
.

FitrixTM

CASE Tools
Enhancement Toolkit ♦
Technical Reference
Version 4.11

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS252.227-7013. Fourth
Generation Software Solutions, 2814 Spring Rd., Suite 300, Atlanta, GA 30039.

Copyright

Copyright (c) 1988-2002 Fourth Generation Software Solutions Corporation. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language in any form by any means without the written permission of Fourth Generation Software Solutions.

Software License Notice

Your license agreement with Fourth Generation Software Solutions, which is included with the product, specifies
the permitted and prohibited uses of the product. Any unauthorized duplication or use of Fitrix, in whole or in
part, in print, or in any other storage and retrieval system is forbidden.

Licenses and Trademarks

Fitrix is a registered trademark of Fourth Generation Software Solutions Corporation.
Informix is a registered trademark of Informix Software, Inc.

UNIX is a registered trademark of AT&T.

FITRIX MANUALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, FURTHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE FITRIX MANUALS IS WITH YOU. SHOULD THE FITRIX MANU-
ALS PROVE DEFECTIVE, YOU (AND NOT FOURTH GENERATION SOFTWARE OR ANY
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION SOFTWARE) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION IN NO EVENT WILL FOURTH
GENERATION BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF OR INABILITY TO USE SUCH FITRIX MANUALS, EVEN IF FOURTH GENERATION OR AN
AUTHORIZED REPRESENTATIVE OF FOURTH GENERATION HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN ADDITION,
FOURTH GENERATION SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH FOURTH GENERATION SOFTWARE OR MANUALS BASED UPON
STRICT LIABILITY OR FOURTH GENERATION'S NEGLIGENCE. SOME STATES DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE
OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Fourth Generation Software Solutions Corporate: (770) 432-7623
2814 Spring Road, Suite 300 Fax: (770) 432-3448
Atlanta, GA 30339 E-mail: info@fitrix.com

Copyright

Copyright (c) 1988-2002 - Fourth Generation Software Solutions Corporation - All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated.

Fitrix Enhancement Toolkit Technical Reference

Welcome to the Fitrix Enhancement Toolkit Technical Reference. This
manual is designed to be a focused step-by-step guide. We hope that
you find all of this information clear and useful.
All of the screen images in this document are show with the products
using the character user interface. While the Fitrix Rapid Application
Development (RAD) Tools operate in character mode only, the soft-
ware applications created by the RAD tools offer the option of being
viewed in a graphic based Windows (or X11) mode as well as the char-
acter mode shown. Examples of graphic based product viewing modes
are shown below in Example 1 and Example 2.

Example 1: Menu Graphical Windows Mode

Fitrix Enhancement Toolkit Technical Reference

Here is another example:

Example 2: Data Entry Graphical Windows Mode

Displaying our products in graphic mode, as shown in Example 1 and
Example 2, is customary for many Fitrix product users.
However, your viewing mode is a user preference. Changing from
character based to graphical based is a product specific procedure, so if
you wish to view some applications in character mode, and some in
graphical mode, that can be done as well.
If you have any questions about how to view your products in graphical
mode, please consult your Installation Instructions or contact the Fitrix
helpdesk at 1(800)374-6157. You can also contact us by email:
support@fitrix.com. Please be prepared to offer your name, your com-
pany, telephone number, the product you are using, and your exact
question.
We hope you enjoy using our products and look forward to serving you
in the future.

Thank You,
Fourth Generation

Fitrix CASE Tools Enhancement Toolkit Technical Reference

i

Table of Contents
Chapter 1: Introduction
Enhancement Toolkit Overview ... 1-2

Enhancement Toolkit Features ... 1-2

The User Control Library .. 1-2

The Developer’s Toolbox .. 1-3

Enhancement Toolkit Documentation .. 1-6

Documentation Conventions Used in This Manual 1-6

Chapter 2: User Control Library
The Navigate Feature .. 2-2

The Navigate Menu ... 2-3

The Navigation Commands Form ... 2-3

Navigating to Another Program .. 2-5

Deleting a Navigation Event .. 2-6

Hot Keys ... 2-7

Mapping Hot Keys ... 2-7

Key Mapping and Termcap ... 2-9

Defining Additional Hot Keys ... 2-9

Key Mapping Conventions .. 2-10

Online Help ... 2-11

Copying Help Text .. 2-12

Online Error Text .. 2-14

Viewing Error Text .. 2-14

Updating Error Text ... 2-15

Adding Error Text ... 2-15

Viewing Program Status .. 2-17

Logging Error Text .. 2-17

Copying Error Text .. 2-19

Fitrix CASE Tools Enhancement Toolkit Technical Reference

ii

User-Defined Fields .. 2-20

Deleting User-Defined Fields .. 2-21

Freeform Notes ... 2-22

The Freeform Notes Zoom .. 2-23

Personal To Do List .. 2-23

The To Do Zoom ... 2-24

Chapter 3: Pull-Down Menus
Pull-Down Menus Overview .. 3-2

How It Works .. 3-3

Linking In the Pull-Down Menu System .. 3-6

Compiling Programs with Advanced Libraries ... 3-7

Creating a New 4GL Runner ... 3-7

Creating New Menu Items .. 3-9

Overview of the Default Mainring Menu System 3-9

The Menu Items Definition Form .. 3-12

Questions About Creating New Menus and Menu Items 3-19

Creating Custom Pull-Down Menus For Specific Programs 3-27

The Program Menu Definition Form ... 3-30

Defining A Custom Menu .. 3-32

Defining a Custom Ring Menu .. 3-35

Linking a Custom Ring Menu (other than Mainring) into Your Program . 3-36

Calling a Ring Menu From Within a Program .. 3-37

Questions About Defining Program-Specific Menus 3-38

Troubleshooting Pull-Down Menus ... 3-41

Moving Pull-Down Menus to a New System ... 3-41

Menu Function Events in Pull-Down Menus .. 3-43

General Ring Events .. 3-43

Mainring Events ... 3-44

Chapter 4: Program Control Library
Overview of the Program Control Library .. 4-2

Fitrix CASE Tools Enhancement Toolkit Technical Reference

iii

Dynamic Menus ... 4-3

Dynamic Ring Menus .. 4-11

Scrolling Input Fields .. 4-14

Warning Windows ... 4-17

Examples ... 4-20

The Fitrix C Library .. 4-32

The C functions ... 4-34

Chapter 5: Fitrix Security
How Security Works ... 5-2

Security Programs .. 5-3

Determining Precedence .. 5-5

Overlapping Group Permissions .. 5-6

The Security Programs .. 5-7

Module and Program Information ... 5-7

Adding Custom Programs to Module and Program Information 5-7

Security Events .. 5-9

Adding Custom Events to Security Events .. 5-10

Security Groups ... 5-11

User and Group Permissions ... 5-13

Setting Individual User Permissions .. 5-13

Setting Group Permissions .. 5-15

Setting Defaults Permission ... 5-16

Group Security Control ... 5-17

Fitrix CASE Tools Enhancement Toolkit Technical Reference

iv

1-1

1
Introduction

This chapter introduces you to the Enhancement Toolkit and covers the following:

n Features of the Enhancement Toolkit

n Documentation conventions

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1-2 Introduction

Enhancement Toolkit
Overview
Enhancement Toolkit is a collection of features you can add to programs created
with Fitrix CASE Tools: Fitrix Screen and Fitrix Report. Enhancement Toolkit
comes with precompiled libraries and programs.

Some of the features in Enhancement Toolkit are added to your programs simply by
linking in a special library. Other features are in the form of library functions which
can be called from your own programs.

In order for your programs to take advantage of any Enhancement Toolkit feature,
Enhancement Toolkit must be purchased for each run-time system.

Enhancement Toolkit
Features
The Enhancement Toolkit contains two categories of features: end user and devel-
oper. End-user features are found in the User Control Library, while developer fea-
tures are found in the Developer’s Toolbox.

The User Control Library
The User Control Library adds a variety of features that give the end user control
over applications created with Fitrix Screen. Your applications can utilize many of
these features just by compiling this library with your program. The User Control
data-entry features are designed to expand the usability of your application.

Data-entry features found in the User Control Library package allow end users to:

n Navigate to any function or program inside or outside of the current pro-
gram.

n Map a number of function keys that can perform a variety of functions.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Enhancement Toolkit Features 1-3

n Create, modify, and use help text.

n Create, modify, and use error text.

n Define up to 50 new fields per document.

n Create free-form notes to supplement any document.

n Create and maintain a personal to-do list.

The Developer’s Toolbox
The Developer’s Toolbox contains three kinds of tools: a library of useful C func-
tions, a security module, and a graphical application menuing system.

Program Control Library

The Program Control Library contains a variety of useful functions designed to
give the programmer even more flexibility when creating programs. The Program
Control Library features allow you to do the following:.

n Create dynamic menus.

n Create dynamic ring menus.

n Create scrolling input fields.

n Create warning windows.

Application Security

The security module lets you secure input programs created with Fitrix Screen, out-
put programs created with Fitrix Report, and any option on Fitrix Report Writer
menus. You can set up security for your programs by individual, group, or default.
You can restrict access to modules, programs, or events.

Pull-Down Menus

Applications generated by the Code Generator can utilize an optional pull-down
menuing system in place of the standard application ring menu. Pull-Down Menus:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1-4 Introduction

n Give your applications a modern appearance.

n Let you fit more menu items on pull-down menus than you can fit on a
standard "flat" ring menu.

n Make all User Control Library features visible to the user.

n Let you add and subtract menu items on an program-specific basis.

n Allow you to remove menu items that have no use in a particular program.

n Allow you to turn on or off any menu item for any program.

n Make multilingual programs easier to maintain.

n Allow you to change any menu item to familiar terminology. For example,
if your existing programs use Erase instead of Delete, you can easily
change a pull-down menu to say Erase.

The Pull-Down Menu System:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Enhancement Toolkit Documentation 1-5

Enhancement Toolkit
Documentation
The Fitrix CASE Tools Enhancement Toolkit Technical Reference contains docu-
mentation for features available with the Enhancement Toolkit. It is organized by
chapter as follows:

Chapter 1: Introduction—an overview and a brief look at the features avail-
able in the package.

Chapter 2: User Control Library—covers several user-definable features
that enhance the generated application.

Chapter 3: Program Control Library—explains advanced functions that can
be used to customize your application.

Chapter 4: Pull-Down Menus—describes an advanced program menuing sys-
tem.

Chapter 5: Fitrix Security—explains how to use the security utility.

Documentation Conventions Used in
This Manual
Although many similar versions of UNIX and XENIX may run INFORMIX-4GL
and the Code Generator, the manual refers to this general category of operating sys-
tems with the single term UNIX.

Some information is difficult to convey in words, such as a series of keystrokes or a
value you supply. This manual uses several conventions to convey information that
has special meaning. These conventions use different fonts, formats, and symbols
to help you discern commands, program code, file names, and keystrokes from
other text.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1-6 Introduction

When not part of an explicit instruction, single keyboard characters, field values,
and prompt responses are shown in uppercase. For example:

Text Format Meaning Example

Courier Bold

Represents command
syntax in addition to
variable and file
definitions.

fg.screen

Courier Bold
Italic

Represents text you
should replace with the
appropriate value.

-dbname
database_name

Courier

Represents commands;
file, directory, table, and
column names; and
computer responses.

header.4gl
Makefile
stxhelpd
$fg/bin

Small Courier
Represents program code
or text in a file.

#####################
 function llh_add()
#####################
 # This function inserts

Symbol Meaning Example

[]
Represents optional
command flags and
arguments.

fg.screen [-yes]

...
Represents command
arguments that can be
repeated.

filename ...

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Enhancement Toolkit Documentation 1-7

Choose Y or N.
Enter an A for ascending or D for descending.
Press Q to quit.

Named keys, such as Tab, are shown in uppercase and enclosed in brackets.

[TAB]
[CTRL]
[F1]
[ESC]
[ENTER]
[DEL]
[SPACEBAR]

When a series of keys should be entered at the same time, they are shown with a
hyphen connecting them. For example:

To close the menu, type [CTRL]-[d].

Some key names are not consistent from keyboard to keyboard. This manual makes
repeated mention of the [ENTER] and [DEL] keys, but both of these may be miss-
ing entirely from some keyboards. Different hardware manufacturers give different
names to keys that perform the same functions. In addition to the keyboards them-
selves, software-controlled settings in terminal control files may also alter the inter-
pretations of keystrokes.

The table below lists keys that are named differently on different keyboards.

KEYS COMMONLY USED VARIATIONS

ENTER RETURN, RTRN, ↵

ESC STORE

DEL BREAK, CTRL-C, CTRL-BREAK

Fitrix CASE Tools Enhancement Toolkit Technical Reference

1-8 Introduction

2-1

2
User Control
Library

This section describes the added functionality of the User Control Library available
with the purchase of the CASE Tools Enhancement Toolkit. The added features in
the User Control Library give both the user and the programmer further control
over the application. This section covers:

n The Navigate Feature

n Hot Keys

n Online Help

n Error Text

n User-Defined Fields

n Freeform Notes

n Personal To Do List

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-2 User Control Library

The Navigate Feature
The user-definable Navigate feature allows you to interrupt operation of a Code
Generator generated program at any point and "jump" or "navigate" to any other
program on the system and then return to your original position. You can navigate
to the desired program through a special internal navigate menu or by defining a
function key that automatically loads the desired program. The navigation feature
prevents you from having to quit your current program and step through a number
of menu options in order to make a simple change elsewhere, then make your way
back to your starting point. You can define your own shortcuts from one program to
another.

The Navigate menu gives you the option of selecting from any number of things to
do outside of the current program. Items may include reading mail, printing a
report, loading another application, and anything else that can be done at the operat-
ing system. You can also select any "event" that is internal to the program such as
help, zoom, or view notes.

"Local" events can be added to any program. An example might be an "update cus-
tomer" event that runs the customer update program & positions you on the current
customer. Another might be a "calculator" event that calls on an internal calculator
function returning the data into the current field.

You can assign all navigation events to special keys, which you can then execute by
the press of a button. Assigning navigation events to Hot Keys is covered on page
2-7.

Navigation is a feature built into the User Control Library. You must have the
CASE Tools Enhancement Toolkit on your system in order to use the Navigation
feature.

For more information on the philosophy of our event handling logic, refer to the
Fitrix Screen Technical Reference.

The Navigate Menu
When you press [CTRL]-[g] the Navigate menu is displayed. You can select an
event from the Navigate menu by moving the highlight to the desired item then
pressing [ESC] or [ENTER].

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Navigate Feature 2-3

All established Navigation events appear on the Navigate menu. The items on the
Navigation menu are ordered as follows:

1. The Add a navigation action option is always listed first.

2. User-defined events ordered by the action code entry on the navigation screen.

3. Hardcoded ordering of internal navigation events.

The Navigation Commands Form
The Add a navigation action event, which is the first item on the Navigate menu,
lets you add custom events to the Navigate menu. When you select Add a naviga-
tion action, the Navigation Commands form appears:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-4 User Control Library

The fields found on the Navigation Commands form are as follows:

Action Code: This 15-character field is intended to be used as a shorthand
method of referring to the action itself. Some action codes are reserved as basic
navigation events (established during code generation).

Description: This field stores a description (up to 30 characters) of the action.
The description specified represents the action on the Navigate menu.

Operating system command: This field stores the operating system command
for actions that are external to the current program. For instance, to create an event
that checks for E-mail, enter the following text into this field:

mail

This field is left null for actions that are considered internal to the program. Exam-
ples of internal actions include: Zoom, Browse, User-Defined fields, Freeform
notes, and the Program Information menu.

Press [ENTER] upon return: This one-character field accepts an entry of Y or
N (Yes/No). The entry determines whether you must press the [ENTER] key upon
returning from an action. The entry in this field is for external events; that is, no
entry is required if the event being defined is internal. The default value for this
field is N.

Access from other programs: This one-character field accepts an entry of Y
or N (Yes/No). An entry of Y indicates that this action is available for use from
other programs within the application. That is, if you have an orders program as
well as a customers program within the same general application, you can use this
navigation event from either program. In short, the entry in this field determines
whether this navigation event is system-wide. The default value for this field is N.

Allow access for others: This is another one-character field that accepts an
entry of Y or N (Yes/No). It determines whether other users have access to the nav-
igation event you define.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Navigate Feature 2-5

Navigating to Another Program
Navigation allows you to interrupt a program at any point and start up a new pro-
gram without losing your place in the original program. Once you quit the second-
ary program, you are returned to your original program at the point you left. The
following steps explain how to set up a navigation event that starts another pro-
gram.

1. Press [CTRL]-[g] to display the Navigate menu.

2. Select Add a navigation action from the Navigate menu.

The Navigation Commands form appears.

3. Enter the event name in the Action Code field.

For example, if the event initiates a program called Customer, enter customer in
this field.

4. Enter a description for the event in the Description field.

For example, a description of the Customer program might be "Run customer
program."

5. Enter the operating system command for the event in the Operating sys-
tem command field.

Suppose that for the Customer program example, the event runs
i_cust.4gs/*4gi.

There are two ways to use navigation to run a program:

1. Use Fitrix Menus to run the program.

If you are using Fitrix Menus and the program you want to run is defined on
a menu somewhere, you can start the program with the mz -i command.
This method is preferred because your $DBPATH gets set automatically,
and you do not have to specify whether to run a *.4gi or a *.4ge. Refer
to the Fitrix Screen Technical Reference for more information on using the
mz command.

2. Run the program executable directly.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-6 User Control Library

If the program you want to run is not on a menu, type something similar to
the following on the command line:

 cd $fg/accounting/gl.4gm/i_genjrn.4gs;fglgo *4gi

or

 cd $fg/accounting/gl.4gm/i_genjrn.4gs;*4ge

Notice that you must first change directories to the program directory.

Deleting a Navigation Event
You can also delete defined navigation events.

To delete a navigation event:

1. Press [CTRL]-[g] to display the Navigate menu.

2. Highlight the event name from the Navigate menu.

3. Press [CTRL]-[z] to display the Navigate Commands form.

4. Press the [DEL] key and at the prompt answer Y to verify deletion.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Hot Keys 2-7

Hot Keys
As explained in the previous section, navigation events can be easily tailored to
carry out internal or external events from any place within the current application.
All established events can be executed by simply selecting them from the Navigate
menu.

The Hot Keys feature extends the power of the Navigation feature by allowing
users to assign tasks to specific keys. Instead of calling up the Navigate menu and
selecting an event, you need only press the key corresponding to that event. In order
to assign an event to a key, the event must be defined as a navigation event. You
can only assign Hot Keys to events appearing on the Navigation menu and set up
for your use.

Mapping Hot Keys
The Hot Key form lets you view Hot Key definitions and assign keys for defined
navigation events. From within an application, press [CTRL]-[e] to display the Hot
Key form:

The Hot Key form, also accessible through the Program Information menu, serves
as a reference for the current Hot Key settings. Use the arrow keys to scroll, or [F3]
and [F4] keys to page through the current definitions.

Each row represents a key and the event with which it is currently associated. When
you highlight a key definition and press [ESC], the associated event is carried out.
For instance, if the user selects the row containing the event Freeform Notes, the
Freeform Notes form is made current on the screen. In effect, selecting a definition

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-8 User Control Library

on this form is the same as Navigating to the corresponding event. Clearly, it is still
faster to simply press the key or keystroke combination with which the event is
associated.

To edit a Hot Key definition, highlight the definition and press [CTRL]-[z]. This
action displays the Hot Keys Definition form:

The following fields appear on the Hot Keys Definition form:

Key Label: This field displays which key the Hot Key corresponds to. This is a
no-entry field.

Action Code: This field stores the code representing the action to be mapped to
the key displayed in the Key Label field. The action you specify in this field must
be set up through the Navigate Commands form (see "The Navigation Commands
Form" on page 2-3). Press [CTRL]-[z] to see a list of valid action codes.

User Name: This field stores the login name of the user for whom this Hot Key
operates. You can specify "all" in this field to enable all users to use this Hot Key.

System Wide: This is a (Yes/No) field that accepts a one character entry of either
Y or N. The entry determines whether the Hot Key is enabled for other programs
within the general application or just for the program currently being run.

