round("a", chauncey)

bad: let phil = david, chauncey using "<<<<<&.&&"

A note: the "using" clause may not look like a function call, but in fact, it is a func-
tion that returns a string. We very strongly suspect that the last example labeled
"bad" prevents garbage collection from taking place. We suspect that this is the most
frequent cause of our running out of string space, because this rule was never explic-
itly stated, and it is violated in many places in our code.

Zoom Pickers

• To enable logic to create a "picker of Zooms" you need to add the appropri-
ate Zooms to the "switchbox" trigger instead of calling the Zooms from the
.per FOURGEN section.

• Add appropriate call to execute the "picker" function:

• Add a "picker" function to fg_funcs.4gl using the function oe_Zoom
found in oe.4gm/i_order.4gs/fg_funcs.4gl as an example.

Posting Routines

See example of locking related functions in
oe.4gm/p_pstord.4gs/midlevel.4gl for details.

Fitrix Technical Reference

Input Programs Testing Checklist 6-65

Input Programs Testing
Checklist
LEVEL 1

_____Does the screen have all the data (fields/columns) it should have?
_____Enter incorrect data into every field. Is it handled gracefully?
_____Enter letters into numeric fields.
_____Enter largest value possible.
_____Enter reference codes that don't exist.
_____Can you get the program to "bomb"?
_____Are error messages helpful and appropriate?
_____Enter acceptable data into every field.
_____Test the zoom on every field that has one.
_____Does the zoom work?
_____Do any fields that should have a zoom not have one?
_____Try autozoom in all zoom fields - program shouldn't bomb.
_____Are the comments at the bottom of the screen helpful and appropriate for each

field?
_____Check the Help information for the screen.
_____Does it exist?
_____Check it in each header portion and each detail portion.
_____Check for misspellings, grammar, clarity.

LEVEL 2
_____Does the screen follow the style guide?
_____Check for misspellings.
_____Verify that abbreviations are used only when necessary and always concluded

with a period.
_____Are columns aligned properly?

LEVEL 3 (full-fledged break-testing)

Add/Update Testing
Max fill character fields:
_____Fill every field on the screen (all character fields should end with "to max"

with the "x" in the last character of field: verify all data was stored and

Fitrix Technical Reference

6-66 Programming Conventions

retrieved.)
_____Fill all the detail lines that appear on the screen, and at least 1 more.
_____You must exit the program and refind the data to determine if it is OK.
_____Using ISQL check the record(s) and verify all fields are being stored.
_____Using ISQL make a list of any fields that are null.
Dates:
_____Dates on all screens are displaying properly: check the .pers (each date field

should be formatted to "mm/dd/yy").
Max Fill Numeric Fields:
_____For each numeric field, fill the field to the max with 9's (if decimal type fields

have not been programmed properly, this will cause a program to bomb).
Balance Testing:
_____If an interactive program updates balances, these balances need to be

checked carefully - correct balances need to be verified in addition to all
fields being stored properly (max fill testing):

_____Verify that balances are what you expect them to be after an update, add, or
delete.

_____You must exit the program and refind the data to determine if it is OK.
_____Detail section: delete a row & make sure the balance is recalculated.
Program Handles Negative Amounts Properly:
_____Enter at least 1 document for each type of transaction with all negative values

in each numeric field and make sure the system calculates everything accu-
rately.

Fitrix Technical Reference

Adding or Modifying Tables Checklist 6-67

Adding or Modifying Tables
Checklist
_____Modify sample database as well as standard database and do not forget

to add any new tables to the pcdtablr table.
_____Check/modify all records (globals, header, midlevel) that refer to the column

that was added/modified.
_____Recompile/relink all functions/programs that reference the table if a function

(non-local) is called that loads a record based on this table; even if you don't
have to modify that function, you do need to recompile it (i.e., if the function
says "like table"). After modifying (touching) the file, make it in the library
and then run make back in the program directory.