As soon as the Hot Key definition is stored, the Hot Key is available for use.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Hot Keys 2-9

Key Mapping and Termcap
Generated code, code created with Fitrix Screen Code Generator or Report Code
Generator, disassociates keys from the functions they perform. The termcap setting
affects the way the terminal, and therefore, the code, recognizes and acts upon key-
board input. Depending on your termcap setting, you may not have the ability to
map particular keys to events and use them as explained in this section. For addi-
tional information on termcaps, please refer to the Fitrix Screen Technical Refer-
ence.

If the keys on your keyboard behave abnormally, make sure your termcap is set
correctly.

Defining Additional Hot Keys
If you want access to a certain key on the keyboard that INFORMIX-4GL does not
have defined, you can assign it to an unused function key.

INFORMIX-4GL offers 36 function keys, and most keyboards do not have that
many function keys. The following steps are necessary for defining the [SHIFT]-
[F1] key on an ANSI terminal:

1. Figure out what the [SHIFT]-[F1] key sends. (ANSI example: \E[Y).

2. Pick an unused function key and define it in your termcap: (example: [F13])
(INFORMIX-4GL uses k0-k9 for [F1]-[F10], and kA-kZ for [F11]-[F36])

 [F13] ====> :kC=\E[Y:

3. Define the key in the database:

 insert into stxkeysr values(113, "[SHIFT]-[F1]")

4. If the function key that you picked is "greater than" [F15], then you need to add
this "hook" to your input statements.

on key(f18) let hotkey=118 goto event

Now the [SHIFT]-[F1] key triggers a Hot Key event. Users can now assign it to any
navigation command.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-10 User Control Library

Key Mapping Conventions
• [F1]-[F4] are reserved for INFORMIX-4GL (during input) and user-defined

menu functions (while in menus).

• [F5]-[F12] are reserved for the real function keys [F5]-[F12].

• [F13]-[F30] can be used to map terminal keys to function keys.

• [F31]-[F36] are reserved for Fitrix Screen functions. Among the reserved func-
tions are the following:

[F34] Hard mapped to "^B" (Back Tab)

[F35] Hard mapped to "esc" (accept)

[F36] Hard mapped to "int" (cancel)

Example of hooking up the "real" backtab key:

1. Figure out what the [BACKTAB] key sends. (ANSI example: \E[Z)

2. Hook it up to the termcap file for [F34] (reserved for backtab): (INFORMIX-
4GL uses k0-k9 for F1-F10, and kA-kZ for F11-F36)

 [BACKTAB] =====> :kX=\E[Z:

Example of hooking up an alternate "interrupt" key:

1. Figure out what the alternate key sends. (example: \E[2i)

2. Hook it up to the termcap file for [F36] (reserved for interrupt): (INFORMIX-
4GL uses k0-k9 for F1-F10, and kA-kZ for F11-F36)

 <Alternate key> =====> :kZ=\E[2i:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Online Help 2-11

Online Help
All data-entry applications using the User Control Library contain the basic struc-
ture for online, field-specific help. Press [CTRL]-[w] to access the online help from
within a data-entry form. The following form appears:

The ring menu for Help forms contains four commands: Info, View, Update, and
Quit.

Info: This command leads to the Program Information menu, which contains pro-
gram-specific options. The menu appears as follows:

The options found on the Program Information menu are discussed in the Fitrix
Screen Technical Reference.

View: This command allows you to scroll through the help text displayed on the
window. When you select View, the ring menu looks as follows:

Scroll: [TAB], [DEL], or [ESC] to Quit
[ARROW KEYS] to Scroll, [F3] or [F4] to Page

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-12 User Control Library

Use the keys listed in the ring menu to scroll through the help text. Any of the keys
listed on the top row of the ring menu return control to the data-entry form from
which help was called.

Update: This command lets users update help text.

When you select Update, the ring menu looks as follows:

Update: [ESC] to Store, [DEL] to Cancel
Enter changes into form

The INFORMIX-4GL defined keys [F1] and [F2] (add a row and delete a row,
respectively) are also available for use when updating help text. The [DEL] key
cancels the edits and returns control to the Help ring menu. The [ESC] key stores
the text for future reference.

Quit: This command returns you to the program.

Copying Help Text
A handy development tool is available for setting up help text in programs within a
general application. Existing help text (in another module or program within the
application) can be copied by pressing [CTRL]-[c] while at the Help ring menu. A
series of prompts appear to identify the particular help text you wish to copy. The
prompts begin at the module level and become more specific. The first prompt
appears as follows:

Help: Info View Update Quit
COPY: Enter module to copy from:

In order to copy text you must specify the name of an existing module. For refer-
ence, the module name for any given application (generated by Fitrix Screen) is
listed on the Technical Status form. This form is accessible through the Program
Information menu. Alternatively, the section of the .per form specification file lists
the module name. After entering a module name and pressing [ENTER], the
prompt changes to the following:

Help: Info View Update Quit
COPY: Enter program name:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Online Help 2-13

Enter the name of the program containing the help text to be copied. Again, the pro-
gram name for any given application can be found by checking the Program Status,
found on the Program Information menu. This information is also in the section of
the .per form specification file. After entering the program name and pressing
[ENTER], another prompt appears:

Help: Info View Update Quit
COPY: Enter Error number:

This is the last prompt involved in the process of copying help text. At this point,
the module and program names have been entered. The unique help call number
(i.e., Error number) is all that remains. Enter the number corresponding to the help
text you wish to copy into the current Help form. For example, if you wish to dupli-
cate the help text already entered for help text number 7, enter 7 at the prompt. The
retrieved help text is then copied into the current help text file for storage.

This technique is most often used to add the text for a newly-created form from
which help is called. You can use this technique to copy the text from one help
screen into an existing form. To do this, you must update the help text for the exist-
ing form, and then follow the copy procedure ([CTRL]-[c]) outlined above.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-14 User Control Library

Online Error Text
If an error occurs, users have the option to save system status information, includ-
ing the line number of the program in which the error was encountered. When log-
ging an error, users are also given the ability to enter information that describes
exactly what they were doing and how the error was encountered. Error messages,
can of course, be tailored by developers to tell users what kinds of errors to log and
exactly what information to enter. Error information is stored in a simple UNIX
text file.

Fatal errors automatically get logged. All program status information, including
error line number, is automatically logged to the error file, whether manually
logged by users or not.

When an error occurs and is displayed at the bottom of the screen, you can Zoom
on that error to get a problem/solution screen for the error. Pressing [CTRL]-[z]
displays the following form:

Viewing Error Text
The explanation of an error appears on the form, including causes and possible
solutions. The Informix scrolling keys ([F3] and [F4]) are available for movement
among the lines of error text. If more text exists than is displayed, the arrow keys
allow you to scroll to view the remaining text. The [TAB] key transfers the cursor
from the "cause" section to the "solution" section of the error text.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Online Error Text 2-15

Updating Error Text
The Update command on the error detail ring menu allows the user to modify the
text for a particular error call. Error messages, causes, and solutions can be modi-
fied virtually "on the fly."

The error message itself may be modified in addition to the "cause" and "solution"
sections mentioned earlier. The cursor first appears in the field containing the error
message title. Use the [TAB] key to switch from section to section on the error
message data-entry form.

Press [ESC] to store the modifications or [DEL] to cancel them.

Adding Error Text
The User Control Library includes a navigation event that allows you to quickly
create new error text. The actual error calls must be placed into the code, though the
text called by the error number becomes part of the SQL database. The Edit Error
Text event, which is located on the Navigate menu, displays the following form:

This form shows all of the errors set up for the current application. If this is a newly
generated application, no errors appear on this form unless specified. The cursor
appears on the first row of error text detail. The Error ring menu indicates that
pressing [CTRL]-[z] displays detail information for the error. Pressing [CTRL]-[n]
allows you to enter new error text. The arrow keys and the Informix-defined [F3]
and [F4] paging keys are available for moving among the detail rows of this form.
The data in the Number column of the form ties the error text to the actual error call
found in the code.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-16 User Control Library

The error text ring menu also offers the option of adding new lines of error text. For
instance, after adding an error call to, say, llh_input within the header.4gl
file, you want to add the corresponding error text. Previously, this meant adding the
data externally, perhaps through ISQL. Code generated by Fitrix Screen permits
this addition of information within the application itself—you can add error text for
error calls without having to exit the application.

From the Errors form, press [CTRL]-[n]. A prompt appears requesting the number
of the error call to be documented:

Enter a new error number for this module/program
or press [DEL] to quit:

After entering a valid error call number, the Errors Detail form appears. This form
is the same as the form seen when [CTRL]-[z] is pressed:

The ring menu is also identical—all commands available through [CTRL]-[z] are
also available through [CTRL]-[n]. The Update command allows you to enter an
error message as well as cause and solution detail. The error message appears on
the screen as the error call is carried out—it is limited to one line of information.

Text is added for the detail sections as well. Use the [TAB] key to move from the
error message line to the detail sections.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Online Error Text 2-17

Viewing Program Status
The Status command on the error detail ring menu is used to display the current
program status. The information appears as follows:

General information such as the database name and Code Generator version
appears along with specific data regarding the error on which the cursor currently
appears. At the foot of the form the Status variable value is displayed (the value 0
indicates that the program has not detected any errors).

Press [ENTER] to return to the Error Detail ring menu.

Logging Error Text
The purpose of error text is to provide additional information regarding events con-
sidered abnormal. A well-constructed application informs the user that an error has
occurred. Typically, this means displaying text to the screen at the moment the
error is encountered.

The ability to display error text is built into the code produced by Fitrix Screen. In
addition, Fitrix Screen applications provide developers with a reference file to
which all errors can be logged. Fatal errors are automatically logged unless they are
quite severe (such as a core dump), in which case there is no opportunity to log
error text prior to cessation of the program. Each application logs errors to a file
titled errlog. The developer can periodically inspect the errlog file in the
application directory to read information concerning errors.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-18 User Control Library

Within the Error Detail form, the user can choose to log a particular error message
to the errlog file. This is accomplished by using the Log command.

Once the Log command is selected, the user has the opportunity to add comments
to the error text being logged to the local errlog. The following prompt appears:

Do you wish to add notes to this error? (Y/N):

If the response is Y, a form appears for the user to fill in comments to be included
with the error text. The form resembles the following:

Enter your notes into the form provided. Press [ESC] to store or [DEL] to cancel.

Error Log Zoom
The Zoom feature is provided on this form for those wishing to view or modify
default (system-wide) message text. Any text specified at the default (Zoom) level
automatically appears as default text when a user elects to include notes for error
logging. That is, you can specify a default "testing" message on the Zoom form,
which appears by default each time a user logs error text with notes.

All notes entered are appended to the errlog file along with the selected error
text.

Once logging takes place (information is written out to the errlog file), the fol-
lowing message appears at the top of the form:

Error logging complete
Press [ENTER] to continue:

Logged error text and accompanying notes are not written to the errlog file until
the user exits the current program. The logged text appears in the file as follows:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

User-Defined Fields 2-19

Error status log. Requested by: davidc
Codegen version: 3.0
Database name: stores
Program ID: ar.i_order
Date: 07/17/90 Time: 09:38:02
Screen ID: default
Screen field:
Error module: ar
Error program: i_order
Error number: 22
SQL error status: 0
Date: 07/17/90 Time: 09:38:02
Error text: This error occurs when:
Date: 07/17/90 Time: 09:38:02
Document already exists. Duplicate not allowed.
Date: 07/17/90 Time: 09:38:02
Possible solutions include:
Date: 07/17/90 Time: 09:38:02
You can only update this record.
Date: 07/17/90 Time: 09:38:02
End of status log

The duplicate Date/Time lines can be disregarded. INFORMIX-4GL automatically
writes them to the errlog file.

The last command on the Zoom form for particular error text lines is Quit. The Quit
command returns control to the basic error message form.

Copying Error Text
Error text can be copied from any module/program. The copy technique is the same
as the one used to copy help text. See the earlier section on "Copying Help Text" on
page 2-12.

User-Defined Fields
Applications generated with Fitrix Screen allow users to define additional fields on
the fly with a special User-Defined Fields form. When users need to enter data that
is not provided in current data-entry screen, they can define a field to hold that
information with the User-Defined Fields form. In the future, the system adminis-
trator or programmer can determine whether such data is worth saving and integrat-
ing into a "regular" data entry screen.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-20 User Control Library

Apart from those fields originally made part of the data-entry screen, up to 50 addi-
tional fields can be created and updated on User-Defined Fields form.

User-defined fields are uniquely defined for particular documents. There can be
one User-Defined Fields form for each data-entry form. Once a field is defined on
the User-Defined Fields form, that form is displayed automatically every time the
main document is updated or a new document is added. Also, once defined, a User-
Defined Field becomes a required field.

Default Hot Key access to user-defined fields is set up through [CTRL]-[f]. The
User-Defined Fields form can also be accessed through the Navigate menu.
Depending on the value given to the auto_udf variable, the User-Defined Fields
form can appear automatically whenever the user stores a document (presses the
[ESC] key).

The User-Defined Fields form appears as follows:

Line: This column displays the number of each row within the User-Defined Fields
form. Each row constitutes a field. There are 50 fields available for use on this
form.

Data Field Name: This 20-character column stores the label for each individual
field. To modify the field labels on the User-Defined Fields form, press [TAB] or
[CTRL]-[f].

Contents: This column stores up to 30 characters and matches up with the field
label found on the same row to the left.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

User-Defined Fields 2-21

Note

To enter into the Data Field Name field, you must press [TAB] or [CTRL]-[f]
from the Contents field.

Table: This field stores the name that forms part of the key by which the data on
the User-Defined Fields form is tied to a particular document.

Key: This field stores the second part of the unique key that ties the data on this
form to a particular data-entry document.

User-defined field data is maintained through the stxaddlr and stxaddld
tables. For more information on tables used by the Code Generator, refer to the
Fitrix Screen Technical Reference.

Deleting User-Defined Fields
Although any user can create user-defined fields, only programmers can remove
them. User-defined fields can be removed by deleting columns from the stxad-
dld and stxaddlr tables using ISQL. The following shows example syntax
required to delete user-defined fields:

 delete from stxaddld
 where
 stxaddld.filename = "main_table_name" and
 stxaddld.line_no = "line_number"

 delete from stxaddlr
 where
 stxaddlr.filename = "main_table_name" and
 stxaddlr.line_no = "line_num"

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-22 User Control Library

Freeform Notes
With the CASE Tools Enhancement Toolkit, you gain the ability to attach general-
purpose notes to documents displayed in your generated program.

The Freeform Notes feature is accessed by pressing [CTRL]-[n] when a document
is selected.

The Freeform Notes form appears as follows:

Data-entry documents that have notes attached to them display the prompt (Notes)
on the upper-right portion of the form. By simply looking at the form, users can
determine whether Freeform Notes have been added for the current document.

Note

If you get the "feature not attached" error, you have not defined a unique "key"
for your form. The unique key is what is used to tie secondary data such as Free-
form Notes to the main table. You must go back and add a unique key to your
.per form. This can be done on the Define Input Area form in the Form Painter.

The text of the Freeform Notes entered for documents within the data-entry appli-
cation are stored in rows of the stxnoted table.

The Freeform Notes feature can only be used with header tables.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Personal To Do List 2-23

The Freeform Notes Zoom
The Freeform Notes form includes the Zoom feature, which displays the Default
Freeform Notes form.

The software engineer or system administrator can use the Default Freeform Notes
form to establish notes (text applicable to all documents) for initial display on
forms. Default notes appear if the user accesses notes for a document that did not
previously contain notes. In other words, if the user calls up notes (presses [CTRL]-
[n]) for a document that previously had no notes entered, the text specified on the
Default Freeform Notes form appears. The user may keep these notes, edit them, or
add to them.

Personal To Do List
A common part of the data-entry process is the creation of new ideas and tasks. It is
common for application users to think of tasks to carry out in the future, or to recall
things that should be taken care of. While these users remain within the application,
such ideas and reminders can be forgotten. Applications typically do not provide
users a place for recording and reviewing personal ideas and tasks.

Applications generated with Fitrix Screen provide each user with a Personal To Do
list. This list is part of the application, stored within an application table. Users can
maintain and track this list by pressing a key, without exiting the application. The
Personal To Do list operates almost identically to the Freeform Notes feature. But,
rather than being form specific, the To Do list is user specific.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

2-24 User Control Library

Access the To Do list feature by pressing [CTRL]-[t]. The Personal To Do form
appears as follows:

Note that data is entered into this form in the same way it is entered on the related
data-entry form.

The To Do Zoom
The Personal To Do form includes the Zoom feature, which leads to the Default To
Do list.

The software engineer or system administrator can use the Default To Do list to
establish tasks and reminders (applicable to all users) for initial display on forms.
Default information appears when the user accesses the To Do list for the first time,
or when there is no information currently saved on the Personal To Do list form. In
simple terms, if the user accesses the Personal To Do list form, it displays all text
previously entered onto this form by the user. If no information was previously
entered, the Personal To Do list form displays the information established on the
Default To Do list. The user may keep these notes, edit them, or add to them.

The text of the Personal To Do list is stored in rows of the stxtodod table along
with the user ID.

3-1

3
Pull-Down Menus

This chapter explains how you can create pull-down menus for your application.
This chapter covers:

n Pull-down menus

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-2 Pull-Down Menus

Pull-Down Menus Overview
The Pull-Down Menus allow you to use special ring and pull-down menus that cre-
ate a much more complete and flexible data-entry environment than standard
menus generated with the Fitrix Screen Code Generator. Pull-Down Menus allow
you to use a "generic" custom menu (Mainring) which provides a number of
improvements over the standard generated menus, or you can define your own spe-
cialized ring menus and pull-down menus for your individual programs. For exam-
ple, the Add command on the generic custom menu calls a pull-down menu. This
pull-down contains menu items that allow you to perform several different types of
add. The generated version of the add command performs one task: it puts you into
a blank form which you use to add a new document to your table.

Pull-Down Menus allow you to:

• Create menus by entering information into the database through a data-entry
form.

• Define every aspect of menu operation by filling in screen forms.

• Create menus that offer users more options from the ring menu.

• Define how you want function keys to work when a given menu is displayed.

• Have menu items turn themselves off and on as appropriate.

• Define how you want the menus held open when items are selected.

• Create hidden menu items that respond to user keystrokes, but which don't
highlight a menu item on the screen.

• Make every menu item multi-lingual so that no changes to code are required to
support different languages.

• Use a "Browse" menu that allows you to use arrow keys and function keys to
move through and select items from a list.

• Create ring or pull-down menu items unique to your program.

Pull-Down Menus come as a part of the Enhancement Toolkit, and programs utiliz-
ing it require the purchase of the Enhancement Toolkit for each installation. The
Enhancement Toolkit need not be purchased separately if generated programs are
being installed in conjunction with any Fitrix Accounting module.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

How It Works 3-3

Limitations:

• Up to five ring menus per application program.

• Up to 10 pull-down menus per application program.

• Up to 20 display, 20 hidden items, and 20 function keys per menu.

How It Works
Pull-Down Menus are database-driven. When you run programs using this system,
menu functions go into the database to get the menu items to display for the menu
the application calls. The menus use the database definition of a menu item to
decide how it should behave and what functions it should call when the user selects
it.

Menu items are defined by entering a description of them into the database. Two
new data-entry forms are accessed from the Form Painter to allow you to define
these menus. The Menu Items Definition form allows you to define generic menu
items themselves. The second form, the Program Menu Definition form, allows you
to make a custom version of a menu for a particular program. This second program
allows you to eliminate certain commands from a standard menu, (for example, tak-
ing away the "Add" functionality) and to change the behavior of the standard
menus (for example, allowing the "Update" command to update the current docu-
ment instead of accessing the Update pull-down menu).

In defining generic menu items, you can define any number of different ring menus
or pull-down menus. Each of these menus can call up to 20 different displayed
menu items. Each menu item can be defined in up to 100 different languages. Up to
200 customized menu items can be defined for each program.

The way each menu item works is completely described in the database. This
includes information about:

• whether the menu item is displayed, hidden, or in reference to a function key.

• whether or not to use this menu item based on the type of form (for example,
this allows you to show some items on a header/detail form, but not a header
only).

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-4 Pull-Down Menus

• when to turn the menu off (the user can see it, but not select it) and on (user can
see and select it).

Menu items can call other ring menus, pull-down menus, or "events" that are linked
to program functions. Events identify specific functions to access in either the
menu function library or in your local code. The built-in events are those that dupli-
cate existing and new file management commands, but any number of local events
can also be defined.