_____Be sure to Grep in all function libraries for any other functions that access the
table.

_____Check all program directories that may reference the table or should now ref-
erence the table.

_____Be alert for the creation of a temp table in midlevel (look for a create temp
table line) where the temp table parallels the table you have modified - you
need to make sure this temp table is in sync (i.e., TEMP TABLES ARE
LISTED OUT).

_____Update column level help.
_____Update the unload tables in the appropriate $fg/data/(module) directory.
_____Recreate the dbmerge executable, using the dbmerge generator (see fol-

lowing section).
_____Update the schema definition for the entire module.

Fitrix Technical Reference

6-68 Programming Conventions

Tabs
Tabbing to Different Sections of the Form:

What's supposed to happen: if you modify a field and press [TAB] prior to pressing
[ENTER] the new value is not saved, the old value should be redisplayed.
_____Tab from every field in a detail row after modifying the value in a field. Make

sure that the original value in the field is immediately restored/displayed.
_____Do the same thing from every section of the form: in the header, try this from

one or two fields.
_____Modify a single field in an existing record, save, and refind Note: We found a

case where modifying a single record after first running, the program did not
save the modified field.

_____For any programs that open additional windows, or use [DEL] to exit from one
section of the screen, or to exit from an opened window: test [DEL] in com-
bination with [TAB] carefully.

Required Fields:
_____Save the record without filling any fields: make a list of the required fields.

List those fields and pass this list back to the programmer for verification.
Duplicate Testing:
_____In Add mode try to enter a duplicate document (duplicate key field(s)).
_____In Update mode try to modify the key fields to make this a duplicate doc-

ument.
_____Some documents allow you to modify key fields, some do not. Some are mod-

ifiable when setup is not complete only: note the particulars for this docu-
ment.

_____Any time there is duplicate checking in Update mode, add a record, save it,
and then immediately update it. Make sure that duplicates are properly
checked for in this unique case.

Collapsing Array Logic:
_____Collapsing array logic works properly (after row __, after input__)
_____Delete both header and detail records are deleted for header/detail type

screens. No orphans are left (use ISQL).
[DEL] When Pressed in Add or Update Mode:
_____If header/detail, no orphans left when press [DEL] from header (ISQL).
_____If header/detail, no orphans left when press [DEL] from detail (ISQL).
_____Try to remove all detail lines (using F2) and then post. This is a source of innu-

merable problems.

Fitrix Technical Reference

Tabs 6-69

_____ [DEL] restores document properly
[F2] Row Delete:
_____For every "update-type" menu option, include the following actions in at least

one document. Add a document with some detail lines. Using the [F2] key
delete a few detail lines. Then restore the document by pressing the [DEL]
key.

Find:
_____Do repeated finds
_____Reorder works. Try reordering on several fields.
Browse:
_____All commands work as expected.
_____Full length of field is displayed in window (see max testing)..if not make a

note of this.
Nxt / Prv:
_____Wrap around start & tail end of found selected documents.
Options:
_____Test out any options provided on the Options menu.
Locking Logic:
_____Find out from the programmer if there is any locking logic that is implemented

(this information "should" be in the Info file).
_____Test with 2 users trying to access
Lookups:
_____Test for proper loading of the "into" field (if appropriate).
_____Test data-validation of value entered in field
_____Test clearing of "into" field if bad data entered
Comments:
_____Each field has a comment. Test on the Find screen (construct).
Data Validation:
_____Identify those fields where the value entered should be verified by the pro-

gram to be a valid value.
_____See if the program is doing the type of validation you would expect.
_____Zooms work properly.
_____Lookups work properly (after pressing [ENTER] in a field, the program fills

one or more other fields).
Recalculations Occur Properly:

If there is a field on the screen that can be set (to Y or N for example) and the setting
of this field results in calculations being done or not being done (Taxable? is an
example of such a field).
_____Set the field to one value (Y for example) and verify calculations are being

Fitrix Technical Reference

6-70 Programming Conventions

done properly.
_____Then, with the same document, reset this field and verify that the calculated

field is recalculated as you would expect.
_____Now reverse this procedure: start with a fresh document, start off by setting

the field to the opposite value (N for example).
_____Then, with the same document, reset this field and verify that the calculated

field is recalculated as you would expect.
Spelling:
Run spell check on
_____ each .per.
_____ each unload file for help.
_____ each unload file for error text.

Fitrix Technical Reference

Report Program Testing Checklist 6-71

Report Program Testing
Checklist
LEVEL 1
_____Verify that report runs correctly with a large amount of data
_____Does the report have all the data (fields/columns) it should have?
_____Does the report have all the totals it should have?
_____If data may extend over one page, are the appropriate headers and subtopics

printed on each page?

LEVEL 2
_____Does the report have headers and footers in the standard format (provide

examples)?
_____Check for misspellings.
_____Verify that abbreviations are used only when necessary and always conclude

with a period.
_____If implemented, verify that scheduled reporting works correctly.

Fitrix Technical Reference

6-72 Programming Conventions

Posting Programs Testing
Checklist
_____Enter a header-detail-type document and try to remove all detail lines, and

then post. This is the source of innumerable problems.
_____Determine which posting routines are to be tested.
_____Determine how posting affects which tables are updated and which reports

you can run to see the results of testing.
_____Enter some documents to test their impact on these tables. Verify that bal-

ances, etc., are updated as expected.

A-1

A
Problems with
[CTRL] - [Y] and
[CTRL] - [Z] Keys

This section describes some potential problems with [CTRL] - [Y] and [CTRL] -
[Z] keys that are part of the lowlevel terminal control logic (ioctl).

When you execute the command "stty -a" it returns a list of the ioctl
parameters. Many of these are control key mappings. The ones that can cause prob-
lems are "susp" mapped to [CTRL] - [Z] and "dsusp" mapped to [CTRL] - [Y].
We use [CTRL] - [Z] and [CTRL] - [Y] for our own functions, but when they are
part of the terminal control set they are interpreted directly by the terminal device
driver and never seen by the program. We have logic in the start up scripts to remap
these keys but this does not seem to work on all systems.

For interactive programs the use of "susp" and "dsusp" doesn’t work. "susp"
and "dsusp" are used for job control, to suspend and activate processes. For exam-
ple, say you start a program, you can press [CTRL] - [Z] to suspend the program
temporarily in mid execution in order to do some other task or start some other pro-
gram in the background before you proceed. This works just fine as long as the pro-
gram doesn't have a complex user interface (Informix programs and most highly
interactive (data input) programs have a complex interface). The problem is that

Fitrix Technical Reference

A-2 Problems with [CTRL] - [Y] and [CTRL] - [Z] Keys

when you unsuspend a process it doesn't restore the terminal display or lowlevel
input processing to the state it was in when the process was suspended. Hence, the
program usually will fail to operate correctly. Because of this it is required that the
"susp" and "dsusp" keys be disabled while the interactive program is running as
well as other keys that may be mapped to low level (device driver interpreted) ter-
minal control functions.

B-1

B
Troubleshooting
Products

Required Information

Hardware:

Hardware Platform:_______________

OS:_____________ Version:_______________
Has the kernel been tuned?______(Y/N)
Amount of memory installed on the system:_______________
Amount of available disk space in blocks:_____________

INFORMIX:

Informix Version:_________ RDS:_____(Y/N) 4GL:_____(Y/N)
New or Existing Informix install:__________(New/Existing)

Fitrix Technical Reference

B-2 Troubleshooting Products

Do you have ISQL:______(Y/N)
Do you have the debugger:______(Y/N)
Do you know how to use the debugger:______(Y/N)

BUSINESS:

Business Application Product:__________ Version:________
Business Application Product:__________ Version:________

MISCELLANEOUS:

Do you know the "vi" editor?______(Y/N)

REQUIRED:

Have you followed the steps in the "Troubleshooting Checklist"?
______(Y/N)

All of the above information must be gathered prior to calling support.