The Pull-Down Menus come with a large number of menu items pre-defined. These
include all the file management command items originally accessed by the standard
ring menu system, and also a large number of new commands including all of the
User Control Library commands, such as Navigate and Hot Keys. This means that
many new functions can now be accessed through the ring and pull-down menu
system in a generated application without any additional programming on the part
of the developer. (Of course, User Control commands can still be accessed through
control keys.) Among the new file management commands are "group" commands
that allow users to add, update or delete entire groups of documents at once.

The default menu for all programs that use this system is called Mainring. This
means that if you compile a program using the new Pull-Down Menus without
specifying in the code to call another menu or defining an application specific
menu, the application program calls the Mainring menu and its related pull-down
menus. The pull-down menus accessed through Mainring offer access to all avail-
able file management commands. These pull-down menus descend from the ring
commands on the initial ring menu when a command is selected from it.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

How It Works 3-5

The standard pull-down menu (Mainring) and related pull-downs:

Also included in the system is another menu called "Old_ring," which works, with
a few improvements, just like the standard ring menu system. Finally, there is also a
"Brw_ring" that allows users to use all the old browse commands. When using the
"Brw_ring," however, you also are able to use the arrow keys and other function
keys to move through and select items from a browse list. This is possible because
you can define the way function keys work using this new menuing system.

As already mentioned, it is not necessary to use or allow access to all of these menu
items from any particular application. Without defining a new menu, you can create
an application specific version of a standard menuing system such as Mainring.
Using the Program Menu Definition data-entry form, you can select which menu
items you want to appear in your menuing system. You use this program to load a
starting ring menu and its related pull-downs. You can then delete or change the
function of menu items as needed in that application. This makes it possible, for
instance, to eliminate unneeded menu items or change menu items so that they call
certain events directly instead of going through pull-down menus.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-6 Pull-Down Menus

Linking In the Pull-Down
Menu System
This section explains what you need to do to take advantage of the Pull-Down
Menus. In order for your programs to utilize the Pull-Down Menus the following
setup steps must be taken.

To create a program using the new menus, you must:

1. Install the Form Painter and its libraries.

2. (Re)Compile programs using the advanced libraries.

Installation of the new version of the Form Painter is covered in your installation
instructions, provided separately.

To compile the advanced libraries into new or existing programs, use a special ver-
sion of our make utility.

To run the new programs, you must:

1. Install the Enhancement Toolkit on the target machine.

2. Create a custom 4GL runner on the target machine.

The Enhancement Toolkit comes as part of the Fitrix Screen development environ-
ment. This step is only required if you are installing the resulting program on
machines other than your development platform. The Enhancement Toolkit is plat-
form specific and must be purchased for the type of hardware the programs are
going to run on.

The runner is the Informix program that knows how to run an INFORMIX-4GL
program. Since the Pull-Down Menus require functions not normally part of the
INFORMIX-4GL language, those functions must be linked into the runner before
they can be used. Our organization provides special utilities to automate this runner
creation.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Linking In the Pull-Down Menu System 3-7

Compiling Programs with Advanced
Libraries
No special programming needs to be done within the program to replace the origi-
nal one-dimensional ring menus with the new ring/pull-down menu system. After
compiling with the advanced libraries, your programs instantly have direct menu
access to a host of powerful new add, update, delete, and find options. Your pro-
grams also receive the new, more intuitive Browse ring menu. And finally, they get
direct menu access to all of the powerful User Control Commands, which allow
users to customize their program and access a variety of other tools that make
working on a computer system easier.

To link in the new libraries, run an fg.make passing the library name scr.adv
in your local directory. This adds the scradv libraries to the list of libraries in
your local Makefile.

Example:

fg.make -L scr.adv

Creating a New 4GL Runner
When using our C functions, which include Pull-Down Menus, and RDS code, you
have to run the finished programs with a modified runner fglgo and modified
fgldb. There is an Informix utility named cfgldb and cfglgo that uses
fgiusr.c to create these custom runners.

The creation of a custom 4GL runner requires you to link in the special C functions
that these new menus require to allow users to point and pick menu items. These C
functions come precompiled as part of the User Control Libraries, but you must
link them into your program. This does not have to be done on a program by pro-
gram basis. It is done only once when using the RDS (Rapid Development System)
when you build a special 4glgo program that runs the generated applications.

The $fglibdir/lib/c_lib.4gs directory is installed with the Enhancement
Toolkit. This directory contains the following files: mkrunners, README,
fgiusr.c, and c_*.o. These files are needed in order for the client to create
their custom fglgo and fgldb executables.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-8 Pull-Down Menus

To create a custom runner simply change directories to $fglib-
dir/lib/c_lib.4gs and type:

mkrunners

It is important that $fg/bin comes before $INFORMIXDIR/bin in the environ-
ment variable $PATH setting. Again, these custom runners are only created if you
develop or run programs under RDS.

Note

A common cause for the failure of cfglgo is that no C development system is
installed.

Note

Due to the many variations of both the C compiler and the linker between all the
UNIX platforms, our organization does not support any problems you may incur
using these custom runners.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-9

Creating New Menu Items
Pull-Down Menus let you customize the default ring menu, modify default pull-
down menu items, or create your own entirely new menus and menu items. You can
also specify different menus for different programs.

You access the program for doing this from the Form Painter using the Ring Menu
Items option on the Define pull-down. This option calls up the Menu Item Defini-
tion form, which allows you to define new menus, menu items, and the way they
work.

The Ring Menu Items option displays the Menu Items Definition form:

Overview of the Default Mainring Menu
System
The Menu Items Definition program itself uses the default Mainring menu system,
which uses all of the pre-defined menu items. This Mainring menu is the default
menu created simply by linking in the advanced libraries. This ring menu can be
used by all your programs by linking in the libraries. The commands in the ring
menu all call pull-down menu items. By browsing through the commands and sub-
menus on this menu bar, you can familiarize yourself with the functionality of the
Pull-Down Menus.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-10 Pull-Down Menus

You can also look at the commands (menu item descriptions) that create this menu
since this is the program in which those commands are defined. To look at these
commands as they are defined in the database table, use the Find command to dis-
play the Find pull-down and select the New Group option. (This type of selection is
referred to as Find/New Group later in this documentation to indicate a ring menu
command selection followed by a pull-down menu option selection.)

Standard (Mainring) Ring Menu Items
If you type Mainring into the Menu Name field of the Menu Items Definition form
after executing the Find/New Group command and press [ESC], the system dis-
plays the first of the menu items related to the Mainring menu. To look at all the
menu items on this list, use the Browse/See List options.

This list shows us a good selection of the various items in the Mainring menu pull-
downs. In the columns of the form, we first see the name of the menu, then a
description of the item, the Order/ID of the item, then the style of the item: D for
display, H for hidden, and F for function keys. The Event that the menu item calls.
These strings refer to either the ring menu, pull-down menu, or functional event
names. The Type column refers to the type of event: P for pull-downs and F for
functions.

On this menu, we see one special item, the Menu title, which is identified by an
order of 0. This item is unique to ring menus and defines the string that appears
before the first selectable item on the menu (such as Action: or Browse:).

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-11

There are nine selectable items that display for the Mainring. All of these items call
pull-down menus. The order in which they display is indicated by the Order col-
umn. This column shows increments of ten, but that is only to facilitate adding
future menu items at some other time. There are five hidden items, all of which call
function events. Here, the order is unimportant and the order number simply serves
as a unique ID. There are also two function key items (plus two others we don't see)
all of which also call functional events. With these two, the order is also unimpor-
tant.

When a menu item is selected by the user, it can do one of two things: call another
menu or call a functional event. When it calls another ring or pull-down menu, the
menuing program looks for a ring or pull-down menu that uses the event name.
When a menu item is selected that calls a functional event, the program places the
name of that event into the global variable scratch and searches for it first inter-
nally, in the menuing program, then in a special function in the local program.

As you can see, several items can call the same event. For example, the Next Docu-
ment item, which in English is invoked by pressing N for next, calls the
next_one event. So does pressing the "Down Key" or down arrow function key.
Both of these keystrokes have the exact same effect.

Typically, displayed menu items each call different events, but hidden and function
keys call events found elsewhere in the menuing system. They can be thought of as
short cuts to certain user actions. For example, the Next and Prev commands no
longer display on the Mainring menu (as they do on the standard ring menu created
by the Code Generator, but they do display on the brw_menu.

With the Pull-Down Menus, there is even a special built-in function (called find-
event), which allows you to programmatically highlight a given menu item based
upon the event it calls. This is the function used by the event findquit to high-
light the quit command when other exiting keystrokes are used.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-12 Pull-Down Menus

Standard (Mainring) Pull-Down Menu Items
To see how the items that make up a pull-down menu differ from a ring menu, exe-
cute another Find to get all of the items that make up the Add pull-down menu.
Enter "add_menu" in the Menu Name field on the Find selection criteria form.

The Add pull-down is called when you use the Add command on the Mainring. As
you can see, it is a simple menu. This is more or less typical of a pull-down menu.
There is no "0" item, because pull-downs don't have a title line. The first four items
are all display-style items. They are followed by two function key items. All of
these items call functional events.

The Menu Items Definition Form
This form is displayed by selecting the Ring Menu Items option on the Define pull-
down. To create new menu items to display on either ring or pull-down menus, use
the Menu Items Definition form. This form gives you access to the various menu
items that have been defined in the system. This program allows you to tell the
menus program about new menu items you want to appear on existing menus or on

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-13

new ones and how those menu items work. This is done by simply entering the fif-
teen characteristics that define a menu item and how it works. The following is the
Menu Items Definition form:

Menu Item Functionality Characteristics
The first nine of these characteristics determine how the menu items present them-
selves and how they run when selected.

Note

Some fields accept a value of S. This means that the value in that particular field
can be determined programmatically. You determine what the value is in a field
for a particular program by running the Program Menu Definition form, finding
the program, then changing the value of the field for that program.

Menu Name: This character field contains the name of the menu the item being
defined appears on. Each menu item belongs to a specific ring or pull-down menu.

Menus must be defined independently from defining menu items. Menus are
defined in much the same way that you define a menu item. To define a menu, you
need to fill out the Menu Items Definition form, and enter "P" or "R" in the Event
Type field.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-14 Pull-Down Menus

For example, entering "add_menu" in this field assigns this menu item to the Add
pull-down menu.

Item Description: This field contains a description of the menu item. This
description is for your information and helps you keep track of your menu items. It
is especially helpful when browsing your menu items. The description entered in
this field appears on the Browse form called from the Menu Items Definition form.
This description doesn’t affect how the menu item runs and does not display any-
where but in the User Control Menu programs.

For display and hidden items, it is a good idea to keep the beginning of the Descrip-
tion similar to the entry in the Item Label field. Another convention is to refer to
hidden items with a (hid) in parentheses. For function key items, it is a good idea to
say "Key" in their description.

For example, the Add pull-down menu has a menu item called "Single Document."
The Item Description created for that menu item is "Add One Document."

Item Order ID: This numeric field is a unique identifier that, together with the
Menu Name, creates a unique ID for the menu item. For displayed menu items, this
characteristic also determines the sequential position of this menu item as it is dis-
played. Lower numbered items appear first in the menu.

If you think you might be adding items at a future date, leaving a lot of numeric
"space" between items saves you a lot of tedious renumbering in the future. The
convention is counting by tens. Convention also suggests starting Hidden Items at
200 and function keys at 1000.

For example, the Add One Document standard menu item has an Item Order of 10,
while the Add Many Documents menu item has an Item Order of 20. This means
that the Add One Document item appears on the Add pull-down menu before the
Add Many Documents item.

Item Style: There are four possible "Styles" of items:

• D (display): items that are seen on the menu,

• H (hidden): items that work as keystrokes but are not displayed on the menu
itself,

• F (function key): items that define how function keys are handled within the
menu, and

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-15

• S (special item): items that only appear in some programs and not others.

For example, the Add/Single Document menu item has a D in this field, which
means that item is displayed on a menu.

Event Called: This is the action that takes place when the menu item is selected
by the user. Events can be of three different types (see the Event Type field) but
each event is identified by a name. Different menu items on different menus can
call the exact same event.

When the event is a ring or pull-down menu, the Event Called is the name of that
menu. When the event is a function, it is the function name (a string of characters
associated with the code for that event).

For example, a function key (the down arrow), a hidden menu item (the Next com-
mand on the Mainring menu), and the Next Document item (on the Brw_menu
pull-down), all call the same "next_one" event that displays the next record on the
form.

Event Type: There are three different types of events a menu can call. They can
call a ring menu, a pull-down menu or a function. This field determines what kind
of event the item being defined is. This one character field accepts the following:

• R (ring menu)

• P (pull-down menu)

• F (function)

The Add/Single Document menu item is an F for function, while the Add pull-
down menu is defined as P for pull-down.

Hold After Select: This characteristic defines how the menu behaves after a user
selects an item. Its meaning depends on the type of event involved. It is used to cre-
ate browse-type rings that don't use the [ENTER] key internally, or hot pull-down
menus that allow items to be selected without pressing [ENTER]. It can hold a pull-
down menu open after an item on it has been selected and finished running.

This field accepts a Y or N. The effect of this characteristic depends on the event
type being called by the menu item.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-16 Pull-Down Menus

When the menu item calls a ring menu event, a Y or N determines the difference
between a "main" ring menu and a "browse" ring menu. Y is used with main ring
menus, and N is used with browse menus. In the main ring menu, the [ENTER] key
can be used to select an item on the ring menu, and the user returns to the ring after
selecting an item with an [ENTER]. In a "browse" menu, the [ENTER] key is used
to select an item from the browse list and after doing so, the ring menu is put away.
Hold After Select is defined by the event calling the ring menu, not by the items on
the ring menu. It can also be defined when calling the gen_menu() function from
within a program.

When the menu item calls a pull-down menu event, the Hold After Select charac-
teristic indicates whether or not the menu is "hot," i.e., whether or not pressing the
[ENTER] key is required to select an item from the menu. For pull-downs that don't
hold after select (Hold After Select = "N"), typing the first character of any item on
that menu causes the menu item to execute. This is a hot menu and the standard
way pull-down menu events are called. For pull-downs that do hold after select
(Hold After Select = "Y"), typing the character highlights the item on that menu,
but you must press [ENTER] to select it. Once more, the Hold After Select charac-
teristic is defined by the event calling the menu, not by the items on the menu. It
too can be set within a program if the menu isn't called by another menu.

When a menu item calls a function event from a pull-down menu only, the Hold
After Select characteristic determines what happens to the pull-down menu after
the menu item has been selected and run. These menu items can either hold the
pull-down after being selected from it (Hold After Select = "Y") or put away the
pull-down after selecting a functional item (Hold After Select = "N"). The default is
to put away the pull-down after selecting an item. You use the former when you are
expecting another item to be selected from the same pull-down menu after execut-
ing a function. For more information on events refer to "Menu Function Events in
Pull-Down Menus" on page 3-42.

Event Class: Determines the contents of the menu_item global variable
passed to the application program. The event class allows programs to behave dif-
ferently in different modes. For example, they might act one way when adding a
new record but differently when updating a record. Since pull-down menus allow
many different types of add and update commands, the Event Class allows existing
programs to behave properly by setting the "menu_item" as a class rather than as a
specific event. This field is only used with functional events.

For example, for browse events you would enter "browse," for add events you
would enter "add."

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-17

Requires Detail Section: Determines whether or not this menu item is used
with a header-only form. If no detail section is present, certain menu items are not
used. For example, in Old_ring, the Tab menu item does not display if no detail
section is present on the form. You can define generic menus that can be applied to
either header-only or header/detail forms with the appropriate menu items selected
at run time. The Requires Detail Section characteristic eliminates the need to create
unique menus for every specific program.

The Requires Detail Section field accepts a Y, N, or S. An S allows you to control
this option programmatically. Refer to page 3-21 for more information on control-
ling this option programmatically.

Menu Item Activation Characteristics
The next three items determine how menu items are turned off and on as the pro-
gram runs. Deactivated menu items appear on the menu, but they are preceded by
an "!" and cannot be selected by the user. They indicate that a menu item is cur-
rently unavailable, and that conditions in the program must change before it can be
used. These items are:

Requires Rowid: Turns off and on (activates and deactivates) the menu item
depending on the presence of a current row id. In programs generated with Fitrix
Screen, a current row id is present whenever any document data is displayed on the
current form. So, for example, if there was no current document, a command such
as the Update command would be turned off because without a current document,
there is nothing to update.

The Requires Rowid field accepts a Y, N, or S. An S allows you to control this
option programmatically.

Requires Cursor Item: This characteristic turns off and on the menu item
depending on whether or not there is a document position in the cursor or group of
selected documents. Some of the group commands, such as group delete, start with
the current document in the selected group of documents and continue to the end of
that group. To have a group of selected documents, you must first use the Find
command to select a group to work with.

This field accepts a Y, N, or S. An S allows you to control this option programmat-
ically. Refer to page 3-21 for more information on controlling this option program-
matically.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-18 Pull-Down Menus

Requires Cursor Total: This characteristic turns off and on the menu item
depending on whether or not there is a group of documents selected. Like the Cur-
sor Item, this type of activation applies to group commands that act on a group of
documents at one time.

This field accepts a Y, N, or S. An S allows you to control this option programmat-
ically. Refer to page 3-21 for more information on controlling this option program-
matically.

Menu Item Translation Characteristics
The last three characteristics of a menu item determine what languages are dis-
played. For each single menu item, there can be up to 100 different languages into
which the item can be translated.

Language: This is a three-character code that indicates which language the
related information is translated.

For example, you could use "ENG" for English.

Item Label: This field contains the text that is displayed on the menu. The text in
this field should be in the language indicated in the Language field.

This field stores up to 20 characters.

Help Line: This field applies to ring menus only. This text field contains the help
message that appears beneath the item in a ring menu. It describes the menu option.

For example, if you were defining an Add ring menu item, you would enter "Create
new document(s)" into this field.

Questions About Creating New Menus
and Menu Items
The following are answers to commonly asked questions about creating pull-down
menus and pull-down menu items.

How do I define a ring menu?
There are seven steps to defining a ring menu:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-19

1. On the Menu Item Definition Form, enter a unique name for the menu.

By convention, ring menu names begin with a capital letter so they appear
before pull-down menus and end with the word "ring."

2. Enter the "0" in the Item Order ID field.

The first item on a ring menu MUST have an ID of "0." This item is the initial
"label" for the menu that precedes the menu items themselves.

3. Enter "D" in the Item Style field.

4. Enter the Language code.

5. Enter the prompt that appears on the ring menu in the Item Label field.

For example, the standard Mainring ring menu displays the word "Action:"
before the menu items.

6. Define the ring menu items.

Typically "Display" items are entered first. Then hidden items and finally func-
tion keys. These items can call other ring menus, pull-down menus, any of the
"function events" built into the menuing system, or any other function event in
the local menu_extra function defined. For more information on events,
refer to "Menu Function Events in Pull-Down Menus" on page 3-42. The labels
for menu items, whenever possible, should begin with unique letters. This is
especially important when the ring is called with the "Hold After Select" char-
acteristic set to "N" (browse-type menus).

7. Define any other ring, pull-down menus, or menu_extra functions called
by the ring menus.

How do I define a Pull-Down Menu?
There are three steps:

1. Enter a unique name for the menu.

By convention, pull-down menus begin with lowercase letters and end with the
word "menu."

2. Define the menu items that appear on the pull-down menu.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-20 Pull-Down Menus

Pull-down menus are limited to "Display" and "Function Key" types. These
items can call other ring menus, pull-downs or function events. Most typically
they call function events either in the built in library or in the local
menu_extra function. A pull-down that calls another pull-down menu will
be overlaid by the new menu. The labels for menu items, whenever possible,
should begin with unique letters, especially when the "Hold After Select" char-
acteristic is set to "N."

For more information on events, refer to "Menu Function Events in Pull-Down
Menus" on page 3-42.

3. Define any other ring, pull-down menus, or menu_extra functions called
by the ring menus.

How do I make a pull-down menu stay open so I can
return to it instead of the prior ring menu?
Define the menu items on that menu with the Hold After Select characteristic set to
"Y." On any given menu, some items can hold the menu, while others can automat-
ically put it away. Typically, this feature is used when you expect the user to select
another item from the same menu after selecting this item.

What is a "hot" menu?
A "hot" menu means that the menu item is executed immediately when you press
the letter beginning the menu name (Item Label). Ring menus are always hot. Pull-
down menus are set to hot when the "Hold After Select" characteristic is set to "N."

If a menu contains more than one item that begins
with the same letter, can users select them by typing
the beginning letter?
In ring menus, the answer is no. In pull-down menus, items can be selected (with-
out execution) by typing the first character of the label if the "Hold After Select"
characteristic is set to "Y." This highlights the first occurrence of a menu item that
begins with that character. Pressing the same letter again selects the next menu item
that begins with that letter.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-21

Can I activate or deactivate menu items from within
the 4GL program?
Yes. Before any menu is displayed, it checks to see if the menu items are active or
not. "Normal" activation depends upon the "Y" or "N" and the Requires Rowid,
Cursor Item, or Cursor Total characteristics. However, you can also enter "S" into
any of these fields. If you do, the program calls the local function
menu_deactive passing the menu event name, and the numbers 1, 2, or 3
depending upon which of the activation fields (1 = rowid, 2 = cursor item, 3 = cur-
sor total) that the "S" appears in. This allows you to test each menu item against up
to three local conditions. If the menu_deactive function returns a "true," the
item is activated. If it returns a false, it deactivates the item.

Can I control whether or not a menu item is used from
within a 4GL program?
Yes. Before any menu is loaded into the display array, it checks to see if the menu
item should be used or not. "Normal" loading depends upon the "Y" or "N" in the
Requires Detail characteristic. A "Y" value here means that the item only loads if a
"detail" section is present. However, you can also enter "S" into the field for this
characteristic. If you do, the program calls the local function menu_chkput pass-
ing to it the name of the menu, the menu type, the event name, and the screen type.
If this function returns a "true," the item is put onto the menu.

Can I use the prog_ctl ringput and other ring
functions in programs using Pull-Down Menus to
control those menus?
Yes, but mostly No. Pull-Down Menus use an advanced version of the prog_ctl
ring menu library. If you use the scradv library to compile your program, it must
use the scradv library version of lib_ring.4gl to run Pull-Down Menus.

Currently these functions, such as ringput, ringpos, and ringpick, are
named in the same manner as those original functions and work largely in the same
way as documented. However, these libraries are evolving fairly rapidly and,
because of their marriage with the database, using these functions directly will
almost certainly result in ring menu emulsification. Also in the next release, these
function are planned to be completely rewritten to speed their operation and con-
serve program size. At this point, new function names are used.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-22 Pull-Down Menus

Can I use the prog_ctl menuput and other menu
functions in programs using Pull-Down Menus?
Yes. The pull-down menus are based on this menuing system, but their functions
have been completely rewritten and renamed to speed the menus and conserve
memory size. The lib_menu and menu_win files in prog_ctl function are
completely separate from the lib_pull pull_win file in scradv.

How do you set up pull-down menus so that the right
and left arrow keys open the pull-down to the right or
left of the current one?
A special function event called movemenu is contained in the Menu Control
library. Simply set your right and left arrows as function key items on the menu and
have them call the event "movement" with type "F" for function.

How do I define function keys to work a certain way
within a menu?
Function keys are treated just like any other menu item. They, of course, require an
Informix termcap that properly interprets the keys you want to use and this can be a
problem with some special keys such as "Page Up" or "Insert," but the arrow,
[ENTER], [ESC], and [DEL] keys are almost always supported.

The only differences between a Function key item and any other are the "Item
Style" which is set to "F" for function keys, and the definition of the menu item's
"translation" characteristics.

For function keys, the "language" is always set to "ALL." The "labels" are limited
to the character strings returned by the menuing system into the scr_funct glo-
bal variable. These strings include:

• left - for the left arrow

• right - for the right arrow

• up - for the up arrow

• down - for the down arrow

• page_up - for the page_up key

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-23

• page_down - for the page_down key

• accept - for the [ENTER] key

• cancel - for the "break" key

• escape - for the [ESC] key

• home - for the home key

Warnings about Function Keys:

[ESC] the "accept" key: You may encounter problems in attempting to redefine the
"accept" key. Functions are checked before display and hidden items are processed.
However, unless defined otherwise (specifically in the case of ring menus with
Hold After Accept set to "N"), most menu selections also generate an "accept"
value in scr_funct. If you have special function key "accept" processing, no
other processing takes place.

[DEL] the "delete" key: In pull-down menus that are set to "hold," that is, where
any menu item on them is defined with "Hold After Select" set to "Y," the only way
you can "put away" these menus is to use the delete key. If you redefine "delete"
within these menus, your user is unable to close them once opened.

How do I add new items to existing menus?
There are five steps:

1. Call up the program to create new menu items.

2. Find all existing items on that menu.

3. For display-type items, decide in what position on that menus you want the
new menu item to appear.

The easiest way is to add new menu items after existing ones, but sometimes
this may not be desirable.

4. If there is no "hole" in the existing numbering scheme in the position you
want the menu item, you must renumber the "higher-ordered" menu
items to make a hole.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-24 Pull-Down Menus

You do this by changing the items with a larger number in the Order/ID field
first: changing the 10 to 11, the 9 to a 10, the 8 to a 9 and so on. You must do
this in order not to create duplicate menu items. The system does not allow
duplicates, even temporarily.

5. Add your new menu item using an Order/ID number that positions the
item where you want it.

How do I create new function events for new menu
items to call?
New function events (as opposed to events that call new ring or pull-down menus)
are defined in the local function called menu_extra. This function contains
events for any ring or pull-down menu. It doesn't matter if the event is connected
with a displayed, hidden, or function key menu item. An empty function of this
name is used by the menu libraries if you do not define such a function yourself
locally.

Note

The event called is not the label that users see on the screen. The displayed label
can change based on the language variable. The event name is an eight-character
string defined along with the menu item.

This local "menu_extra" function should only contain a single CASE statement.
This CASE statement tests for the event name in the global "scratch" variable. It
then does the processing you need with that CASE statement or, more often,
"points" to other functions within your program that do the processing. When a
menu item is selected from either a ring or pull-down menu, the name of the event
called by the menu item is placed in the scratch variable. If that event is not found
in the internal event library of the menu program itself, it calls the "menu_extra"
function. The "menu_extra" function should then continue testing the contents of
the scratch variable and call the functions needed for those events.

For example, say you wanted to add menu items that called the events "special1"
and "special2." You first go through the steps for adding menu items and, in the
Event Name field, type "special1" or "special2." Be careful to pick unique, new
event names that aren't used internally. In the Event Type field, enter an "F" to tell
the system these were functions.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating New Menu Items 3-25

Then add a menu_extra function to your local code. This function looks like:

FUNCTION menu_extra()
CASE
 WHEN scratch = "special1"
 call function1()
 WHEN scratch = "special2"
 call function2()
END CASE

The functions referenced as "function1" and "function2" can be called anything you
want. Any number of such functions or any other 4GL commands are invoked after
the WHEN clause matching the event is called by the menu item. When users select
one of your new menu items, they are passed to the right functions within your pro-
gram by this CASE statement. For more information on events, refer to "Menu
Function Events in Pull-Down Menus" on page 3-42.

What if my ring menu is wider than the data entry form
on which the menu appears?
The displayed ring menu is truncated to fit in the width of your current window. If
there are more menu items than can fit in a given window, an ellipse (...) appears to
indicate more menu items are off the form. Users can move through the ring menus
to see the other items using the [SPACE BAR] or right and left arrow keys. Menu
items do not have to appear on the form in order to be selected by a single key-
stroke. If the user types the menu item keystroke, the command is executed and the
part of the ring menu containing the last selected item is displayed.

What if my pull-down menu is longer than my current
form?
Pull-down menus create their own overlapping window, so the size of the current
form is irrelevant to their display.

Can I know from within other functions what the last
menu item selected was?
Yes. This is the function of the "Event Class" characteristic of every menu item.
This characteristic sets the value of the global variable menu_item. When the
menu item is picked, the scratch variable is assigned the Event Name and at the
same time, the menu_item variable is assigned the Event Class value. So each

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-26 Pull-Down Menus

menu selection sets not one, but two different global variables that your programs
can use. Of these two, however, the scratch variable is the most temporary since
many different functions within the program affect its contents. However, the
menu_item variable is expected to be changed only by the selection of another
menu_item. Though obviously you can change it anytime you want within the
flow of your program, the minute you do so, you lose your ability to know some-
thing about the last menu item called.

The Event Class usually is not unique to a menu item, but instead, defines a group
or "class" of menu items that are functionally equivalent within the program. The
most common use for this characteristic in pre-defined menus is to make new menu
functions backwardly compatible with our original menuing system. In that system,
when you selected the "Add" menu item, the menu_item variable was set to
"add." However, in the new menus, there are many different commands that add
new documents. To tell existing programs that all of these different functions are
adding records, all of them set the "Menu Class" to "add."

Creating Custom Pull-Down
Menus For Specific
Programs
You can create custom versions of menus for specific programs. By selecting the
Program Menu option on the Define pull-down, you can eliminate items that are
not needed on a specific menu or change the way the menu functions. This displays
the Program Menu Definition form. The Program Menu Definition program itself is
both an example of Pull-Down Menus and a method by which you create them.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating Custom Pull-Down Menus For Specific Programs 3-27

When you access this program, the following form is displayed.

As you can see from looking at the menu line on the top of the screen, the ring
menu here is very different than the standard Mainring menu. This ring menu is a
variation created especially for this program because many of the options offered
on the full Mainring are simply not appropriate to this menu.

Note

Whenever you customize any menu in a program, you must customize all menus
in the program. This can be especially a problem with Browse menus, which
aren't directly connected to the originating ring menu.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-28 Pull-Down Menus

We can look at the menu items with which this special menu was created if we use
the Find command to get the pre-defined menu items used by this menu. You can
do this by entering "progmenu" on the Program Name line and "screen" on the
Screen ID line. Pressing [ESC] displays the following screen.

Menus can be customized for specific programs simply by adding or deleting menu
items found in the detail section of this form. Notice that only certain Mainring
commands are displayed in the detail section for this form. The Add(10) and Delete
(30) standard ring menu items from the Mainring menu have been eliminated for
the progmenu program. To do this, delete the lines that contain those commands.
These changes are made because there is not a need to add records in the header
section of this particular program. The module, program, and screen information is
created by the Form Painter when you define the screen form. The "Delete" com-
mand is also missing.

Note

Make sure that you do not delete all of the commands in the ring menu. At least
ONE ring menu command must be active when the program first loads.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating Custom Pull-Down Menus For Specific Programs 3-29

The functions of certain commands have also been changed for this program. For
example, the Update and Find commands normally call pull-down menus
(upd_menu and fnd_menu respectively), but here their related events call func-
tions. When the user selects "Update," they are automatically put into update on the
current record. When they select "Find," they are put into a blank form for entering
selection criteria. We have made these commands simpler for this particular form
because the user is never working with large groups of documents. Group updates
or re-sorts don't make any sense in this environment.

Other commands on the Program Menu Definition form have also been shortened.
The items that begin with brw_menu and cst_menu have been changed from the
standard menu. These are lines from the Browse Menu and custom pull-downs. For
example, since there is no "Browse" screen for this program, there is no View List
option. However, there is a Next and Previous Document option. Similarly, there is
no "User Defined Fields" in the custom menu because it simply doesn't make any
sense in this environment. Adding and Viewing Notes still remain because it does
make sense to have these functions with this program.

The Program Menu Definition Form
The Program Menu Definition form allows you to customize your menus and menu
items for each program in your application.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-30 Pull-Down Menus

Module Name: This field contains the name of the module directory of the pro-
gram whose menus you want to modify.

Program Name: This field contains the name of the program directory of the pro-
gram whose menus you want to modify.

Screen ID: This field contains the name of the program whose menus you wish to
modify. The screen ID is the name of the screen form without any filename exten-
sion.

Get Ring: This field contains the name of the menu you wish to modify.

The rest of the items on the Program Menu Definition form all deal with individual
menu items. Each of these characteristics are defined on the Menu Item Definition
form. They are displayed here so that you may change these characteristics on a
program by program basis. For more detailed descriptions of these fields, refer to
the Menu Item Definition form section.

Menu Name: This field contains the name of the menu that the menu item belongs
to.

Item ID: This field contains the Item ID of the menu item.

Item Description: This field contains the description of the menu.

Style: This field contains the style of the menu item. A menu item can have the
following styles: (D)isplay, (H)idden, (F)unction, (S)pecial.

Event: This field contains the action that takes place when the menu item is
selected.

Type: The event can be a (R)ing menu, (P)ull-down, or (F)unction.

E: ([ENTER] key required) This field allows you to determine if you want the
menu item to Hold After Select. Main ring menus generally have Y in this field,
while Browse ring menus have an N.

D: (detail required) This is the Requires Detail field. Here you determine if your
menu item can be used only if the screen form has a detail section. You can enter a
Y, N, or S.

R: (rowid required) This is the Requires Rowid field. If you want the menu item to
be deactivated when there is no current document enter a Y. You may enter Y, N,
or S in this field.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating Custom Pull-Down Menus For Specific Programs 3-31

C: (cursor item required) This is the Requires Cursor Item field. Enter a Y in this
field if you want the menu item to be deactivated only when there is no current
group of documents found by the Find command.

T: (total cursors required) This is the Requires Cursor Total field. If you want the
menu item to be deactivated when there are no documents selected at all, enter a Y.
N and S are also valid entries.

Defining A Custom Menu
There are only seven steps in creating a custom menu for a program. This process
assumes that you have used the Form Painter to create screen forms in the program.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-32 Pull-Down Menus

1. Run the Program Menu Definition form.

2. Find the program who’s menus need to be customized.

Typically, for main ring menus this is the main form that starts the program.
For browse rings, it is the browse form. Execute Find, enter the module, pro-
gram, and screen name to select that form.

3. Update the Program Menu Definition form.

When you select the Update command from the command line, you are placed
in the "Get Ring:" field. This field contains the name of the ring menu you want
to customize for this program. You then press [ENTER]. When you press
[TAB] or [ESC] to get down to the detail area, the detail section of the form
will be filled in with the menu items defined for that ring menu.

Note

You only need to type in the ring name in the Get Ring field the first time you
bring in a set of ring menu items. After that, you can update items by simply
going onto the next step and pressing [TAB]. If you call in another ring menu, it
writes over any other additions or changes you have made to this array.

4. Press [TAB] to move down into the detail array.

At this point, the items for the ring menu you have specified in the Get Ring
field and any dependent menus appear. You can now move through them to see
all of the items as defined in the Menu Items Reference table.

5. Delete or Insert new lines.

To eliminate any unwanted menu items for this particular program (module,
program, screen ID), simply use the Informix Delete Line key (F2 in most
Informix termcaps). You can also Insert lines, by pressing the Insert Line key
(F1 in most Informix termcaps) to open a space in the array and use the Zoom
command to look directly at the Menu Items Reference file and pick items from
it to bring into the array. This is most useful when you delete an item you want
or when you want to customize a menu not directly connected to the starting
ring menu. You can bring in items from that menu into the current form, one
item at a time.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating Custom Pull-Down Menus For Specific Programs 3-33

6. Change any menu characteristics.

Any characteristic can be changed except for the description, which always
shows the original name of the menu item. However, you must make sure if
you change the Menu Name and Order Items that there is an Item in the Menu
Items Reference file for that specific Name and Order. If not, no language char-
acteristics can be linked with your menu item. In general, you should only
change characteristics to the right of the Description and use the Name and
Order fields for Zooming. Most typically, change the event names and types
called by menu items and perhaps their activation characteristics.

Note

You cannot change the order to reshuffle menu items. The Order is linked to the
Menu Items Reference file and must point at the related item. It doesn't have to
work in the same way, but it uses the language characteristics of that item.

7. Change any "Special" menu items.

Items defined with an "S" do not appear when programs are run unless their
style is changed to [D]isplay, [H]idden, or [F]unction key. These items exist in
the Menu Items Reference file so you can change them here.

8. Make sure all menus are referenced.

If the first ring menu is custom, all menus called in the program must appear in
this custom detail table. If the menu isn't linked directly to the main ring, you
can use Zoom to bring in its menu items one at a time, or, more efficiently, go
to another screen in the program and call in the other ring menu. This last
method is used for Browse screens. If you are using a Browse menu, you have a
browse form, so select that form with the Find command and then type
Brw_menu in the Get Ring field. This displays all the browse menu items.

Menu items do not have to appear with the specific screen in which they are
used. Any secondary screens (such as Add-Ons) can be used to create these sec-
ondary menu additions to the program.

Make sure you test all menus after defining them.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-34 Pull-Down Menus

Defining a Custom Ring Menu
You can create your own unique ring menus to run within programs if you desire.
However, we should note that the best programs are those that have consistently
named menu items in a dependable order. It may be possible to create a new menu
for every program, but it isn't necessarily a good idea.

To define a completely new ring menu, do the following:

1. Define the ring menu items using the Menu Items Definition form.

Give your ring menu a unique, new name. You can use items that call functions
on other ring menus and which use identical language labels. What makes a
ring unique is the name you give it. What makes each item unique is the
Order/ID number.

2. Define any unique pull-down menus by defining the items on them.

A unique ring menu can call existing pull-downs.

For example, you could create new ring that had its own "Custom" item on it
which accesses the User Control functions by calling the "cst_menu" pull-down
menu as its event. Only if the pull-down menu is new, would you have to create
new items defined by a new name.

3. After all items are defined, add the put_scrlib function in your
before_init trigger.

The format would be:

call put_scrlib("ringname","new_ring_name")

where "new_ring_name" is the name you have assigned to your custom ring
menu. This menu is then used to start the program instead of the default ring
menu.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating Custom Pull-Down Menus For Specific Programs 3-35

Linking a Custom Ring Menu (other
than Mainring) into Your Program
If you create a custom ring menu, you need to take a couple of steps to link your
menu into your program. If you just want to use the standard Mainring menu, then
you do not have to do anything other than linking in the custom library.

To use any ring menu other than "Mainring," (the program default) you must add a
before_init trigger that stores the name of the ring menu using the
put_scrlib function and the scrlib key name ringname.

For example, if you want the program to use the ring menu "Oldring," which basi-
cally works just like the original ring menu generated by Fitrix Screen, add the fol-
lowing line to your before_init trigger.

call put_scrlib("ringname", "Oldring")

This stores the value "Oldring" under the key ringname. When the generated pro-
gram runs, it uses the get_scrlib function to get the name of the ring menu to
begin the program with.

Only if you don't store any value in "ringname" does the program use Mainring by
default.

Note

If the ring menu specified in your call to the put_scrlib function hasn't been
defined in the Menu Items Definition form, the program fails when it tries to
open that form.

Calling a Ring Menu From Within a
Program
You can also call different menus programmatically from within a program by
using the gen_menu() function. This allows you to, for example, display a new
screen from within a program and add its own unique ring menu to it. This function
displays either ring menus or pull-down menus depending upon the menu_type
flag.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-36 Pull-Down Menus

To do this, all you have to do is put the call to the gen_menu() function in the
trigger that occurs at the point you want the menu to appear. It is also a good idea to
store the name of the menu you are calling using
put_scrlib("menuname",yourname), but this is not necessary for the
menu to work. It is, however, helpful for people expecting to find the name of the
current menu in that variable.

The syntax of the gen_menu() function is:

call gen_menu(ringname, enter_flag, menu_type).

ringname: a variable or string that contains the name of the ring menu you want to
call.

enter_flag: is "Y" or "N" or a variable containing one of those values. This value
is the same as you would use on the "Hold Upon Select" value in defining a call to
a ring menu item. A ring menu that acts like the main ring menu is defined with a
"Y." A ring menu that doesn't recognize the [ENTER] key like the Browse menu is
defined with an "N" in this position. A pull-down menu with a "Y" waits for you to
press [ENTER] to select an item. A pull-down with an "N" is hot.

menu_type: is "R" or "P" for a ring menu or a pull-down. This determines how
the menu displays. There is no basic difference in the way menu items are con-
structed for these two different menus. You can, theoretically, display any menu as
a ring menu or a pull-down depending on which menu_type flag you use. However,
a ring menu does work better if you have a "O" item to show the "name" of the ring
menu before the items you select and label "help" text that displays a help message
under the ring menu item as it is displayed.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating Custom Pull-Down Menus For Specific Programs 3-37

Example:

call gen_menu("Mainring","Y","R")

This call displays the default main ring menu at the point in the program it is called.
The called menu returns control to your base program only when the new menu is
exited.