SUGGESTED REFERENCE MATERIALS:

Operating Systems: System Performanced Tuning
By: Mike Loukides

Published By: O’Reilly & Associates, Inc.
632 Petaluma Avenue
Sebastopol, CA 95472

Phone Number: 800-338-6887

VI Editor: The Ultimate Guide to the VI and EX Text Editors
By: Hewlett Packard

Published By: The Benjamin/Cumming Publishing Inc.
390 Bridge Parkway
Redwood City, CA 94065

Debugger: Informix-4GL Interactive Debugger

4gl Code: Informix-4GL Reference Manual Volume-2

Menus: Menus User Reference.

Fitrix Technical Reference

Troubleshooting Checklist B-3

Troubleshooting Checklist

Program Bombs

(displays error: Program Has Stopped Unexpectedly)

1. Use the [CTRL]-[z] command to view the error when the program bombs.

2. Check the "errlog" file in the program directory. The errlog displays mes-
sages for the SQL error number, ISAM error number, program module, and
source code line number. If errlog does not show the error, see the instruc-
tions on running errlog testing described as item #1 in the Troubleshooting
Guide.

3. Consult Informix manuals concerning the error.

4. Are you using the correct database?

5. Recompile and run the program.

6. If the above does not help, check the environment variables from both your cur-
rent environment and the menu’s environment.

7. Run the debugger using break points to define the exact location of the prob-
lem. Write the variable values to a file just prior to the program bombing. If
RDS/debugger is not available, use display statements and recompile the pro-
gram (see item #2 in the Troubleshooting Guide). When correctly placed, dis-
play statements will help isolate a problem.

Unexpected/Inaccurate Program Results

1. Check to see whether Menus is calling the program from the expected place--
4gc or 4gs, 4ge or 4gi. Menus will use a .4gc directory before a
.4gs; it will execute a .4ge program before a .4ge.

2. Recompile the program.

3. Follow the recommended debugging procedures outlined in the Troubleshoot-
ing Guide.

Fitrix Technical Reference

B-4 Troubleshooting Products

4. Collect the versions of the module. This information is located in the
$fg/accounting/install/{module}/def file.

5. Has the program been modified?

6. Is this a new install or an existing system?

7. Is it a posting program? Has the kernel been tuned?

8. Has dbmerge been run successfully on the database? If not, run fg_load
on the specific modules (fg_load is found in $fg/ubin).

9. Can you duplicate the problem?

10. Can you duplicate the problem on a different database?

11. Can you duplicate the problem on a different computer?

12. After collecting all of the required information as shown on the first page and in
the above questions: Call your assigned Technical Support person.

Fitrix Technical Reference

Troubleshooting Checklist B-5

Troubleshooting Guide

The following is a list of commands or steps to assist in troubleshooting a program.

1. Using the errlog as a way to find the problem and/or isolate the area where the
problem is occurring.

call startlog("errlog")

This will start the error log "errlog" and the current program directory. This
should be put in main.4gl.

call errorlog(variablename)

This will write to the error log the value of the variable along with the current
date and time stamp.

call errorlog("some string")

This will write to the error log the value of the string along with the current date
and time stamp.

let tmpstring = "some string of your choice", variablename
call errorlog(tmpstring)

This will write to the error log the value of the string along with the current date
and time stamp. This is a way to write both a variable and string to the error
log.

2. Using display statements in the program to see how values are changing while
the program is running. You can display a string, a variable or both as shown
below.

display "Entering lld_read function"
sleep 2

display sel_filter
sleep 2

display "The value of sel_filter is: ", sel_filter
sleep 2

display "The value of sel_filter is: ", sel_filter at 1,1
sleep 2

Fitrix Technical Reference

B-6 Troubleshooting Products

Use the sleep statements to make the display statements a little more readable.
As shown in the last example the "at 1,1" can be used to position the mes-
sage on the screen.

3. The following point is useful when your program works from the command
line but not from the menu. Using the -v and -p flags with the menu options.
These options are used prior to entering a program from the menu. These
options are explained below. These flags are toggles which means the first time
you type the flag it turns it on and the next time it turns the function off.