Example:

call gen_menu("Brw_ring","N","R")

This call displays the browse menu. This makes sense if you first open a browse-
type screen form.

Example:

call gen_menu("add_menu","N","P")

This displays the add_menu. The menu is "hot," that is, the items on it could be
selected simply by pressing their first letter.

Note

Menu items that normally "hold" their menu so that they return to it after they
are selected do not do so if called directly with the gen_menu() function. All
menu items simply execute. Right and left arrows that usually bring up adjoining
menus will also not work if they "pop-up" from a menu. They rely upon the con-
text of a calling ring menu to tell them what "left" and "right" means.

Questions About Defining Program-
Specific Menus

Can I delete menu items I don't need for a specific
program?
Yes, this is one of the most common ways of modifying menus on an program-spe-
cific basis. To delete menu items, you follow four steps:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-38 Pull-Down Menus

1. Go to the Program Menu Definition form.

Use the Find command to find the screens in the program you are working with.

2. Update the main screen and type the starting ring menu name into the Get
Ring field.

This ring menu gets all the pull-down menus that it calls.

3. Press TAB to edit the detail lines of the various menus.

4. Move to the menu item you wish to eliminate and press the Informix delete
key. This is usually F2.

Can I change the way a given menu item functions on
a program-specific basis?
Yes. Any characteristic of a menu item except the menu item description and the
language characteristics can be changed on a program by program basis.

The most common use for this feature is changing the events that a menu item calls.
For example, if the various "update" options on the update pull-down menu aren't
relevant, you can change the "Update" command on the Mainring menu to call the
upd_one function directly instead of first calling the update pull-down.

To change a menu item function for a specific program, you follow four steps:

1. Go to the Program Menu Definition form. Use the Find command to find
the screens in the program you are working with.

2. Update the main screen, typing the starting ring menu name into the Get
Menu field.

This ring menu gets all the pull-down menus that it calls.

3. Press TAB to edit the detail lines of the various menus.

4. Move to the menu item you wish to change using the arrow key. Use the
[ENTER] key to move to the field you wish to change.

If you are changing the Event Name, remember to also change the Event Type
to match.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Creating Custom Pull-Down Menus For Specific Programs 3-39

Can I create a new menu item for the local program
alone?
Yes. This is done in two steps:

1. First, you must define your new item in an existing menu using the Menu
Items Definition form.

You do this the same way you add any new menu item, but instead of coding
that Menu Style with an "D,""H," or "F" (display, hidden, function key), you
code it with an "S" indicating a "special" menu item. Menu items coded with an
"S" do not affect any program calling the generic menu. Using any other code
when adding a menu item causes the new item to appear in all programs using
the generic menu. For "S" style items, it is a good idea to reference the program
it is for in your item description.

2. Load the menu into the Program Menu Definition form and change the
"S" to a usable style, that is, a "D,""H," or "F" depending on the type of
menu item you want it to be.

If you are adding many new items or making radical changes, it may be easier
to create an entirely new set of menu items for your program giving them new
menu names. This can be done by copying any existing menu items. Using "S"
style items only makes sense when only a few items are different.

Do I have to define all menu items in the generic file
before making them program-specific?
Yes. The Menu Name and Menu Order/ID used in the program for defining pro-
gram-specific menus must refer to an existing item in the general Menu Items table.
This is necessary because only the Menu Items table has the language characteris-
tics that are needed to allow all menu items to function. You can change any other
menu characteristics while creating program-specific menus except the menu item
description and these language characteristics.

Can I use two different versions of the same menu
within a program?
Not in this release. Each menu can only be used in one version. If you need two dif-
ferent versions of the same menu, you first have to copy the existing version using a
new menu name in Menu Item Definition program.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-40 Pull-Down Menus

Troubleshooting Pull-Down Menus
When the menu item is selected it just blinks and doesn't do anything.

Pull-Down Menus are not finding the event called by the menu. This could be
caused by a misspelling of the event name, or by mistyping an event.

Moving Pull-Down Menus to
a New System
Assuming that you have developed your code and program on one system and are
moving it to another, you need to understand the various components of the system
and how they work together.

First, programs using Pull-Down Menus require the User Control Libraries. The
User Control Libraries include the database structure and the code needed to drive
different aspects of this system.

The Enhancement Toolkit includes the basic data for driving standard forms of
menus such as Mainring, Brw_ring, Old_ring and the various pull-down menus, but
if you create new menu items or program-specific versions of these menus, you
must move the database descriptions of these items from your machine to the user’s
machine.

This is done fairly simply using INFORMIX-ISQL and the "load" and "unload"
commands. The "unload" command saves an ASCII version of the menu data from
the database into a small file. The "load" command can then load that information
into the UCL table at the user's site. You would use the "Query-Language" option
in ISQL and select the database before entering the following commands.

The commands for saving the complete "Menu Items" file from your development
system is:

unload to "cgmcmndr.unl" select * from cgmcmndr
unload to "cgmcmndd.unl" select * from cgmcmndd

The command for saving any program-specific menus are:

unload to "cgmmenud.unl" select * from cgmmenud

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Moving Pull-Down Menus to a New System 3-41

These commands create three files called cgmcmndr.unl, cgmcmndd.unl,
and cgmmenud.unl, which are then moved to the user’s machine.

To load these files on the user’s machine you first have to delete any existing data
in the local user’s version of these files. To do this, enter:

delete from cgmcmndr where 1 = 1
delete from cgmcmndd where 1 = 1
delete from cgmmenud where 1 = 1

Then load the new data for these files using the following:

load from cgmcmndr.unl; insert into cgmcmdnr
load from cgmcmndd.unl; insert into cgmcmndd
load from cgmmenud.unl; insert into cgmmenud

This completes the loading of the new files into the user’s machine.

If you want, unload just part of the data from the file, for example, unload just a
specific program’s program menu from cgmmenud using the following:

unload to "cgmmenud.unl" select * from cgmmenud where prog = "my_program"

Here, "my_program" is the name of the program for which you have defined a vari-
ation on an existing ring menu. You then don't have to delete any information in the
user’s system. All you have to do is load the new information using:

load from cgmmenud.unl insert into cgmmenud

Note

Be sure that anytime you define new commands, you unload both the cgmc-
mndr table and the cgmcmndd table. The first table contains the definition of
the menu item itself. The second contains the "language" characteristics of the
item. Both are required for a new menu item to work.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-42 Pull-Down Menus

Menu Function Events in
Pull-Down Menus
The following "events" are encapsulated in the menuing system itself. The names
of these events are what is entered into the "Event Name" field when defining a
menu item for the Event Type "F," for "function" (as opposed to an event which is a
menu of one kind or another). Any function event not appearing in this list but
appearing in a menu item must be defined in the local function menu_extra().

General Ring Events
movemenu: This event is used only from an open pull-down menu. It closes the
current pull-down menu and moves to the ring command next to it. If that ring com-
mand calls a pull-down, then that pull-down displays. This event is typically used
only for right and left arrow keys.

findquit: This event finds the "quit" or "exit" item on the current ring menu and
calls it. It is used primarily by "break" function keys. This event works by finding
the menu item that calls the "quitmenu" or "prg_quit" events.

findwind: This event finds the "window" command on the ring menu. It is used
primarily by the "tab" function key.

Mainring Events
addone: This event calls the functions that allow the addition of a single docu-
ment on the current form. This is the equivalent of the original menus "Add" com-
mand. In Mainring, it is called by the "Add/Single Document" option.

addmany: This event calls the functions that allow the addition of many docu-
ments on the current form. This is the equivalent of the original menus "Add" com-
mand called over and over again. In Mainring, it is called by the "Add/Many
Documents" option.

copyone: This event makes a copy of the current document and puts you into the
update mode on that document. It requires a "current rowid" to function. Used by
the "Add/Document Copy" option in Mainring.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Menu Function Events in Pull-Down Menus 3-43

copymany: This event makes a copy of the current document and puts the user in
update mode. When the user finishes update, a copy of that most recent version of
the document is created and the user is put into update mode on that. In Mainring, it
is called by the "Add/Similar Documents" option. This event requires a current row
id in order to function.

upd_one: This event updates the current document on the screen. It requires a
current row id. This event is called in Mainring by "Update/This Document"
option.

upd_all: This puts all currently selected documents into update mode. It is called
by the "Update/All Documents" option in Mainring.

del_one: This event deletes the current document. It is called by the "Delete/This
Document" in Mainring.

del_all: This event goes to each currently selected document and asks if you want
to delete it. This function is called by the "Delete/All Documents" option in Main-
ring.

new_grp: This event takes the user into a search criteria form (Query-By-Exam-
ple). It calls the functions called by the original "Find" command.

sort_grp: This event allows the user to use the form to specify which data element
to sort on. It is called by the "Find/Sort Group" option in Mainring.

brw_list: This event displays the browse window. It is the equivalent of the origi-
nal "Browse" command.

next_one: This event displays the next document in the current group. It is the
equivalent of the original "Next" command. It is now called by several different
commands, including the down arrow function key from Mainring.

prev_one: This event displays the previous document in the current group. It is
the equivalent of the original "Prev" command. It is now called by several different
commands, including the up arrow function key from Mainring.

view_det: This event moves the cursor to the detail section of the current docu-
ment and allows the user to scroll through it without being in the update mode. It is
the equivalent of the old "Tab" command.

spec_cmd: This event calls the Option menu and displays it. It is the equivalent
of the original "Option" command.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-44 Pull-Down Menus

oth_prgm: This event calls the user defined escapes. It is called by the
"Options/Other Programs" option from Mainring. Previously this function was
available only as a User Control function key.

todolist: This event calls the user-definable to-do list. It is called by the
"Options/To Do List" option from Mainring. Previously this function was available
only as a User Control function key.

prg_info: This event calls information about the program. It is called by the
"Options/Information" option from Mainring. Previously this function was avail-
able only as a User Control function key.

prg_ack: This event calls the program acknowledgement screen. It is called by the
"Options/Acknowledgements" option from Mainring. Previously this function was
available only as a User Control function key.

sys_esc: This event calls the operating system prompt. It is called by the
"Options/Escape to System" option from Mainring. Previously this function was
available only as a User Control function key.

prg_hlp: This event calls the program help. It is called by the "Options/Help"
option from Mainring. Previously this function was available only as a User
Control function key.

add_flds: This event calls the user-definable fields function. It is called by "Cus-
tom/Additional Fields" option in Mainring. It was previously available only as a
User Control function key.

see_flds This event calls the viewing of user-definable fields function. It is called
by "Custom/Add. Fields (View)" option in Mainring. It was previously available
only as a User Control function key.

edt_note: This event calls the user-definable notes function. It is called by "Cus-
tom/Document Notes" option in Mainring. It was previously available only as a
User Control function key.

see_note: This event calls the viewing of user-definable notes function. It is
called by "Custom/Doc. Notes (view)" option in Mainring. It was previously avail-
able only as a User Control function key.

hot_keys: This event calls user-definable function keys. It is called by "Cus-
tom/Hot Keys" option in Mainring. It was previously available only as a User Con-
trol function key.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Menu Function Events in Pull-Down Menus 3-45

chg_func: This event calls the user-definable functions. It is called by "Cus-
tom/Change Functions" option in Mainring. It was previously available only as a
User Control function key.

list_err: This event calls the error list for the current program. It is called by "Cus-
tom/List Errors" option in Mainring. It was previously available only as a User
Control function key.

req_feat: This event calls the feature request form. It is called by
"Custom/Request Feature" option in Mainring. It was previously available only as a
User Control function key.

prg_stat: This event calls the program status form. It is called by "Custom/Pro-
gram Status" option in Mainring. It was previously available only as a User Control
function key.

prg_quit: This event exits from the current program. It is called by "Quit/Exit
Program" option in Mainring.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

3-46 Pull-Down Menus

4-1

4
Program Control
Library

This chapter describes the functions available in the Program Control Library. The
Program Control Library is included with the purchase of the Enhancement Tool-
kit. The Program Control Library contains a variety of useful functions designed to
give you even more flexibility when creating programs. The Program Control
Library consist of the following features.

n Dynamic menus

n Dynamic ring menus

n Scrolling input fields

n Warning windows

n Application’s C Library

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-2 Program Control Library

Overview of the Program
Control Library
The Program Control Library contains function sets that aid you in building a
friendly user interface. In general, these functions extend the features provided by
the INFORMIX-4GL programming language. Usually the interface style and func-
tionality presented by these tools requires calls to the C library, which contains a set
of C language functions designed to allow for ready interaction with UNIX from an
Informix program.

To utilize the Program Control Library, you need to add the library to your list of
libraries in the Makefile of the program that calls any of these functions. The
$fglibdir/lib/prog_ctl.a library should come just before $fglib-
dir/lib/standard.a in the list of libraries in the Makefile.

The CASE Tools Enhancement Toolkit needs to be present on any system that uses
these Program Control Library functions. This means that if you incorporate these
functions in your applications your customers must have CASE Tools Enhancement
Toolkit or the Code Generator on their system.

The function sets in the Program Control Library include:

Dynamic Menus: This function set is contained in two source files:
lib_menu.4gl and menu_win.4gl. Dynamic menus gives you the ability to
build menus on the fly without knowing in advance how big the menu window
should be or how many options are on the menu. The menu is automatically sized
for optimal display size and page distribution. You can provide guidelines for the
sizing/display optimizer to follow to size menus according to known parameters
(these are followed unless they are unrealistic for the size and number of the menu
items). You can optionally allow the user to select several menu items at once or
only a single menu item. There are additional options that allow you to supply
menu header lines, Zoom capability from the menu, stacking menus, plus more.
The dynamic menus function set is designed much like the textedit() function
set in the standard Fitrix Screen Informix library. It can be used as a replacement
for "display array" in many instances.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-3

Dynamic Ring Menus: This function set is contained in lib_ring.4gl. The
dynamic ring menus function set is designed just like the dynamic menu function
set but provides a similar capability for building dynamic, paged ring menus. This
function set provides a specialized subset of the dynamic menu set. The dynamic
ring menus can be used to replace the informix "menu" instruction.

Scrolling Input Fields: This function is contained in the 4GL source file
fg_getfld.4gl. It provides a function that allows you to collect input in a
"reverse" attribute field at any place in the current window. The primary function
allows for input of data beyond the size of the displayed field length by scrolling
the field automatically as the user types in data. You must specify the current win-
dow position, the relative position of the input field, the size of field, the maximum
length of the data that can be entered, and any beginning value for that data. You
get back the new data and a special code indicating what key was used to exit the
scrolling field.

Warning Windows: This function set allows you to pop up a dialog box with a
short message of your design sized and centered in the screen. There are two inter-
face styles: one provides the user with a YES/NO/CANCEL response option, the
other is a simple OK prompt for any key to continue. This function set is designed
much like the dynamic menu set in the way it is invoked.

Dynamic Menus
This suite of menu routines is used to build, display, and select from menus that can
be dynamically maintained. Typically the dynamic menu is built with a series of
calls to menuput(), which adds a menu item to the menu for each call. Next
menupick() is called returning the selected item in scratch and the index of
the item selected (0 if [DEL] was pressed or an error was encountered). The menu
automatically closes once a selection is made unless you make a call to menu-
hold() before calling menupick(). If you choose not to automatically put the
menu away you must do so manually by calling the function menuclose().

Once a menu is open (displayed), any successive calls to any menu function other
than menupick(), menusget(), menuget(), menunext(), or
menuactive() start on the next available menu (up to 10 menus can be open at a
time).

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-4 Program Control Library

An alternate way of building a menu is by letting scratch equal an SQL state-
ment and calling menusel(), which makes the database selection, and then call-
ing menuput() for each row found.

You can allow Zooms from the menu in which case the current item is returned in
scratch, and scr_funct is set to "zoom". If Zoom is set for a menu you must
check for scr_funct = "zoom" on a successful return to identify a Zoom
selection from others. Usually a Zoom menu should also be a "hold" menu. Be sure
to call menuhold().

You can retrieve a list of all the menu items in a menu with the function
menuget(), which starts by returning menu item one in scratch and then
returns each menu item for each call. You may only get items from a "held" menu
since menuget() only works on the current menu.

You can define the help text that should be made available from the menu by set-
ting the help module, program, and number explicitly with a call to menuhelp().
If you do not call menuhelp then you must process help locally. When [CTRL]-[w]
is pressed the menupick() function for the menu returns with the current menu
item number and the value of scr_funct is "help." The menu window is not
closed. If you wish to use the default help for a menu, call menuhelp() with a
null module argument.

By calling the function menumany(), you mark the menu as a menu from which
multiple items may be selected before exiting. Pressing [ENTER] selects and unse-
lects items. Once done [ESC] brings up a simple "Done Selecting?" prompt. "Yes"
exits the menu with the current selections while "No" and "Cancel" allow you to
continue selecting.

To retrieve a list of selected items you may call menusget(), which returns each
item in succession that was selected (in scratch) and returns the menu item num-
ber as long as there was another item to return. Once there are no selected items left
to return it returns zero. The second return value reflects the order in which the
menu items were selected.

Menu items can be activated and deactivated in order to allow or prevent selection
of the menu item. The default is active. You call the function menuactive(),
which requires an argument to specify the item to activate/deactivate and an argu-
ment to specify to activate or deactivate. By passing a null item argument the last
item put onto the menu is operated on.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-5

To build the header strings for the menu, you call the function menuhead(). The
menuhead() function requires three arguments. The first is the header string. The
second is how it must be positioned on the menu. That is, either centered ("center"),
right justified ("right"), left justified ("left" - the default), or as a pattern ("pattern").
A pattern type heading takes the first character of the heading and repeats it for the
width of the menu. The last argument is the heading attribute, which can be "high"
for reverse, "dim" for blue, or "normal" for white. (A call to menupick() with a
non-null header string automatically calls menuhead() for the header plus a
dashed line.)

You can specify the default row/column position (over the built in default) by call-
ing menupos(). If you need to be sure the window is at least a certain width you
can also specify the min_width for the window with the menupos() call.

For special pull-down type menus you can call menuwrap() to turn left and right
wrap off. In this case scr_funct is set to "right" or "left" and the menu returns
with no item selected.

You can make a menu window current by calling menucurrent(). Also, any
call to menupick() always makes the menu window current in order to allow the
controlling application to switch between application windows without problem.

Each menu is divided into columns and sized for optimal display.

In order to make a menu item the current cursor position on the menu before enter-
ing the menu you can use a call to menunext() specifying the menu item that
should be active.

To only display the first page of a menu without prompting for selection you can
call menuview(). You must use menuclose() to close this menu.

Function Notes

• The maximum size menu item is 40 characters.

• The maximum number of menu items is 500.

• The maximum number of nested menus is 10.

• The maximum number of heading lines per menu is 10.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-6 Program Control Library

Summary of Dynamic Menu Functions

menuput() — add a menu item to the menu

Arguments: menu_item — text to appear for the menu item.

Returns: none.

Notes: If the menu item is NULL, an item line of dashes is automatically put
in place of the text. The dashed line is not selectable as a menu item. If the
menu item is SPACES, a blank line is used as a non-selectable menu item. If
the menu item is "(see scratch)" then the contents of scratch are used for
the menu item. A new menu is opened if the current one is already open.

menuhead("header_str", "type", "attribute") — add a header
line for the menu.

Arguments: header_str — header text string. type — left, right, center,
pattern. attribute — high, dim, normal.

Returns: none.

Notes: If the menu item is "(see scratch)," then the contents of scratch
are used for the menu item. A new menu is opened if the current one is already
open.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-7

menusel() — add items to the menu from an SQL query.

Arguments: none. Expects an SQL query in scratch.

Returns: num_items — number of items put onto the menu.

Notes: menusel() expects an SQL query that is prepared and opened as a
cursor putting each element into the menu and returning the number of ele-
ments put into the menu. A new menu is opened if the current one is already
open.

menupick(["header_str"]) — select an item from the menu.

Arguments: header_str — optional header text.

Returns: item_num — the item number selected plus the item selected in
scratch.

Notes: If header_str is NULL then no automatic header is used (already
set with menuhead(), or no header desired). If no header lines have been
defined, and a header string is supplied to menupick() then a default header
is built automatically with one or two lines to display ESC/DEL/ENTER func-
tion messages followed by a line of "=" characters. If the header line is sup-
plied, it is added to the existing header (default of programmer defined),
centered, and followed by a single dashed line. The selected menu item number
is returned (0 if no selection) and the menu item text for that item is returned in
scratch. This function does not start a new menu.

menuhold() — prevent the menu from closing once a selection is made.

Arguments: none

Returns: none

Notes: Only hold the menu if a selection has been made. Pressing [DEL] to
exit without selection always closes the menu. A new menu is opened if the
current one is already open.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-8 Program Control Library

menuclose() — close an open menu.

Arguments: none

Returns: none

Notes: Closes whatever is the current menu and its window.

menuhelp(help_module, help_program, help_number) — set the
help module, program, and number for the menu

Arguments: help_module — help text "module" key to use for the menu.
help_program — help text "program" key to use. help_number — help
text "number" key to use.

Returns: none

Notes: The module, program, and number are the keys for context sensitive
help ([CTRL]-[w]) from the current menu. It starts a new menu if the current
one is already open. The menu returns for local help processing if menu-
help() is not called. A null module argument causes the default help for the
menu to be used.

menuget() — get the list of items on the menu.

Arguments: none

Returns: true/false — true if next element is in scratch.

Notes: Starting at one returns the next menu item in scratch until all ele-
ments have been returned. The true/false return value indicates whether it is
done returning elements. The counter used by menuget() is re-initialized to
one upon a return from menupick(). This function does not start a new
menu.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-9

menusget()— get the list of selected items on the menu.

Arguments: none

Returns: item_number — the menu item returned (0 if none).
order_number — the relative order number of the element.

Notes: Starting at one returns the next selected menu item in scratch until
all selected elements have been returned. The first returned value gives the
menu item returned (0 if done), the second return value returns the relative
order that the item was selected. The selected items are re-marked as unselected
once they have been returned by menusget(). The counter used by menus-
get() is re-initialized to 1 upon a return from menupick(). This function
does not start a new menu.

menuzoom() — set a flag to allow Zooms from this menu.

Arguments: none

Returns: none

Notes: Starts a new menu if the current one is already open.

menupos(start_row, start_col, menu_width)— set the default
window coordinates.

Arguments: start_row — the desired upper row position of the menu.
start_col — the desired left column position. menu_width — the desired
menu width.

Returns: none

Notes: The starting row, column, and width are only used if a menu with those
dimensions is possible given the number of items on the menu. A new menu is
opened if the current one is already open.

menumany()— set the menu to allow for selection of multiple items.

Arguments: none

Returns: none

Notes: A new menu is opened if the current one is already open.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-10 Program Control Library

menuactive([menu_item], act_level)— activate or deactivate a menu
item.

Arguments: menu_item — optional menu item to activate (if null activate
current item.) act_level — activation level (-1 = non-active, -2 = non-item,
0 = active, > 0 = selected order).

Returns: none

Notes: If the menu item argument is null then the activation status is applied to
the current menu item (for instance, immediately following a call to menu-
put()).

Activation status: -2 never selectable, -1 not currently selectable, 0 currently
selectable, >0 selected (value is relative selection order). This option does not
start a new menu.

menuwrap() — turn on or off the left/right movement.

Arguments: none

Returns: none

Notes: Left and right movement does not wrap, instead it returns with
scr_funct set to "left" or "right." It starts a new menu if the current one is
already open.

menucurrent() — make the menu window current.

Arguments: none

Returns: none

Notes: Makes the current menu window the active window (can be used to
redisplay the current menu if covered by some other window). This function
does not start a new menu.

menunext(item_num) — preset the current menu item.

Arguments: item_num — menu item number to make active.

Returns: none

Notes: Automatically pages the menu if the requested menu item is not on the
current page. This function does not start a new menu.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-11

menuview() — You must use menuclose() to close this menu when done. A
new menu is opened if the current one is already open.

Dynamic Ring Menus
This suite of ring menu routines is used to build, display, and select from ring
menus that can be dynamically maintained. Typically, the ring menu is built with a
series of calls to ringput(), which adds a ring menu command to the ring menu
for each call. Next ringpick() is called to display the ring menu and prompt for
the command selection returning the selected ring menu command in scratch
and the index of the command selected (0 if [DEL] was pressed or an error was
encountered). ringpick() is called each time the program prompts for a com-
mand selection from the ring menu. Up and down arrow keys are also returned
from the ring menu to allow for flow control.

Basically the dynamic ring menu function set is designed to imitate the dynamic
menu function set described above. Most of the function calls are structured the
same, and the general methods for building and invoking the menus are the same.
The ring menus are more limited in size and scope being a specialized horizontal
type of menu. At most, 20 ring menu commands can be used.

Once a ring menu is opened (displayed), any successive calls to any menu function
other than ringpick(), ringnext(), or ringcurrent() start on the next
available ring menu (up to 10 ring menus can be open at a time).

You can define the help text that should be made available from the ring menu by
setting the help module, program, and number explicitly with a call to ring-
help().

You can specify the default row/column position (over the built in default) by call-
ing ringpos(). If you need to be sure the window is a certain width you can also
specify the width for the window with the ringpos() call.

You can make a menu window current by calling ringcurrent(). Also, any
call to ringpick() always makes the menu window current in order to allow the
controlling application to switch between application windows without problem.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-12 Program Control Library

In order to make a ring menu command the current cursor position on the ring menu
before entering the menu, you can use a call to ringnext() specifying the ring
menu command that should be active. The menu is paged as needed to display the
requested command.

If all ring menu commands cannot be displayed on the screen at once, then they are
paged right and left with ellipses to indicate that the menu extends in that direction
as appropriate.

The ring menu always compresses the space between ring menu items to make
them fit on a single menu "page." It leaves as much as three spaces (the default)
between items if all can fit and adjusts down to one space in an attempt to make the
items all fit. In cases when all items fit on a single menu page, you can still reduce
the spacing between items to less than three. To do this call ringspace() with
the desired spacing. Your requested spacing always gets overridden to make the
menu items fit.

Summary of functions

Function Notes:

• The maximum size ring menu command is 20 characters.

• The maximum number of ring menu commands items is 20.

• The maximum number of nested ring menus is 10.

ringput(ring_item, ring_message) — add a command to the ring
menu

Arguments: ring_item—command name. ring_message—action
message to appear on prompt line.

Returns: none

Notes: If the ring menu command item is "(see scratch)" then the contents
of scratch are used for the command. If the action message is "(see
scratch)" then the contents of scratch are used for the action message.
This function starts a new ring menu if the current one is open.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-13

ringnext(ring_item) — preset the current active ring menu command.

Arguments: ring_item—ring menu command number to make active.

Returns: none

Notes: Automatically pages the menu if the requested menu item is not on the
current page. This does not start a new menu.

ringpick([ring_name]) — activate the ring menu for command selection.

Arguments: ring_name—optional ring menu name.

Returns: cmd_number—the ring menu command number selected plus the
command selected in scratch.

Notes: If ring_name is NULL then no ring menu title is used. The selected
ring menu command number is returned (0 if no selection) and the command
name is returned in scratch. This does not start a new menu.

ringhelp(help_module, help_program, help_number) — key the
help text for the ring menu.

Arguments: help_module—help text "module" key to use for the menu.
help_program—help text "program" key to use. help_number—help
text "number" key to use.

Returns: none

Notes: The module, program, and number are the keys for context-sensitive
help ([CTRL]-[w]) from the current menu. This starts a new menu if the current
one is already open.

ringclose() — close the current ring menu.

Arguments: none

Returns: none

Notes: Closes whatever is the current menu and its window.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-14 Program Control Library

ringpos(start_row, start_col, menu_width) — position and size
the ring menu (defaults).

Arguments: start_row—the desired upper row position of the menu.
start_col—the desired left column position. menu_width—the desired
menu width.

Returns: none

Notes: The starting row, column, and width are only used if a ring menu with
those dimensions is possible given the number of items on the menu, the length
of the ring menu commands, and the ring menu name (usually no problem).
This starts a new menu if the current one is already open.

ringcurrent() — make the ring menu window current.

Arguments: none

Returns: none

Notes: ringcurrent makes the current ring menu window the active win-
dow (can be used to redisplay the current menu if covered by some other win-
dow). This function does not start a new menu.

ringspace(space_cnt) — sets a default spacing for the ring menu items.

Arguments: space_cnt—desired spaces between items (1, 2, or 3).

Returns: none

Notes: Requests a default spacing for the ring menu items. This function does
not start a new menu.

Scrolling Input Fields
The scrolling field function is used to allow for data entry in a display space smaller
than the length of data that can be entered. For example, if you have a small screen
where there is only room for a data input field of 20 characters but where the data
can be 30 characters, you can use the scrolling field to allow the user to view and
update all 30 characters of data. The largest data field that can be input is 250 char-
acters.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-15

To run the function you can pass it an initial string value for the field (optional).
You must specify the row and column starting position of the field relative to the
window in which the scrolling field is used. You must also specify the position of
the window on the terminal screen (the coordinates used with the open_window
instruction). Although one set of coordinates would be possible, it makes the pro-
gram less maintainable if your window size and position changes as you enhance
and change your program. You also must specify the size of the scrolling field dis-
play space and the length of the character string to be entered.

When called, the scrolling field editor takes over until an exit action is taken. The
field is displayed in reverse attribute. Within the scrolling field editor, you can
move left and right with the arrow keys without erasing data. Pressing [SPACE]
and [BACKSPACE] also move you right and left but erase data as you go. When
you pass either end of the field with movement keys, you automatically leave the
field (the function returns). While in the field you can delete to the end of the line
by pressing [CTRL]-[d], you can insert a blank character at the current cursor loca-
tion by pressing [CTRL]-[a], you can delete the current character with [CTRL]-[x],
and you can move forward or backward a word at a time by pressing [TAB] or
[BACKTAB]. [HOME] and [END] keys (when setup correctly in your termcap)
take you to the beginning of the field and end of the text respectively. All other
keys cause you to exit the scrolling field (function returns).

When the function returns, it returns the code number of the key stroke pressed
when the field was exited. It also returns the new data in the field. If you exited the
field with [DEL] to cancel, the field contents are restored to the initial data passed
to the function.

In general the scrolling field is used by calling it in before field logic in an "input"
statement. You must use a dummy field rather than the real data for the "input
from" since the input logic truncates the data to the display size.

We recommend displaying the real data in the dummy field used in the input state-
ment truncated with ellipses if it all won’t fit in the display space.

Since only before field logic is being used, the normal comment line at the bottom
of the screen does not appear so you manually display the comment string before
the call to fg_getfield(). You should then redisplay null after the call to
clean up the comment line.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-16 Program Control Library

The after field logic for a scrolling field should be placed after the
fg_getfield() call in the before field section. Scrolling fields are skipped with
a next field statement after the before field, fg_getfield() call, and after field
logic is run (You don’t want to enter the dummy field after exiting the scrolling
field).

Function Notes:

• Attribute reverse is always used for the field.

• The maximum length of the input data is 250.

Scrolling Fields in Input Arrays
Scrolling fields can be used with "input array." However, up and down arrows can-
not take you to the previous or next row (cannot readily move up and down
between rows with programmatic logic in before field).

An example of a scrolling field in an input array can be found on page 4-29.

Summary of functions

fg_getfield(fld_buffer, row_pos, col_pos, row_offset,
col_offset, fld_length, data_length)— scrolling field input func-
tion.

Arguments: fld_buffer—initial contents of the field.

row_pos—row position relative to the window.

col_pos—column position relative to the window.

row_offset—window’s row position.

col_offset—window’s column position.

fld_length—display length of the field.

data_length—length of data to input into the field.

Returns: ret_code—return key stroke code. fld_buffer—contents of
the field upon exit.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-17

Notes: All function keys and control keys exit except [TAB], [BACKTAB],
insert character, delete character, delete to end of line, delete line, home, and
end. Special return values include:

Only [DEL] cancels changes to the field. If row or column coordinates are ille-
gal, function terminates with a fatal error.

Warning Windows
The set of functions used for dynamic warning and error message boxes are struc-
tured very much like the dynamic menus and dynamic ring menus. Usually you call
warnput() for each line of warning text you want to display in the window then
call warnhelp() to key the context sensitive help for the warning window.
Finally you call either warnbox() for a simple confirmation type warning win-
dow or call warnyn() for a warning window which requires a YES/NO/CAN-
CEL choice.

You can store the warning messages in stxerord and automatically load them by
using warnread() or warnrd() instead of manually building the warning win-
dow text with warnput().

Value Key

13 [ENTER] (^M)

135 [ESC]

136 [DEL]

137 up arrow

138 down arrow

139 left arrow

140 right arrow

<=26 corresponding control key [^A - ^Z]

>=101 corresponding function key [F1 - F33]

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-18 Program Control Library

Warning windows cannot be nested. Each call to either warnbox() or
warnyn() resets the warning window text arrays to be reloaded for the next set of
messages.

These warning message windows can be used in programs that may need to be run
in a non-interactive mode such as scheduled reports. If the global auto_answer
is set with a call to put_scrlib(), then its value is used as the default response
to the warning prompts.

Summary of functions
Function Notes:

• Maximum 10 lines of 60 characters of warning text.

• No nested warning windows.

warnput(warn_text) — put a line of text into the warning message box.

Arguments: warn_text—warning text line.

Returns: none

Notes: If the warning text is "(see scratch)" then the contents of scratch
are used for the text.

warnread(err_module, err_program, err_number) — read warn-
ing text from error table (stxerord).

Arguments: err_module—error module key for warning text.
err_program—error program key for warning text. err_number—error
number key for warning text.

Returns: true/false true if some text found, otherwise false.

Notes: Prepares a selection cursor on stxerord using the keys and uses
warnput() to add the text to the warning box. Returns true if at least one text
line was read.

warnrd(err_number) — same as warnread() only doesn’t need module or
program.

Arguments: err_number—error number key for warning text.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-19

Returns: true/false true if some text found, otherwise false.

Notes: uses progid to determine err_module and err_program and calls
warnread().

warnhelp(help_module, help_program, help_number) — specify
the help key for the warning box (^W).

Arguments: help_module—help module key for warning text.
help_program—help program key for warning text. help_number—help
number key for warning text.

Returns: none

Notes: Module, program, and number determine key for context sensitive help
from the warning box (^W).

warnbox() — run warnbox with "OK" as the only menu option.

Arguments: none

Returns: none

Notes: Any key returns — use for warning message display only uses
auto_answer for automatic response for use with non-interactive programs
(reports).

warnyn() — run warnbox with YES/NO/CANCEL as the menu options.

Arguments: none

Returns: true/false, YES(true), NO/CANCEL(false) (int_flag set if CAN-
CEL).

Notes: Returns true or false — true if YES selected, false if NO or CANCEL
was selected. int_flag is set if CANCEL is selected. [DEL] is the same as
CANCEL. This function uses auto_answer for automatic response for use
with non-interactive programs (reports).

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-20 Program Control Library

Examples
The examples below are simplified versions of actual code and use variables not
defined in the provided code and have extra logic removed to improve readability.
The examples show all of the logical flow required to run and maintain the various
interface items.

Dynamic Ring Menu
This example builds a simple ring menu with four options, it presets the active item
before each call to ringpick() (in the actual code the menu item often changes
during the processing of a ring menu command selection).

Build the ring menu
call ringput(str.report_cmd, str.rpt_mssg)
call ringput(str.define_cmd, str.dfn_mssg)
call ringput(str.help_cmd, str.hlp_mssg)
call ringput(str.quit_cmd, str.qut_mssg)
Set menu position and help context
call ringhelp("report", "mainmenu", 1)
call ringpos(2, 3, 76)
let cur_item = 1
Menu loop
while true

Make sure the current item is set
call ringnext(cur_item)
Call the ring menu
if ringpick(str.action) then end if
Process the chosen item
case
when scratch = str.report_cmd
let cur_item = 1
if not report_menu() then exit while end if

when scratch = str.define_cmd
let cur_item = 2
if not data_menu() then exit while end if

when scratch = str.help_cmd
let cur_item = 3
if not hlp_menu() then exit while end if

when scratch = str.quit_cmd
let cur_item = 4
if not quit_menu() then exit while end if

otherwise
let cur_item = 1

end case
end while

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-21

Dynamic Menu—Pull Down Type
This example builds a small pull-down type menu, sets the activation on certain
menu items, prompts for a selection, and processes the selected action including left
and right flow control.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-22 Program Control Library

It this pulldown is not active active load it
if menu_item != "m_report"
then

Set up the report pulldown
call menuput(str.r_new) # New Report
call menuput(str.r_load) # Pick a Report
call menuput("") # -----------------
call menuput(str.r_report) # Report Definition
call menuput(str.r_choose) # Choose Columns
call menuput(str.r_arrange) # Arrange Columns
call menuput(str.r_totals) # Totals/Subtotals
call menuput(str.r_format) # View the Report
call menuput("") # -----------------
call menuput(str.r_sort) # Data Selection
call menuput(str.r_print) # Print the Report
call menuput("") # -----------------
call menuput(str.r_save) # Save the Report
call menuput(str.r_exit) # Exit Program
Set up the menu control
call menuhold()
call menuwrap(false)
call menupos(4, x_report + 1, 20)
call menuhelp("report", "main.report", 1)

end if
Activate/de-activate menuitems
Data context required
if m_rept.tabname is null
then

call menuactive(str.r_report, -1)
call menuactive(str.r_choose, -1)

else
call menuactive(str.r_report, 0)
call menuactive(str.r_choose, 0)

end if
At least one column must be selected
if fld_cnt = 0
then

call menuactive(str.r_arrange, -1)
call menuactive(str.r_print, -1)

else
call menuactive(str.r_arrange, 0)
call menuactive(str.r_print, 0)

end if
Set program context variables
let menu_item = "m_report"
Open the report pulldown menu
if menupick("") then end if
Process the report menu selection
case
when scr_funct = "right"
call menuclose("")
let scr_funct = "m_data"

when scr_funct = "left"

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-23

call menuclose("")
let scr_funct = "m_quit"

when scr_funct = "cancel"
call menuclose("")
let menu_item = "mainmenu"
let scr_funct = null

when scr_funct = "accept"
case
New report
when scratch = str.r_new
Define a new report
call rept_flow(true)

Pick a report
when scratch = str.r_load
call load_rpt()

Report description
when scratch = str.r_report
call rept_flow(false)

Choose columns
when scratch = str.r_choose
call flds_flow(true)

when scratch = str.r_arrange
call flds_flow(false)

View the report
when scratch = str.r_format
call view_rpt()

Save the current report
when scratch = str.r_save
call rpt_save(m_rept.rptname, true) returning tmp_rpt

Define subtotal data
when scratch = str.r_totals
call subt_flow()

Define sort and selection criteria
when scratch = str.r_sort
call ssel_flow()

Print the report
when scratch = str.r_print
call print_rpt(tmp_rpt, tmp_sel)

Prompt to confirm exit
when scratch = str.r_exit
if ok_2exit()
then

return false
end if

end case
End of pullmenu actions
Return to this menu item
let scr_funct = "m_report" # Return to command line

end case
End of pullmenu action

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-24 Program Control Library

Nested Dynamic Menus
This example builds three nested menus. The first is used just to display (not select)
a report column, the first "real" menu is a special comparison operator menu
depending on the type of the column to be compared (help is keyed depending on
the menu built), the last is a boolean operator window to continue the comparison
sentence.