The "-v"(verbose mode) and "-p"(pause mode) options will display every
command used to execute the program and will wait for a carriage return. Or
you want to know what the command line looks like for the program. Running
these flags from the main menu may require as many as 20 carriage returns to
execute the program.

4. Use !cat from the menu. This option is used prior to entering a program
from the menu. This option is explained below.

The !cat option is used to find the name of a program, the module for the pro-
gram and any variables passed to the command line. The syntax is "!cat
menuoption" as shown below:

"!cat a" from the GL menu #1 displays the following:

Copyright (C) 1991-1195

Use, modification, duplication, and/or distribution of this
software is limited to the terms of the software agreement.
Sccsid: @(#) .../menu/glmenu/journal/a 1.2 Delta: 1/4/91

Loading Program to Update General Journal
:ifxscreen:gl:i_genjrn::::

As shown above the menu option is a screen(ifxscreen), the module is gl
and the program name is i_genjrn. So the program is located in
$fg/accounting/gl.4gm and the name of the program is
i_genjrn.4gs or i_genjrn.4gc. The menu program will look for a
4gc program before a 4gs. And the menu will execute a 4ge program
before a 4gi.

Fitrix Technical Reference

Troubleshooting Checklist B-7

5. Using -xv in shell scripts. This will allow troubleshooting of scripts as they
are being executed. The "set -xv" is put at the beginning of the script. This
will allow you to follow the flow for the script.

set -xv

The "x" flag is used for "xtrace" and traces your way through the script. The
"v" flag is used for "verbose" and displays input on standard error as it is
read. Unfortunately, this does not work on scripts that go down to additional
shells.

6. If you have RDS, use the Informix Debugger. It is required that all VARS have
and understand the Informix debugger. Please read the Informix manual for the
use of this tool. There are many flags, break points and variables to use when
debugging a program.

Below you will find some handy commands for using the debugger:

$break programname.linenumber breaks when the program hits the
specified function.

$break functionname the debugger will stop when it gets to the spec-
ified function.

$break if tablename.columnname = value breaks when the
value is equal to the value(>,<,!=).

$con(tinue) continue running the program after a step.

$CTRL T toggles between the screen and the program
running in the debugger.

$!err errornumber this will show the error message.

$functions displays functions in the programming win-
dow.

$help brings up the help screen w/options.

$list lists the previous commands.

$!l filename lists the file listed or the directory.

$nobreak functionnameunsets a break on a function.

Fitrix Technical Reference

B-8 Troubleshooting Products

$p fieldname prints the value of the field or variable, also
sqlca error handler variable.

$print variable or tablename >> filename prints the value/s
to the named file.

$run (-c database) run the program.

$s(tep) step through the program.

$trace variablename show variable as it is changed.

$view functionname will view the name of the function that is
typed.

$where shows where you have been in the functions.

$write writes the value of the screen to the file with
the name "programname.4db". to view the file
type "!cat programname.4db."

4/22/96Index-1

Fitrix Technical Reference

Index

Symbols
$ifx 4-57
$SHELL variable 4-57

Numerics
4gc 6-10
4gc directory 2-11
4ge extension 6-10
4gi extension 6-10
4gl extension 6-10
4GL libraries

creating 4-5
4go extension 6-10
4gs 6-10
4gs directory 2-11
4gs extension 2-7

A
a

filename extension 6-11
Accounting

directory hierarchy 2-1
accounting directory contents 2-6
Accounting Directory Structure 2-5
act 6-11
Action Codes 5-24
active set 4-35
activity table 3-10, 6-8

relationship to transaction table 3-12
actv 6-8
al_ 6-12
allow_int 6-15
ap_ 6-12
apactvz function 4-14
ar_ 6-12
ATTRIBUTES section 4-41, 4-42
auto-indexing 3-29
autonext function 4-11

B
boolean type codes

termcap 5-19
browse.4gl file 4-31

C
c extension 6-10
Capability Codes

termcap 5-19
CASE 1-15
C-ISAM-based relational database 3-26
code 4-31

generic 4-4
specific 4-4

code generation 1-15
Codes

termcap 5-20
comments

in code 1-9
consistency

in code organization 1-12
in naming 1-12

Control Tables 3-3
converting libraries to make.rds 4-50
current table 4-42

D
data

exporting 3-35
merge 3-33
posting functions 3-16

data flow 3-3
data i/o 4-35
data input naming convetions 2-7
database

merge 3-29
DATABASE section 4-41
Database Table Naming Conventions 6-6
database transactions 3-15
data-entry programs

record locking 4-35
dbload 3-36
dbmerge

Index-2

Fitrix Technical Reference

logic 3-31
program 3-29
recompiling 3-31

dbs 6-11
debugger 4-45
deleting activity 3-35
design criteria

database 3-2
destin 6-15
detail array size 4-35
detail lines 4-40
Detail Tables 3-4
detail.4gl file 4-31
diagram

menu directories 2-15
directory

.4gm 2-7
data 2-6
hierarchy 2-1
module 2-5, 2-7
parallel 2-11
program 2-8
structure of menu 2-12

Directory Organization 2-3
Disk Space Requirements 2-2
displaying functions 4-20
doc 6-11
Doc directory 3-14

E
ec extension 6-10
entry tables 3-9, 3-11
executable program 2-9
exporting

data 3-35
extension

file naming 6-10

F
fa_ 6-12
fast_link

make.rds 4-48
fglgo 3-33

RDS runner program 4-44

field
adding 4-42

file name
construction 6-3
extensions 6-10

File Organization 2-1
filter 3-22
Filter Columns 3-25
force_merge variable 4-48
FOURGEN section 4-41
frm extension 6-10
function

apactvz 4-14
application library - naming 6-12
autonext 4-11
global application 4-8, 4-10
independent 2-12
local 2-12
lower level 4-29
middle level 4-28
module specific 4-8
mustfill 4-10
naming convention 6-11
ok 4-29
ring_bang 4-9
upper level 4-28
user interface 4-8
within files 2-12

function name prefixes 6-12
function name suffixes 6-13
functions

module specific 4-13

G
gl_ 6-13
gl_last 3-20
gl_post 3-16
global application functions 4-10
globals.4gl file 4-31

H
Header Tables 3-4
header.4gl file 4-31
header/detail 4-40

4/22/96Index-3

Fitrix Technical Reference

hlp 6-11

I
i_lock program 4-37
ic_ 6-13
ifg extension 6-10
indexing 3-26

auto-indexing 3-29
guidelines 3-27

Info file 2-9
information flow 3-8
Informix

3.3 conversion 4-42
Informix Interactive Debugger 4-45
input array 4-42
installation

Accounting 2-2
INSTRUCTIONS section 4-40, 4-41, 4-42
Interpretation and Action

termcap 5-22
itags 4-18

J
join 3-22
join command 4-42

L
Labels

termcap 5-19
lck 6-11
libraries

converting to make.rds 4-50
use of 1-11

library
accounting function 3-16
creating 4-5
usage 4-4

library files 4-50
library functions

4GL 4-4
link_only

make.rds 4-48
litags 4-18

lld_ 6-12
llh_ 6-12
llh_add function 4-31
Locating Source Code 4-18
locking 4-35

i_lock program 4-37
lower level functions 4-29

M
m_prep function 4-29
main.4gl file 4-32
make

report.fg 4-24
screen.fg 4-24
variables 4-24

make program
procedure 4-22

make utility 4-22
make.rds command

code conventions 4-51
make.rds program

rules 4-47
make.rds syntax 4-47
Makefile 2-9
makefile 4-23

characteristics of 4-27
real 4-23
real - directory 4-23
samples 4-25

Makefile file 4-31
makefiles

location of 4-22
maps file 3-14
menu

directory 2-6
directory structure 2-12

Menu Item Naming Conventions 6-5
menu_update 6-15
MenuShell 6-2
merge

databases 3-29
make.rds 4-48

mf
make.rds flag 4-48

middle level functions 4-28
midlevel.4gl file 4-32

Index-4

Fitrix Technical Reference

mld_ 6-12
mlh_ 6-12
modifiability 1-5
modification

tasks 1-8
modified code

management of 2-11
modularity 1-10
Module Naming Conventions 6-5
multi-language handling 4-33
mustfill function 4-10