Open the window displaying the column name
call menuput(fldname)
call menupos(row_pos, col_pos, 0)
call menuview()
Build the operator menu
case
when tmp_type = "char"
call menuput(str.c_begins) # Begins With
call menuput(str.c_matches) # Matches
call menuput(str.c_equals) # Equals
call menuput(str.c_list) # Is in List
call menuput(str.c_between) # Between
call menuput(str.c_contains) # Contains
call menuput(str.c_ends) # Ends With
call menuput("") # -------------
call menuput(str.c_notequal) # Doesn’t Equal
call menuput(str.c_notmatch) # Doesn’t Match
call menuput(str.c_notlist) # Is Not in List
call menuhelp("report", "selector", 3)

when tmp_type = "date"
call menuput(str.d_equals) # Equals
call menuput(str.d_after) # After
call menuput(str.d_before) # Before
call menuput(str.d_between) # Between
call menuput(str.d_list) # Is in List
call menuput("") # -------------
call menuput(str.d_notequal) # Doesn’t Equal
call menuput(str.d_notbtwn) # Not Between
call menuput(str.d_notlist) # Is Not in List
call menuhelp("report", "selector", 4)

otherwise
call menuput(str.o_equals) # Equals
call menuput(str.o_between) # Between
call menuput(str.o_grtrthan) # Greater Than
call menuput(str.o_lessthan) # Less Than
call menuput(str.o_gtequal) # Greater or Equal
call menuput(str.o_ltequal) # Less or Equal
call menuput(str.o_list) # Is in List
call menuput("") # ----------------
call menuput(str.o_notequal) # Doesn’t Equal
call menuput(str.o_notlist) # Is Not in List
call menuhelp("report", "selector", 5)

end case

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-25

let y = row_pos + 3
let x = col_pos + tmp_len + 3
call menupos(row_pos, x, 0)
call menuhold()
Loop until done to combine multiple selection with and/or
while true

Pick from the menu
let n = menupick("")
Process the comparison selection
if n > 0
then
case
when scratch = str.c_begins
call lib_prompt(str.c_begin2_pmt,str.c_begin1_pmt,y,x,"")

when scratch = str.c_matches
call lib_prompt(str.c_match2_pmt,str.c_match1_pmt,y,x,"")

when scratch = str.c_equals or
scratch = str.d_equals or
scratch = str.o_equals
call fld_prompt(maintab, str.equal1_pmt,

str.equal2_pmt, y, x, tmp_type)
when scratch = str.c_notequal or
scratch = str.d_notequal or
scratch = str.o_notequal
call fld_prompt(maintab, str.notequal1_pmt,

str.notequal2_pmt, y, x, tmp_type)
when scratch = str.c_list or
scratch = str.d_list or
scratch = str.o_list
call lib_list(str.list1_pmt, str.list2_pmt, 0, 0, "")

when scratch = str.c_notlist or
scratch = str.d_notlist or
scratch = str.o_notlist
call lib_list(str.notlist1_pmt,str.notlist2_pmt,0,0,"")

when scratch = str.c_contains
call lib_prompt(str.c_cont2_pmt,str.c_cont1_pmt,y,x,"")

when scratch = str.c_ends
call lib_prompt(str.c_end2_pmt, str.c_end1_pmt, y, x, "")

when scratch = str.c_notmatch
call lib_prompt(str.c_nomch2_pmt,str.c_nomch1_pmt,y,x,"")

when scratch = str.d_after or
scratch = str.o_gtequal
call fld_prompt(maintab, str.o_gteq1_pmt,

str.o_gteq2_pmt, y, x, tmp_type)
when scratch = str.d_before or
scratch = str.o_ltequal
call fld_prompt(maintab, str.o_lteq1_pmt,

str.o_lteq2_pmt, y, x, tmp_type)
when scratch = str.d_between or
scratch = str.o_between or
scratch = str.c_between
call lib_btwn(str.btwn1_pmt, str.btwn2_pmt, 0, 0, "")

returning tmp_dat1, tmp_dat2

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-26 Program Control Library

when scratch = str.d_notbtwn
when scratch = str.o_grtrthan
call fld_prompt(maintab, str.o_grtr1_pmt, str.o_grtr2_pmt,

y, x, tmp_type)
when scratch = str.o_lessthan
call fld_prompt(maintab, str.o_less1_pmt, str.o_less2_pmt,

y, x, tmp_type)
otherwise continue while

end case
Build and call the and/or/done menu
call menuput(str.x_and) # And
call menuput(str.x_or) # Or
call menuput("") # ----
call menuput(str.x_done) # Done
call menupos(row_pos, x + 3, 0)
call menuhelp("report", "selector", 6)
let n = menupick("")
Process a cancel request
if n = 0 then let scratch = str.x_done end if
Process for and/or or done
case
when scratch = str.x_and
let and_or = "and"

when scratch = str.x_or
let and_or = "or"

when scratch = str.x_done
call menuclose("") # comparison operator window
exit while

end case
end if

end while
Done
call menuclose("") # column name display window

Zoomable Dynamic Menu With Parallel Reference
Array
This example builds a menu of tables selected from the query in scratch. The
menu uses either table names or table descriptions depending on a name_type
flag. The table system names are kept in a parallel list using an array
(tab_array).

Load the table menu
prepare tab_query from scratch
declare tab_cur cursor for tab_query
foreach tab_cur into tabname, tab_desc

if name_type = "table"
then

call menuput(tabname)
let tab_array[n] = tab_desc

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-27

else
call menuput(tab_desc)
let tab_array[n] = tabname

end if
end foreach
Finish setting up the menu
call menuhold()
call menuzoom()
call menuhelp("rpt_lib", "table_pick", 2)
Loop for selection
while true

Invoke the menu
let n = menupick(str.tab_choose)
if n > 0 then

if scr_funct = "zoom"
then

call menuput(tab_array[n])
call menuhelp("rpt_lib", "table_pick", 3)
if menupick("") then end if
continue while

end if
if name_type = "table"
then

let tabname = scratch
let tab_desc = tab_array[n]

else
let tab_desc = scratch
let tabname = tab_array[n]

end if
else

let tabname = null
let tab_desc = null

end if
exit while

end while

Automatic Dynamic Menu

This example uses menusel() to build a menu of all of the columns in a given
table.

Build the column selection sentence
let scratch = "select colname from systables, syscolumns ",

"where systables.tabname = ’", tab_name clipped,
"’ and syscolumns.tabid = systables.tabid"

Load the column menu
let n = menusel()
call menuhelp("rpt_lib", "col_pick", 2)
Invoke the picker
if menupick(str.col_choose)
then

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-28 Program Control Library

return true
else

return false
end if

Multiple Selection Menu With Zoom and Internal
Header Lines
This example builds a menu of columns from several different tables. Each group
of columns has the table description as an unselectable header within the menu.
This menu allows the user to select multiple columns at once and the retrieves them
using menusget(). The "real" table and column name for each menu item is kept
in a parallel array.

First put the primary table heading
call tdesc_lkup(tabname) returning tmp_name, tmp_desc
let tmp_str = upshift(tmp_desc)
call menuput(tmp_str)
call menuactive("", -2)
Set the parallel array starting index
let n = 1
Build the column menu for the primary table
open col_nam_cur using tabname
foreach col_nam_cur into tmp_name, tmp_desc, tmp_ord

Store the column
let n = n + 1
let names[n].colname = tmp_name
let names[n].tabname = tabname
Put the column description on the menu
call menuput(tmp_desc)

end foreach
Add all columns from related tables
foreach rel_tab_cur into tmp_tab, tmp_desc

Put the table name into the menu as a header
call menuput(" ")
let tmp_str = upshift(tmp_desc)
call menuput(tmp_str)
call menuactive("", -2)
Adjust the index for the non-active menu lines
let n = n + 2
Build the column menu for the related table
open col_nam_cur using tmp_tab
foreach col_nam_cur into tmp_name, tmp_type, tmp_desc, tmp_ord

Store the column
let n = n + 1
let names[n].colname = tmp_name
let names[n].tabname = tmp_tab
Put the column description on the menu
call menuput(tmp_desc)

end foreach

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-29

end foreach
Set up the column picking menu
call menuhold()
call menuzoom()
call menumany()
call menuhelp("report", "fld_pick", 2)
Call the menu and get the selected items
while true

Call the menu
let n = menupick(head)
if n = 0 then return false end if
Check for a "zoom" and build a new menu of all indirectly
related tables then column pickers for the selected table
if scr_funct = "zoom"
then

call rel_flds(grpname, tabname)
continue while

end if
Get the selected items
while true

Get the next item
call menusget() returning n, tmp_ord
Check to see if we are done
if n = 0 then exit while end if
Insert the item
let tmp_desc = scratch
insert into tmp_flds values (names[n].tabname,

names[n].colname, tmp_desc, tmp_ord)
end while
Exit when done
if n = 0 then exit while end if

end while
Clean up
call menuclose("")

Scrolling Field
With an input array you need to make the dummy field part of the p_ array and
store the "real" data in the q_ array. You can use this strategy in both header and
detail inputs. You can define the field on the screen as a formonly field, rely upon
the q_ record having the "real" field, and implement the logic to always use the real
field for the fg_getfield() input and copy that input (properly truncated with
ellipses) to the p_ record element after the fg_getfield() call. Here is an
example that works in both "input" and "input array."

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-30 Program Control Library

Triggers:

input 1

on_screen_record_prep
Prepare the scrolling fields
call fg_elipse(q_wreptr.rpt_head1, 65)

returning p_wreptr.tmp_head1

before_field tmp_head1
Scrolling field
call lib_before("tmp_head1")
call str_display(str.entr_head1, 76, 22, 1, "white")
call fg_getfield(q_wreptr.rpt_head1, 10, 11, 2, 3, 65, 256)

returning hotkey, q_wreptr.rpt_head1
call fg_elipse(q_wreptr.rpt_head1, 65)

returning p_wreptr.tmp_head1
display "" at 22, 1
call lib_after()
Process other events
if hotkey > 0
then

let nxt_fld = "event"
UP or LEFT
if hotkey = 137 or hotkey = 139

then let nxt_fld = "rpt_desc"
end if
DOWN, RIGHT, or ENTER
if hotkey = 138 or hotkey = 140 or hotkey = 13

then let nxt_fld = "tmp_head2"
end if

end if;

The following takes place in the input statement or input array with applicable vari-
able changes in the code below:

input p_wreptr.* without defaults from s_wreptr.*

applied triggers:

#_before_field tmp_head1
Scrolling field
call lib_before("tmp_head1")
call str_display(str.entr_head1, 76, 22, 1, "white")
call fg_getfield(q_wreptr.rpt_head1, 10, 11, 2, 3, 65, 256)

returning hotkey, q_wreptr.rpt_head1
call fg_elipse(q_wreptr.rpt_head1, 65)

returning p_wreptr.tmp_head1
display "" at 22, 1
call lib_after()
Process other events
if hotkey > 0

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Overview of the Program Control Library 4-31

then
let nxt_fld = "event"
UP or LEFT
if hotkey = 137 or hotkey = 139

then let nxt_fld = "rpt_desc"
end if
DOWN, RIGHT, or ENTER
if hotkey = 138 or hotkey = 140 or hotkey = 13

then let nxt_fld = "tmp_head2"
end if

end if
#_end

#_on_screen_record_prep
Prepare the scrolling fields
call fg_elipse(q_wreptr.rpt_head1, 65)

returning p_wreptr.tmp_head1

The only special issue to be aware of with using scrolling fields in input array is
that an exit from the scrolling field with an up arrow or with a down arrow cannot
be used to move you to the previous or next row since there is no Informix facility
to allow for this kind of programmatic control (for instance no next row or prev row
commands). The same applies to page up and page down ([F4] and [F3]) since you
are collecting the input keystroke and cannot programmatically translate the
requested item (page up or page down) to the required behavior.

Warning Box With Simple Ok (Verify) Option
This example sets the help for the warning box, loads the warning text and calls the
warnbox() function.

Check for no tables selected
if n = 0
then

call warnhelp("report","table_pick", 10)
call warnput(str.no_tables)
call warnbox()
return

end if

Warning Box With Yes/No/Cancel Selections
This example prompts to save or undo changes. YES throws away the changes, NO
keeps the changes, and CANCEL returns you to the input loop.

after input
if int_flag
then

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-32 Program Control Library

call warnhelp("report", "save_chng", 10)
call warnput(str.cancel)
if not warnyn() and not int_flag
then

let scr_funct = "accept"
else

if int_flag
then

let int_flag = 0
next field fldname

end if
let scr_funct = "cancel"

end if
end if
exit input

The Fitrix C Library
The Fitrix C Library has been incorporated as a part of the CASE Tools Enhance-
ment Toolkit, and the functions documented below are only available if you have
purchased and installed the CASE Tools Enhancement Toolkit.

Installation of the CASE Tools Enhancement Toolkit creates the directory
$fglibdir/lib/c_lib.4gs, and the files within this directory are mkrun-
ners, README, and fgiusr.c. These files are needed in order for the client to
create their custom fglgo and fgldb executables. When using C functions and
RDS code, you have to run the finished programs with the modified runner fglgo
and modified fgldb. There is an Informix utility named cfgldb and cfglgo
that uses fgiusr.c to create these custom runners. All the user has to do is go
into $fglibdir/lib/c_lib.4gs, and run the shell script mkrunners. This
creates these two custom runners and moves them to $fg/bin. It is important that
$fg/bin comes before $INFORMIXDIR/bin in the environment variable
$PATH setting. Again, these custom runners would only need to be created if you
develop or run programs under RDS.

A common cause for the failure of cfglgo is that no C development system is
installed. The surest way to build this custom runner is with the C development sys-
tem installed. However, the C development system is not required. The custom
fglgo runner can be built using ld. The use of ld varies from one platform to the
next, and the mkrunners script tried the most common method for running ld to
build the custom fglgo. The exact command used is:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Fitrix C Library 4-33

ld /lib/crt0.o fgiusr.o c_*.o $GOLIBES -o fgldb -lc

The use of ld may vary from system to system. Your system manual may describe
in more detail how the ld command should be built in the manual entries for ld or
cc. You may need some help from your system administrator. Unfortunately our
organization cannot provide support for the creation of the custom runner. We
attempt to provide a list of all known variations for the proper ld command as part
of this documentation.

Known variations for the ld command:

RS/6000 AIX 3.2 Users:

ld -H512 -T512 -bhalt:4 /lib/crt0.o fgiusr.o c_*.o
$GOLIBES -o fgldb -lc

Note

On RS/6000s, it may be necessary to link in the BSD library in order for
mkrunners to find the ftime() function. You can do this by specifying
linker flag:

-lbsd

Or you can append this flag to either of the /bin/cc or /bin/ld commands
with the same affect.

The fgiusr.c source file, which is used by Informix utilities cfgldb and
cfglgo to create the custom runners, has been included for you to modify if you
wish to also include your own C functions along with these provided with Fitrix
Screen.

Note

Due to the many variations of both the C compiler and the linker between all the
UNIX platforms, we do not support any problems you may incur using these
custom runners. We are only offering to you, free of cost, the ability to use the C
functions that we currently use in Fitrix Screen.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-34 Program Control Library

The C functions
c_getkey() is a C function designed to be called from an INFORMIX-4GL pro-
gram. The function reads and identifies a keystroke entered from the keyboard rely-
ing on the Informix functions rgetkey() and mvcur(). It accepts row and
column coordinates as its two arguments. The row and column coordinates are rela-
tive to the current INFORMIX-4GL window and give the cursor position where the
function reads a keystroke. If the row equals zero then the cursor is not positioned.
The function returns a special code used to identify the keystroke and a one charac-
ter string value if the keystroke was a printing character. These are the return codes:

character 0
control keys ^A through ^Z 1-26 respectively
function keys F1 through F36 101-136 respectively
escape 135
interrupt 136
up arrow 137
down arrow 138
left arrow 139
right arrow 140
backspace 141
page down 142
page up 143
insert character 146
delete character 147
home key 148
insert line 150
delete line 151
unknown key 152

usage: call c_getkey(y, x) returning key_code, key_string

c_readfile() is a C function designed to be called from an INFORMIX-4GL
program. It accepts a path name as its only argument and returns a status flag and
string read from the given file. The status flag has the value "true" if the read was
successful and "false" if the read failed. If the file cannot be opened, "failed" (-1) is
returned. Successive reads to the same file can be used to read the file sequentially.
In order to start over reading a file from the beginning, you must first close the file
for reading and then call c_readfile() again. The easiest way to accomplish
this is by calling c_readfile() with a blank path_name argument.

usage: call c_readfile(path_name) returning stat_flag, string

c_command() is a C function designed to be called from an INFORMIX-4GL
program. It accepts an OS command as its only argument and returns a status flag, a
command status flag, and string read from the output of the OS command. The sta-

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Fitrix C Library 4-35

tus flag has the value one if the command executed successfully and some output
was read; it has the value one if the command executed successfully but there is no
output; otherwise it is minus one if the OS command could not be executed or
exited with a non-zero exit status. The command status flag gives the exit status of
the command when there is no output to read. The status flag is -1 under the follow-
ing circumstances: a chdir() to the requested directory failed (cmd_status = 0),
the command was not executable (cmd_status = 0), or the command exited with a
non_zero exit status (cmd_status = the exit value ignoring signal exit values). Suc-
cessive calls with the same command does not re-execute the command until all
output has been read at which point a zero stat_flag would be returned (unless
the command exits non-zero).

usage: call c_command(os_command) returning stat_flag,cmd_flag,string

Note: There should be a call c_command("") placed after every
c_command() usage. If the buffer has to be retained during a period of (run)
time, for instance, in a while loop, then make sure there is no run cmd being exe-
cuted during that period. A run cmd messes up the buffer if it’s not empty, which
causes the program to hang.

c_statfile() is a C function designed to be called from an INFORMIX-4GL
program. It accepts a path name as its only argument and returns the size of the file,
the last modification time as an integer, and a string with "rwx" permissions (if one
is denied it has "-" instead or the letter value).

usage: call c_statfile(path_name) returning f_size, m_time, perm_str

c_getenv() is a C function designed to be called from an INFORMIX-4GL pro-
gram. It takes an environment variable name as an argument and returns a string
containing the value.

usage: call c_getenv(variable_name) returning value_str

c_putenv() is a C function designed to be called from an INFORMIX-4GL pro-
gram. It takes an environment variable name and value as arguments and enters the
new value into the environment. If the new value is empty it removes the variable
from the table altogether. It returns true if successful and false if it fails.

usage: call c_putenv(variable_name, value_str) returning true/false

Fitrix CASE Tools Enhancement Toolkit Technical Reference

4-36 Program Control Library

c_time() is a C function designed to be called from an INFORMIX-4GL pro-
gram. It returns the current system time as an integer that can be used to compare
with the modification times on files returned by c_statfile() or with other
integer times returned by c_time().

usage: call c_time() returning current_time

c_writeout() is a C function designed to be called from an INFORMIX-4GL
program. It accepts a path name, a string to output, and an append (a), write (w), or
close (c) mode flag and returns a status flag. If the file is a new file the file is
opened for "append" or "write" depending on the mode flag argument. If the mode
argument is "c" for close, then the current opened file (if any) is closed and the
function immediately returns. The status flag may have the value -1 if the file for
output could not be opened. Otherwise the status flag has the value 1. Successive
writes to the same file can be used to write more than one line to the file.

Note

When you are finished writing a file you should call c_writeout() with a
"c" mode flag to flush the output buffer to the file and close the open file. An
immediate call to c_writeout() with a different file name serves the same
purpose.

usage: call c_writeout(path, str, mode) returning stat_flag

5-1

5
Fitrix Security

You can think of security in terms of levels. Fitrix Security defines three levels for
both system users and our applications. By using a hierarchical structure, Fitrix
Security establishes a permissions precedence. Once you understand the hierarchy
and the logic behind Fitrix Security, you can design a security plan appropriate for
your users and system components.

This section covers the following topics:

n How Security Works

n The Security Programs

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-2 Fitrix Security

How Security Works

As mentioned before, Security is based on a hierarchy. You design your security
system around three levels of users. In addition, our applications are divided into
three levels. The key to setting up a quality security system depends on your under-
standing of these levels and how they relate to each other.

User Level Description

Individual User This level defines system users on a unique or individual
basis. All system users, in other words anyone able to
log in to the system, are considered individual users.
You can grant individual users explicit allow or deny per-
mission settings.

User Group This level is made up of a subset of system users. You
define and determine the types of groups and the mem-
bers of each group on your system. When you set per-
missions for a group, all members of the group are given
that permission.

Defaults This level is made up of all system users. It uses
defaults as a keyword that signifies a user group con-
taining every individual user. When you set permissions
for defaults, you are setting permissions for all users
who do not receive more specific group or individual
permissions.

Application Level Description

Module A collection of input and output programs that com-
pose an application product, such as General Led-
ger.

Program A single program within a module. For instance,
General Ledger Setup is an input program within the
General Ledger module.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

How Security Works 5-3

Security Programs
Fitrix Security is a collection of programs that let you define security permissions
for each level of user and application. Security consists of five input programs.
These programs work interactively. In other words, information defined in one pro-
gram is used to provide information for another program.

Event An activity or command within a program. For exam-
ple, many input programs let you Update current
information. The Update command, then, is consid-
ered an event.

Program Name Description

Module and Program Information

To run, type fg.modules.

This program lists the Fitrix modules
and programs on your system. By
default, this information comes pre-
loaded in Security.

Security Events

To run, type fg.events.

This program lists the events used by
the modules and programs on your
system. Like modules and programs,
event information is pre-loaded.

Security Groups

To run, type fg.groups.

This program lets you define which
individual users belong to which user
group.