N
naming convention

4GL program variable 6-14
application library function 6-12
database table 6-6
function 6-11
menu item 6-5

naming conventions
program 6-9

numeric type code
termcap 5-19

O
o extension 6-10
Observations

termcap 5-26
oe_ 6-13
ok functions 4-29
ok_ 6-12
open 6-8
open item table 3-10, 3-13, 6-8
Open-item Tables 3-7
options.4gl file 4-32
Other Codes 5-25
out 6-11
Outer Joins 3-23

P
p_delete 3-35
p_prep function 4-30
parallel directory 2-11

per extension 6-10
PERFORM (Informix 3.3) screens 4-42
perform screen 4-40
performance

improving 3-26
posting 3-15

from custom applications 3-15
posting function

description 3-18
posting programs 4-36
prc_only 6-15
prcname 6-15
progid 6-15
program

naming conventions 6-9
ranlib 4-6
rmdirpath 3-33

Program Naming Conventions 6-9
program variable

naming convention 6-14
pu_ 6-13
py_ 6-13

Q
quiet 6-15

R
ranlib

program 4-6
RDS

advantages 4-45
disadvantages 4-45

RDS library
recompiling 4-49

RDS linker 4-47
RDSQL 3-22
rec1_cnt 6-15
rec1_max 6-15
recompiling

RDS library 4-49
record locking 4-35
reference table 6-7
Reference Tables 3-3
reference tables 3-8

4/22/96Index-5

Fitrix Technical Reference

Report 4-1
ring_ 6-12
ring_bang 4-9
rmdirpath 3-33
rollback work 3-15
rollforward database 3-15
routine libraries 1-11
row locking 4-35
row_id 4-35, 4-36
rtmargn 6-15

S
scr1_max 6-15
Screen 4-1
screen array 4-29
screen form file 4-40
screen record array 4-40, 4-41
SCREEN section 4-41
sel_filter 6-15
sel_join 6-15
sel_order 6-15
serial columns 4-30
sh 6-11
shell escape

prevention of 4-57
source code 1-5

availability of 1-14
levels of 4-28
localization of 1-13

Special Characters 5-20
spl 6-11
sql extension 6-10
SQL query optimization 3-22
string type code

termcap 5-19
stxtranr 3-12

T
table

open item 3-13
table descriptions 3-14
table locking 4-35
table relationships

transaction and activity tables 3-12

table schemas 3-14
Table Size 3-26
tables

types of 3-8
TABLES section 4-40, 4-41
tabs

in screen forms 4-40
tag feature 3-14
tag utility 4-18
tags files 4-18
tar 6-11
temporarily links 3-22
temporary tables 3-37
termcap

writing 5-16
Termcap Entry 5-16
Termcap File 5-16
Testing the Keys 5-24
tmp 6-11
tran 6-8
transaction table 3-9, 3-12, 6-8

relationship to activity 3-12
txt 6-11

U
unl 6-11
Unload files 3-30
update cursor 4-36
upper level functions 4-28
user interface functions 4-8
User Interface Style 6-16
Using Temporary Tables 3-39

V
variables

dimensioning 1-13
make 4-24

vi editor 4-56
Viewing Database Table Descriptions 3-14

Z
Z 6-11
Z extension 6-11

	Title
	Introduction
	Table Of Contents
	1 Introduction
	2 Code Structure
	3 Interacting with the Database
	4 Program Design and Modification
	5 System Administration Issues
	6 Programing Conventions
	Apendix A
	Apendix B
	Index