User & Group Permissions

To run, type fg.users

This program provides a complete
method for identifying the users and
groups on your system. In addition, it
links information in the Module, and
Event programs with user and group
definitions, and it allows you to set
explicit user and group permissions.
Most of the work you do with Security
is done in this program.

Application Level Description

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-4 Fitrix Security

In later sections of this Guide, each program is described in more detail. This sec-
tion concentrates on how Security takes and uses information supplied to the Secu-
rity programs and which permission settings take precedence.

Group Security Control

To run, type fg.gcontrol.

This program provides an easy-to-
use interface for setting up group per-
missions on common events. It does
not contain all the features and flexi-
bility of the User & Group Permis-
sions program, but it is a simplistic
alternative.

Program Name Description

Fitrix CASE Tools Enhancement Toolkit Technical Reference

How Security Works 5-5

Determining Precedence

Security determines precedence in an inverted or "bottom up" manner. In other
words, the most specific settings (the individual user settings and the event settings)
take precedence over the more general settings.

In terms of user levels, Fitrix Security searches for an allow or deny permission
first on the individual level, then on the group level, and finally on the global or
defaults group level.

In terms of application levels, Security looks first at the event level, then the pro-
gram level, and finally the module level.

User Level Search Order

Individual DefaultsGroup

Application Level Search Order

Event ModuleProgram

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-6 Fitrix Security

Overlapping Group Permissions

Security is designed to meet as many custom security setups as possible. For this
reason, you can place individual users into more than one user group. Sometimes,
however, users belong to groups that contain conflicting permission settings other-
wise known as overlapping user groups. Users that belong to overlapping groups
are given allow permission.

For instance a clerk might belong to a group called clerks and a group called
project_leaders. At times, clerks and project_leaders might have
conflicting permission settings. For instance, clerks might allow the Update
event and project_leaders might deny it.

In this situation, the clerk who belongs to both groups is able to use the Update
event.

Clerks

Project_leaders
Allow Update

Deny Update

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Security Programs 5-7

The Security Programs

As mentioned earlier, Fitrix Security is a collection of five input programs. You use
all of these programs to define Security on each level of user and application.

Module and Program Information

This input program lets you enter the modules and programs eligible to secure. All
Fitrix modules and programs come pre-loaded. You only need to use Module and
Program Information when you create custom programs or modules. The following
figure shows the input screen for Module and Program Information:

Adding Custom Programs to Module and Program
Information

When you create a custom application, the Report Code Generator automatically
builds logic that Security recognizes. For example, if you create a custom report,
you can add that report to Module and Program Information.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-8 Fitrix Security

To add a custom report to Module and Program Information:

1. Select Add from the ring menu.

2. In the Module Name field, enter the module directory of the custom pro-
gram.

For example, if your custom report is in sales.4gm, enter sales in the
Module Name field.

3. In the Program Name field, enter the program directory that contains
your custom report.

For example, if your custom report is in q1_sales.4gs, enter q1_sales in
the Program Name field.

4. Enter a description for your custom report in the Description field.

The User Definable field is a non-entry field. At this time, you can leave this
field blank.

5. Press [ESC] to store your entry.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Security Programs 5-9

Security Events

This input program is similar to Module and Program Information. It too comes
pre-loaded with events used in our programs, such as add, delete, and update. As
well, Security Events lets you define custom events in custom programs. Similar to
Module and Program Information, Security Events just lets you define events that
are eligible to secure.

The following shows some of the 35 events associated with Report Writer.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-10 Fitrix Security

Adding Custom Events to Security Events

If your application contains custom events, you can add these events to the Security
Events program. Once added, you can use the User and Group Permissions pro-
gram to place individual and group permissions on your custom event.

Unlike custom programs, where Security logic gets generated automatically, you
must add a few lines of code at the start of your custom events for Security to be
able to recognize it.

For example, suppose you create a q1_sales program. In q1_sales, you create
a custom event that allows users to fax report output to company headquarters. At
the start of your custom fax event, add the following lines of code:

Inserted for program level security.
Check for permission
if not security_chk("fax")
then

call security_msg("fax")
exit program(100)

end if

After you add this code to your custom event, making that event eligible to secure
requires the following steps:

1. Select Add from the ring menu.

2. In the Module Name field, enter the module directory of your custom pro-
gram.

For example, if the module directory is sales.4gm, enter sales.

3. In the Program Name field, enter the program directory of your custom
program.

For example, if the program directory is q1_sales.4gs, enter q1_sales.

4. In the Event Name field, enter the name of your custom event.

For example, if the event name is fax, enter fax.

5. In the Description field, enter a description of your event.

6. In the Default Setting field, enter the default permission for the event.

The User Definable field is a non-entry field.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Security Programs 5-11

7. Press [ESC] to store your entry.

Note

If you want to set permissions for your event in all the programs in a module,
leave the Program Name field blank.

Security Groups

This program lets you assign individual users to groups. By creating groups of
users, from individuals users who require similar system access, you can simplify
your security configuration.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-12 Fitrix Security

For example, you might want to assign your entire sales force to a group called
sales. Your definition of the sales group might look as follows:

Once you define a security group, you can set permissions for that group in the
User and Group Permissions program or in Group Security Control.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Security Programs 5-13

User and Group Permissions

This input program is where most of your security work gets done. It is this pro-
gram that relates the information set in Module and Program Information, Security
Events, and Security Groups with actual permission settings.

Setting Individual User Permissions

The most basic task of the User and Group Permissions program is setting permis-
sions for an individual user.

To set permission for an individual user:

1. Select Add from the ring menu.

2. Enter values for the User Login and Last Name fields.

For example, if you are setting permissions for donw, enter donw in the User
Login field and donw’s last name (for instance Williams) in the Last Name
field.

The User Login and Last Name fields are the only required fields. The other
fields in the header section are optional, such as the Department and Phone
fields.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-14 Fitrix Security

3. Press [TAB] to move to the detail section of the program.

In the detail section you can enter the module, program, and event you want to
set permissions on. You can also press [CTRL]-[z] to pick from a list of defined
modules, programs, and events.

For example, suppose you want to deny donw the ability to delete reports:

4. Once you finish entering permission data, press [ESC] to store your entry.

Setting Permission for an Entire Module

To set permissions for an entire module, only specify the module name in the detail
portion of User and Group Permissions.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Security Programs 5-15

For example, to deny donw access to all programs in the report module, make the
following entry:

In a similar sense, you can set permissions for all events in a program: specify both
the module and program and leave the Event field blank.

Setting Group Permissions

You can also set permissions for groups that you have defined in the Security
Group program (see "Security Groups" on page 5-11). In the same way you set per-
missions for individual users, you also set permissions for groups.

To set permissions for a group:

1. Select Add from the ring menu.

2. Enter the group code (i.e., group name) in the User Login field and enter a
description of the group in the Last Name field.

3. Press [TAB] to move to the detail portion of the program.

In the detail section you can enter the module, program, and event you want to
set permissions on. You can also press [CTRL]-[z] to pick from a list of defined
modules, programs, and events.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-16 Fitrix Security

For example, to set permissions of the sales group for the delete report event:

4. Once you finish entering permission data, press [ESC] to store your entry.

Setting Defaults Permission

The Defaults permission is a reserved permission setting. The values set for
Defaults are passed to all users and groups not otherwise defined. For instance, if
the user robertc does not belong to any groups and does not have an individual
user entry, he receives the permissions set in defaults.

To set Defaults permission:

1. Select Add from the ring menu.

2. Enter defaults in the User Login field and DEFAULTS in the Last Name
field.

3. Press [TAB] to move to the detail section of the screen.

In the detail section, enter the module, program, and event you want to set per-
missions on. You can also press [CTRL]-[z] to pick from a list of defined mod-
ules, programs, and events.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Security Programs 5-17

4. Once you complete setting defaults permissions, press [ESC] to store your
settings.

Note

Caution: The Defaults permission affects all users on the system. You should
set Defaults permissions during a period of light system use.

Group Security Control

Group Security Control is a simplified version of the User and Group Permissions
program. With Group Security Control, the most common program events are
already listed. Group Security Control gives you a graphical matrix with which to
assign permission settings for a defined group on a defined module.

For example, the following entry shows the permissions for the account group on
the report module:

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-18 Fitrix Security

The following describes the events available in Security Control.

Event Description

Run The Run event controls the use of the listed program.
When the Run permission field is set to Y, members of the
group can start the listed program. When set to N, the
group cannot start the listed program.

Add The Add event controls the ability to add or create new
program documents. When Add is set to Y, documents can
be added. When set to N, the group cannot add a docu-
ment.

Upt The Upt event specifies a group’s ability to update a docu-
ment. A Y in this field lets group members update a docu-
ment, an N denies update permission.

Del The Del event controls document deletion. Many times
only specific users are allowed delete permission. When
you set the Del event to Y, the group can delete docu-
ments. When set to N, documents cannot be deleted.

Fnd The Fnd event controls a program’s Find capabilities.
When you set the Fnd event to Y, group members can
conduct Query-By-Example searches for specific docu-
ments. When set to N, users cannot use the Find feature.

Brw The Brw event controls the Browse capabilities. When you
set Brw to Y, the group can use the Browse command.
When set to N, browse privileges are denied.

Tab The Tab event coincides with the Tab command. When
you set the Tab field to Y, the group can use the Tab com-
mand. When set to N, group members cannot use the Tab
command.

Opt The Opt event controls access to the Options command. A
Y in the Opt field grants access to the Options command,
an N denies access.

Fitrix CASE Tools Enhancement Toolkit Technical Reference

The Security Programs 5-19

Bng The Bng event controls access to the operating system. In
most cases, users are able to bang out (also called shell
out or escape) to the operating system. When the Bng
event is set to Y, the group can bang out of the program.
When set to N, the group cannot escape to the operating
system.

Hot The Hot event corresponds to a program’s Hot Keys. In
many programs, users can define Hot Keys that serve as
keyboard shortcuts to common program commands. When
you set the Hot event to Y, users can alter the default Hot
Key definitions. When set to N, users cannot edit the
default Hot Key definitions.

Nav The Nav event relates to a program’s Navigate feature. In
many Fitrix programs, users can press [CTRL]-[g] to view
the Navigate pop-up menu. When you set the Nav event to
Y, users gain the ability to use this menu. When set to N,
users cannot use the Navigate menu.

Event Description

Fitrix CASE Tools Enhancement Toolkit Technical Reference

5-20 Fitrix Security

12/28/95Index-1

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Index
Numerics
4GL Runner 3-7

A
Access from other programs field

Navigation Commands form 2-5
Action Code field

Hot Keys form 2-8
Navigation Commands form 2-4

add_flds 3-46
addmany 3-44
addone 3-44
advanced libraries

compiling 3-7
Allow access for others field

Navigation Commands form 2-5

B
brw_list 3-45

C
C field

Program Menu Definition form 3-32
C functions 4-34
C Library 4-32
c_command function 4-35
c_getenv function 4-36
c_getkey function 4-34
c_lib.4gs 4-32
c_putenv function 4-36
c_readfile function 4-35
c_statfile function 4-35
c_time function 4-36
c_writeout function 4-36
cfgldb 3-7
cfglgo 3-7

chg_func 3-46
compiling programs with advanced libraries 3-7
Contents field

User-Defined Fields form 2-21
conventions

key mapping 2-10
copy

error text 2-19
help text 2-12

copymany 3-44
copyone 3-44
custom menus 3-27

defining 3-32
custom ring menu

defining 3-35
linking into your program 3-36

D
D field

Program Menu Definition form 3-31
Data Field Name field

User-Defined Fields form 2-21
default Pull-Down Menu 3-9
default ring menu

customizing 3-9
define

hot keys 2-9
defining keys

termcap 2-9
del_all 3-44
del_one 3-44
Description field

Navigation Commands form 2-4
different keyboards 1-8
documentation

overview 1-6
Dynamic Menu

example 4-26
Pull-Down Type example 4-21

Dynamic Menu example
automatic menu 4-27

Dynamic Menus 4-3
overview 4-2

Dynamic Ring Menu
example 4-20

Dynamic Ring Menus 4-11

Index-2

Fitrix CASE Tools Enhancement Toolkit Technical Reference

overview 4-3

E
E field

Program Menu Definition form 3-31
edt_note 3-46
errlog

error message Zoom 2-18
error calls

adding error text 2-15
error log message

Zoom 2-18
error text

adding 2-15
copying 2-19
logging 2-17
on-line 2-14, 2-15
updating 2-15
viewing 2-14

errors detail form 2-16
Event Called field

Menu Items Definition form 3-15
Event Class field

Menu Items Definition form 3-16
Event field

Program Menu Definition form 3-31
Event Type field

Menu Items Definition form 3-15
events

menu functions 3-43
navigation 2-2

F
fg.make

compiling adv libraries 3-7
fg_getfield function 4-16
fgiusr.c 3-7
fields

user-defined 2-20
findevent function

highlighting a menu item 3-11
findquit 3-43
findwind 3-43
form

errors detail 2-16
personal to do 2-24
To Do Zoom 2-24
user-defined fields 2-20

4GL Runner 3-7
freeform notes 2-22

Zoom 2-23
Freeform Notes form 2-22
function event 3-16
function key

defining as hot key 2-9

G
gen_menu function

syntax 3-37
Get Ring field

Program Menu Definition form 3-31
Group Security Control 5-17

H
help

commands 2-11
help command

Info 2-11
Quit 2-12
Update 2-12
View 2-11

Help Line field
Menu Items Definition form 3-18

help text
copying 2-12
on-line 2-11

highlighting a menu item
findevent 3-11

Hold After Select field
Menu Items Definition form 3-15

hot key
mapping 2-7

hot keys
adding 2-9
mapping 2-7
termcap factors 2-9

Hot Keys form 2-7
hot menu

12/28/95Index-3

Fitrix CASE Tools Enhancement Toolkit Technical Reference

description 3-21
hot_keys 3-46

I
Info

help command 2-11
Item Description field

Menu Items Definition form 3-14
Program Menu Definition form 3-31

Item ID field
Program Menu Definition form 3-31

Item Label field
Menu Items Definition form 3-18

Item Order ID field 3-14
Item Style field

Menu Items Definition form 3-14

K
Key field

User-Defined Fields form 2-21
Key Label field

Hot Keys form 2-8
key mapping 2-7

conventions 2-10
termcap 2-9

keyboard variations 1-8

L
Language field

Menu Items Definition form 3-18
Line field

User-Defined Fields form 2-21
list

to do 2-23
list_err 3-46
log

error message Zoom 2-18
logging

error text 2-17

M
Mainring

description 3-9
diagram of 3-5
standard menu items 3-10
standard pull-down menus 3-12

Mainring Events 3-44
mapping

conventions 2-10
hot keys 2-7

menu
hot 3-21

Menu Function Events in Pull-Down Menus 3-43
menu item

functionality characteristics 3-13
Menu Item Activation Characteristics 3-17
Menu Item Translation Characteristics 3-18
menu items

creating 3-9
Menu Items Definition form 3-12, 3-13, 3-14

example 3-13
Menu Name field 3-13

Program Menu Definition form 3-31
menu_extra 3-24
menu_item variable 3-26
menuactive function 4-10
menuclose function 4-8
menucurrent function 4-10
menuget function 4-8
menuhead function 4-6
menuhelp function 4-8
menuhold function 4-7
menumany function 4-9
menunext function 4-10
menupick function 4-7
menupos function 4-9
menusel function 4-7
menusget function 4-9
menuview function 4-11
menuwrap function 4-10
menuzoom function 4-9
mkrunner script 3-8
Module and Program Information 5-7
Module Name field

Program Menu Definition form 3-31
movemenu 3-22, 3-43

Index-4

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Multiple Selection Menu
example 4-28

multi-tasking 2-2

N
navigate

feature 2-2
Navigate menu 2-3
navigation

running another program 2-5
Navigation Commands form 2-3
navigation event

deleting 2-6
Nested Dynamic Menus

example 4-24
new_grp 3-44
next_one 3-45
notes

freeform 2-22

O
Old_ring

ring menu 3-5
on-line

error text 2-14, 2-15
help text 2-11

Operating system command field
Navigation Commands form 2-4

oth_prgm 3-45
Overlapping Group Permissions 5-6

P
personal to do form 2-24
personal to do list 2-23
Press [ENTER] upon return field

Navigation Commands form 2-4
prev_one 3-45
prg_ack 3-45
prg_hlp 3-45
prg_info 3-45
prg_quit 3-46
prg_stat 3-46
prog_ctl menuput 3-22

prog_ctl ringput
using with Pull-Down Menus 3-22

Program Control Library 4-1
Program Menu Definition form 3-27
Program Menu option 3-27
Program Name field

Program Menu Definition form 3-31
program status

viewing 2-17
Pull-Down Menu

how to define 3-20
pull-down menu

how to hold open 3-20
pull-down menu event 3-16
Pull-Down Menus

adding new items to existing menus 3-24
compiling into your programs 3-7
controlling by a 4GL program 3-21
creating custom menus for specific programs

3-27
creating new function events 3-24
creating new menu items 3-9
defining a ring menu 3-19
defining custom menus 3-32
defining function keys 3-22
diagram 3-5
holding open a pull down menu 3-20
how it works 3-3
linking 3-6
moving to a new system 3-41
pull-down menus and arrow keys 3-22
questions 3-19
running on the target machine 3-6
size of pull-down menu 3-26
using 3-6

pull-down menus
standard (Mainring) 3-12

Q
Quit

help command 2-12

R
R field

12/28/95Index-5

Fitrix CASE Tools Enhancement Toolkit Technical Reference

Program Menu Definition form 3-32
req_feat 3-46
Requires Cursor Item field

Menu Items Definition form 3-18
Requires Cursor Total field

Menu Items Definition form 3-18
Requires Detail Section field

Menu Items Definition form 3-17
Requires Rowid field

Menu Items Definition form 3-17
ring events 3-43
ring menu

calling within a program 3-37
defining a custom ring menu 3-35
help 2-11
how to define 3-19
linking custom menus 3-36

ring menu event 3-16
Ring Menu Items option 3-9
ringclose function 4-13
ringcurrent function 4-14
ringhelp function 4-13
ringnext function 4-13
ringpick function 4-13
ringpos function 4-14
ringput function 4-12
ringspace function 4-14
runner

creating for Pull-Down Menus 3-7

S
scr_funct 3-23
Screen ID field

Menu Definition form 3-31
Scrolling Field

example 4-29
Scrolling Input Fields 4-14

overview 4-3
Security 5-1

adding custom work 5-7, 5-10
description of 5-1
determining precedence 5-5
how it works 5-2
module and program information 5-7
overlapping group permissions 5-6
programs of 5-7

security events 5-9
security groups 5-11
setting for defaults 5-16
setting for groups 5-15
setting for individuals 5-13
user and group permissions 5-13

Security Events 5-9
Security Groups 5-11
see_flds 3-46
see_note 3-46
sort_grp 3-44
spec_cmd 3-45
standard Pull-Down Menus 3-10
status

program 2-17
Style field

Program Menu Definition form 3-31
sys_esc 3-45
System Wide field

Hot Keys form 2-8

T
T field

Program Menu Definition form 3-32
Table field

User-Defined Fields form 2-21
termcap

defining keys 2-9
hot key mapping 2-9
key mapping 2-9

text
adding error text 2-15

To Do
Zoom 2-24

to do list 2-23
todolist event 3-45
Type field

Program Menu Definition form 3-31

U
upd_all 3-44
upd_one 3-44
Update

help command 2-12

Index-6

Fitrix CASE Tools Enhancement Toolkit Technical Reference

User and Group Permissions 5-13
User Control Library 2-1
User Control Menus

using prog_ctl ringput 3-22
User Name field

Hot Keys form 2-8
user-defined

error text 2-15
fields 2-20

User-Defined Fields
deleting 2-21

user-defined fields form 2-20

V
View

help command 2-11
view_det 3-45
viewing

program status 2-17

W
warnbox function 4-19
warnhelp function 4-19
Warning Box

example 4-31
Warning Windows 4-17

overview 4-3
warnput function 4-18
warnrd function 4-19
warnread function 4-18
warnyn function 4-19

Z
Zoom

error log message 2-18
freeform notes 2-23
To Do 2-24

	Title
	Introduction
	Table Of Contents
	1 Introduction
	2 User Controle Library
	3 Pull-Down Menus
	4 Program Control Library
	5 Fitrix Security
	Index

